Les ondes sonores de l’éruption aux Tonga // The sonic waves of the Tonga eruption

L’explosion du volcan sous-marin Hunga Tonga-Hunga-Ha’apai le 15 janvier 2022 dans l’archipel des Tonga a été « entendue » dans le monde entier. Selon un communiqué de presse de l’Université d’Hawaï, l’éruption a déclenché une onde sonore qui s’est répercutée dans l’atmosphère terrestre et a été enregistrée dans le monde entier par des stations de surveillance… et des smartphones.
L’éruption dévastatrice a produit l’onde de choc la plus puissante depuis l’éruption du Krakatau (Indonésie) en 1883. Les systèmes de surveillance de l’Université d’Hawaii qui épient en permanence les infrasons – sons inaudibles produits par des événements naturels extrêmes, tels que des éruptions volcaniques, des impacts d’astéroïdes et des explosions intenses – ont enregistré l’éruption des Tonga sur des capteurs d’infrasons et de pression conventionnels, ainsi qu’avec un réseau de capteurs de smartphones, ce qui montre que les smartphones peuvent enregistrer de puissantes explosions à des milliers de kilomètres.
Jusqu’à l’éruption aux Tonga, l’explosion du météore de Tcheliabinsk en 2013 au-dessus de la Russie était la plus puissante explosion atmosphérique enregistrée depuis le début de l’ère numérique. On compare généralement l’intensité des impacts de météores et des éruptions volcaniques à l’énergie équivalente d’une explosion de TNT. Avec une énergie estimée à 500 kilotonnes de TNT, l’onde de choc du météore russe avait été enregistrée par des systèmes de surveillance géophysique conventionnels sur toute la Terre.
En 2014, le département d’État américain a encouragé le développement de l’application RedVox Recorder pour smartphones dont le but était de détecter les infrasons des explosions atmosphériques. Plus récemment, dans le cadre des objectifs de non-prolifération nucléaire, le financement des recherches par la National Nuclear Security Administration, sous l’égide du Département de l’Énergie, a permis de développer une technologie adaptée aux smartphones et d’augmenter les capacités de mesure de diverses signatures sonores et vibratoires près de la surface de la Terre, ainsi que dans la haute atmosphère et l’océan.
Des équipes d’ingénieurs et de programmeurs ont contribué à faire mûrir la technologie et à la rendre accessible au public. L’application gratuite RedVox Infrasound Recorder est disponible pour les appareils Apple et Android et fonctionne sur la plupart des smartphones modernes.
À partir de calculs basés sur les données de pression collectées via l’application et les capteurs conventionnels, on peut estimer que l’explosion des Tonga était plus importante que celle de Tsar Bomba, qui, avec 50 mégatonnes, était l’arme nucléaire la plus puissante jamais testée. L’explosion des Tonga est probablement proche de l’explosion du Krakatau en 1883, estimée à 200 mégatonnes.
Source : médias d’information hawaïens.

—————————————————

The explosion of the Hunga Tonga-Hunga-Haʻapai submarine volcano on January 15th, 2022 in theTonga archipelago was “heard” around the globe. According to a University of Hawaiʻi press release, the eruption released a blast “sound” wave that reverberated through Earth’s atmosphere and was recorded around the world by monitoring stations…and smartphones.

The devastating eruption produced the most powerful air blast since the 1883 eruption of Krakatoa in Indonesia. Monitoring systems at UH-Mānoa that continuously listen for infrasound – deep, inaudible atmospheric sound produced by extreme natural events, such as volcanoes, asteroid impacts and intense explosions – recorded the Tonga eruption on traditional infrasound and pressure sensors, as well as with a network of smartphone sensors, showing that smartphones can record large blasts from thousands of kilometers away.

Until the event in Tonga, the 2013 Chelyabinsk meteor over Russia was the largest atmospheric blast recorded in the digital era. The blast intensity of meteor impacts and volcanic eruptions is commonly reported relative to the energy from an equivalent TNT explosion. At an estimated yield of 500 kilotons of TNT, the Russian meteor blast wave was recorded by conventional geophysical monitoring systems all over Earth.

In 2014, the U.S. State Department supported the development of the RedVox Recorder smartphone application to detect infrasound from atmospheric blasts. More recently, in support of the nation’s nuclear nonproliferation goals, research funding from the U.S. Department of Energy’s National Nuclear Security Administration allowed the expansion of the smartphone technology and the increase of capabilities to measure diverse sound and vibration signatures near Earth’s surface, as well as in the upper atmosphere and the ocean.

Teams of engineers and programmers have contributed to mature the technology and make it available to the public. The free RedVox Infrasound Recorder app is available for Apple and Android devices and runs on most modern smartphones.

From calculations based on pressure data collected via the app and traditional sensors, one can estimate the Tonga blast was larger than Tsar Bomba’s, which at 50 megatons was the most powerful nuclear weapon ever tested. It is likely to be closer to the 1883 Krakatoa blast, which weighed in at 200 megatons.

Source: Hawaiian news media.

L’Infrasound Laboratory de l’Université d’Hawaii a réalisé une capture du signal de l’éruption des Tonga sur les smartphones via l’application RedVox. (Source: Université d’Hawaii).

Un système automatique d’alerte éruptive sur l’Etna (Sicile) // An automatic eruptive alert system on Mt Etna (Sicily)

Selon la presse sicilienne, un système automatique destiné à alerter la population en cas d’éruption a été testé avec succès sur l’Etna  pendant 8 ans, de 2008 à 2016. Il a pu détecter 57 des 59 épisodes éruptifs une heure à l’avance. Basé sur un réseau de capteurs acoustiques, le système a été mis au point par un groupe de scientifiques de l’Université de Florence. Les résultats des tests ont été publiés dans le Journal of Geophysical Research.
Les scientifiques ont placé des capteurs sonores à environ 6 kilomètres du plus haut volcan actif d’Europe. Ces capteurs sont capables d’envoyer des signaux d’avertissement par le biais de messages et de courriers électroniques. À l’aide de ce système, le gouvernement italien a pu mettre au point en 2015 un plan d’alerte prêt à être déclenché une heure avant une éventuelle éruption.

Les chercheurs expliquent que les volcans génèrent des ondes sonores de basse fréquence qui ne peuvent pas être entendues par l’oreille humaine avant une éruption. Ces infrasons peuvent parcourir des milliers de kilomètres à l’intérieur du volcan et sont plus étroitement liés à une éruption que les ondes sismiques.
L’un des scientifiques a fait remarquer que la plupart des 1 500 volcans actifs dans le monde ne sont pas surveillés en temps réel. L’étude des ondes sismiques liées aux mouvements du magma est souvent insuffisante ; elle devrait être accompagnée d’une alerte automatique capable d’accélérer les procédures et réduire les risques. Après les premiers tests positifs sur l’Etna, les capteurs seront également testés sur d’autres volcans. L’objectif est de créer un réseau mondial de surveillance.

Source : Presse sicilienne.

—————————————————

According to the Sicilian press, an automatic system intended to alert the population in the event of an eruption has been successfully tested for 8 years on Mount Etna, from 2008 to 2016. It was able to detect 57 of the 59 eruptive episodes one hour in advance. Based on a network of acoustic sensors, the system was developed by a group of scientists from the University of Florence. The test results were published in the Journal of Geophysical Research.
Scientists set up sound sensors about 6 kilometres from the highest active volcano in Europe. These sensors are capable of sending warning signals through messages and emails. Using this system, the Italian government could develop in 2015 an alert plan ready to be triggered one hour before an eruption.
The researchers explain that volcanoes generate low frequency sound waves that can not be heard by the human ear before an eruption. These infrasounds can travel thousands of kilometres inside the volcano and are more closely related to an eruption than the seismic waves.
One of the scientists pointed out that most of the 1,500 active volcanoes in the world are not monitored in real time. The study of seismic waves related to the movements of magma is often insufficient; it should be accompanied by an automatic alert capable of speeding up procedures and reducing risks. After the first positive tests on Mt Etna, the sensors will also be tested on other volcanoes. The goal is to create a global surveillance network.
Source: Sicilian newspapers.

Photo: C. Grandpey

Les infrasons au service de la volcanologie // Could nfrasound help predict eruptions?

Une nouvelle étude conduite par des scientifiques de la Stanford School of Earth, Energy & Environmental Sciences et de l’Université de Boise (Idaho), et publiée dans la revue Geophysical Research Letters, montre que l’étude des infrasons émis par un certain type de volcans pourrait améliorer la prévision d’éruptions potentiellement mortelles. Les chercheurs ont analysé les infrasons détectés par les stations de surveillance du Villarrica dans le sud du Chili. Ces infrasons proviennent des mouvements du lac de lave à l’intérieur du cratère et changent en fonction de l’activité du volcan. L’étude tente de démontrer comment ces variations ont pu annoncer la hausse soudaine du niveau du lac, ainsi que ses fluctuations rapides vers le bord du cratère juste avant l’éruption majeure de 2015. Le suivi des infrasons en temps réel et son association à d’autres données, telles que la sismicité et les émissions de gaz, pourrait permettre d’alerter la population locale et les touristes lorsque’un volcan est sur le point d’entrer en éruption.
La dernière éruption majeure du Villarrica a eu lieu le 3 mars 2015. Ce fut un événement de courte durée au cours duquel on a observé une fontaine de lave de 1 500 mètres de hauteur, avec des projections de cendre et autres matériaux. 4 000 personnes ont été évacuées. Les stations de surveillance infrasonique installées sur le Villarrica deux mois avant l’événement de 2015 ont enregistré son activité sonore avant et après l’éruption. En analysant ces données, les chercheurs ont constaté que dans la période précédant l’éruption, l’intensité du signal infrasonique augmentait, tandis que sa durée diminuait. Des survols ont fourni des informations sur les changements intervenus dans le lac de lave du Villarrica, ce qui a permis aux chercheurs d’étudier la relation entre les variations de son niveau et le niveau des sons émis.
Un des chercheurs a proposé une comparaison avec un instrument de musique pour expliquer cette relation. De la même façon qu’une personne souffle dans un trombone, les explosions provoquées par les bulles de gaz qui montent puis éclatent à la surface du lac de lave créent des ondes sonores. Tout comme la coulisse d’un trombone peut faire varier la tonalité des notes qu’il produit, la géométrie du cratère qui contient le lac de lave module ses sons. Lorsque le lac de lave est profondément enfoncé à l’intérieur du cratère, le son est émis à une fréquence plus basse. Lorsque le lac de lave remonte dans le cratère, annonçant une possible éruption, la fréquence du son augmente, comme lorsque la coulisse du trombone est raccourcie.
Le but des recherches à venir sera d’établir un lien entre l’étude des infrasons et d’autres variables – telles que la sismicité – qui sont essentielles à la surveillance des volcans et la prévision de leurs éruptions. Avant une éruption, l’activité sismique augmente presque toujours. Cette sismicité provient de plusieurs kilomètres de profondeur, pendant l’ascension du magma dans le système d’alimentation du volcan. Les volcanologues pensent que les variations de niveau du lac de lave – et les infrasons correspondant – sont dus à l’injection d’un nouveau magma dans les conduits d’alimentation du volcan, avec augmentation du risque d’une éruption violente.
Cette étude montre que l’enregistrement des infrasons devrait être une aide supplémentaire dans la prévision du comportement des volcans « ouverts » comme le Villarrica, où existe un lac de lave bien visible et où des conduits d’alimentation font le lien entre les entrailles de la Terre et la surface du volcan. Cependant, les volcans « fermés » comme le Mt St Helens aux Etats Unis, où le magma reste prisonnier à l’intérieur de l’édifice jusqu’à ce qu’une éruption explosive se produise, ne génèrent pas le même type d’infrasons et posent donc d’autres problèmes de prévision. Cela confirme que les volcans sont un monde complexe et qu’il n’existe actuellement aucun moyen universel de prévoir leurs éruptions.
Source: Science Daily.

En cliquant sur ce lien, vous verrez une vidéo montrant le lac de lave du Villarrica: https://youtu.be/FuK1C6xZknY

——————————————–

A new study by scientists from Stanford School of Earth, Energy & Environmental Sciences and Boise State University (Idaho) and published in the journal Geophysical Research Letters has shown that monitoring infrasound produced by a type of active volcano could improve the forecasting of potentially deadly eruptions. The researchers analyzed the infrasound detected by monitoring stations on the slopes of the Villarrica volcano in southern Chile. The distinctive sound emanates from the movements of a lava lake inside the crater and changes according to the volcano’s activity. The study tries to demonstrate how changes in this sound signaled a sudden rise in the lake level, along with rapid up-and-down motions of the surging lake near the crater’s rim just ahead of a major eruption in 2015. Tracking infrasound in real time and integrating it with other data, such as seismic readings and gas emission, might help alert nearby residents and tourists that a volcano is about to erupt.
Villarrica’s last significant eruption occurred on March 3rd, 2015. Itas a short-lived event during which the volcano emitted a fountain that went up to 1,500 metres into the sky, together with ash and debris. Around 4,000 people were evacuated close to the volcano. Infrasound monitoring stations established at Villarrica just two months before the 2015 event captured its before-and-after sonic activity. Studying these data, the research team saw that in the build-up to the eruption, the pitch of the infrasound increased, while the duration of the signal decreased. Flyovers in aircraft documented the changes in Villarrica’s lava lake, allowing researchers to explore connections between its height and the sound generation.
One of the researchers offered a music analogy to explain this relationship. Similar to a person blowing into a trombone, explosions from gas bubbles rising and then bursting at the surface of the lava lake create sound waves. Just as the shape of a trombone can change the pitch of the notes it produces, the geometry of the crater that holds the lava lake modulates its sounds. When the lava lake is deep down in the volcano’s crater, the sound registers at a lower pitch or frequency. When the lava lake rises up in the crater, potentially heralding an eruption, the pitch or frequency of the sound increases, just like when the trombone is retracted.
Future research will seek to tie infrasound generation to other critical variables in volcano monitoring and eruption forecasting, such as seismicity. Ahead of an eruption, seismic activity almost always increases. This seismicity emanates from several kilometress underground as magma moves through the volcano’s feeding system. Volcanologists think that changes in lava lake levels — and their corresponding infrasound — result from the injection of new magma through volcanic plumbing, increasing the odds of a violent eruption.
In this way, the collection of infrasound should prove beneficial for forecasting purposes at « open vent » volcanoes like Villarrica, where an exposed lake or channels of lava connect the volcano’s innards to the atmosphere. However, closed vent volcanoes like Mt St Helens, where the pooling magma remains trapped under rock until an explosive eruption occurs, do not generate the same kind of infrasound and thus pose additional forecasting challenges. This confirms that volcanoes are complicated and there is currently no universally applicable means of predicting eruptions.
Source: Science Daily.

By clicking on this link, you will see a video showing Villarrica’s lava lake: https://youtu.be/FuK1C6xZknY

Vue du Villarrica et d’une fontaine de lave dans son cratère (Crédit photo: Wikipedia)