Les volcans victimes de l’Administration Trump // Volcanoes Victims of the Trump Administration

  Lorsque le mont Spurr en Alaska a commencé à montrer une hausse d’activité en octobre 2024 (voir mes notes précédentes sur ce volcan), l’Observatoire Volcanologique d’Alaska (AVO) a relevé son niveau d’alerte pour s’assurer que les zones habitées à proximité et les pilotes d’avions seraient suffisamment avertis en cas d’éruption.

Source: AVO

Le problème, c’est que la campagne de réduction des coûts décidée par l’administration Trump a mis ce travail en péril. Les cartes de crédit utilisées par les employés de l’AVO pour payer leurs déplacements et subvenir aux autres dépenses ont été gelées. Ces dépenses comprennent les services de télécommunications sur lesquels l’Observatoire s’appuie pour transmettre les données de ses systèmes de surveillance volcanique. Si les dépenses continuent d’être limitées, ces services pourraient vite être interrompus. Cela signifierait une perte d’informations en temps réel sur l’activité volcanique et une atteinte à la sécurité des personnes.
Par ailleurs, si les employés ne peuvent pas payer leurs déplacements, ils ne pourront pas se rendre sur le terrain en hélicoptère et en bateau pour réparer et entretenir les équipements de surveillance. Ce sera un problème pour les volcans des Aléoutiennes. Ces îles sont en grande partie inhabitées, mais elles se trouvent sur la trajectoire de vol des avions entre l’Amérique et l’Asie. Si l’un des volcans de ces îles devait envoyer des panaches de cendres, cela pourrait devenir un véritable problème pour les pilotes et leurs passagers. Il suffit de se rappeler la catastrophe qui a été évitée de justesse lors de l’éruption du Mont Redoubt le 15 décembre 1989. Un Boeing 747 qui volait vers Anchorage a traversé un nuage de cendres émis par une petite éruption du volcan. Les quatre moteurs se sont arrêtés et l’avion a décroché pendant 8 minutes et perdu 4 000 mètres avant que les pilotes réussissent à redémarrer les réacteurs.
Une grande partie des équipements de surveillance des Aléoutiennes se trouve dans des environnements isolés et accidentés, où ils sont exposés aux tempêtes et à des conditions hivernales extrêmes. La perte des données de surveillance des volcans de la région serait un désastre.
Ces dernières semaines, l’administration Trump s’est empressée de faire des coupes sombres et de licencier à tout va dans des agences fédérales comme la NOAA. Un récent décret signé par le président Trump a autorisé le ministère de l’Efficacité gouvernementale, dirigé par Elon Musk, à examiner les dépenses des employés fédéraux. Le décret a mis en œuvre un gel de 30 jours des cartes de crédit émises par le gouvernement, tout en faisant des exceptions pour les secours en cas de catastrophe et « d’autres services essentiels ». Jusqu’à présent, cependant, les cartes de crédit destinées aux employés de l’Observatoire Volcanologique d’Alaska ne semblent pas avoir été exemptées.
L’Observatoire Volcanologique d’Alaska est géré conjointement par l’USGS, l’université d’Alaska Fairbanks et l’Alaska Division of Geological and Geophysical Surveys. Pour l’instant, l’AVO continue à surveiller le mont Spurr pour détecter des signes d’une éventuelle éruption. Des séismes superficiels ont été détectés. Des émissions de vapeur ont été observées dans la zone sommitale du volcan. À côté du mont Spurr, Great Sitkin, situé sur une île de la chaîne des Aléoutiennes, montre une activité éruptive dans son cratère sommital depuis 2021. D’autres volcans des Aléoutiennes pourraient entrer en éruption sans prévenir. Une absence de surveillance pourrait vite virer a u drame. .
Source : U.S. News media via Yahoo News.

Vue du Mont Spurr (Crédit photo: AVO)

————————————————

When Alaska’s Mount Spurr started showing signs of increased activity in October 2024 (see my previous posts about this volcano), the Alaska Volcabo Observatory (AVO) raised its alert level to ensure that nearby communities and passing airplanes would have ample warning of any eruption.

However, the Trump administration’s cost-cutting campaign has put this work in jeopardy. The credit cards that employees at AVO use to pay for travel and other expenses have been frozen. Those expenses include the telecommunications services that the observatory relies on to transmit data from its monitoring systems on the volcanoes. If spending continues to be restricted, these services could be shut off. That might mean a loss of real-time information about volcanic activity and people’s security.

What’s more, if employees can’t pay for travel, they won’t be able to go into the field by helicopter and boat to repair and maintain their monitoring equipment. This will be a problem for volcanoes in the Aleutians. These islands are largely unhabited but they lie on the flight path of planes between America nad Asia. Should one volcano on these islands send ash plumes, it might become a real problem to the pilots and their passengers. We just need to remember the catastrophe that was nearly avoided when Mt Redoubt erupted on December 15th, 1989. A Boeing 747 that was descending into Anchorage passed through an ash cloud of a small eruption of Mount Redoubt. All four engines stopped and the plane was without power for 8 minutes and dropped 4,000 meters before the pilots could restart the engines.

Much of the monitoring equipment in the Aleutians sits in remote, rugged environments, where it is vulnerable to damage from storms and extreme winter conditions. Losing volcano monitoring data from the region would be a disaster.

In recent weeks, the Trump administration has moved swiftly to enact cost cuts and layoffs across federal agencies like NOAA. A recent executive order signed by President Trump has empowered the Department of Government Efficiency, led by Elon Musk, to scrutinize federal employees’ spending. The order implements a 30-day freeze on government-issued credit cards while making exceptions for disaster relief and “other critical services.”

So far, though, the credit cards issued to workers at the Alaska Volcano Observatory don’t appear to have been exempted.

TheAlaska Volcano Observatory is run jointly by the U.S. G.S., the University of Alaska Fairbanks and the Alaska Division of Geological and Geophysical Surveys. For now, the observatory is still monitoring Mount Spurr for signs that it is moving closer to erupting. Small, shallow earthquakes have been detected. Steam has been seen in the summit area. Beside Mount Spurr, Great Sitkin Volcano, which sits on an island in the Aleutian chain, has been slowly erupting from the summit crater since 2021. Other volcanoes of the Aleutians may erupt without warning. The lack of monitoring might soon become a disaster.

Source : U.S. News media via Yahoo News.

Où sont passés les avions renifleurs de cendre volcanique ? // Where are the volcanic ash detecting planes ?

En raison de l’éruption du Ruang, l’aéroport Sam Ratulangi de Manado, en Sulawesi du Nord, sera fermé au moins jusqu’au dimanche 21 avril 2024 à 12h00 (heure locale). La prolongation de l’arrêt d’activité a été décrétée pour des raisons de sécurité. Les autorités locales expliquent qu’il serait très dangereux que des cendres volcaniques entrent en contact avec les avions. En conséquence, des dizaines de vols en provenance et à destination de Manado et d’autres aéroports voisins ont dû être annulés en raison de la présence des cendres volcaniques provoquées par l’éruption du Ruang. Actuellement, des panaches de cendres s’élèvent encore du volcan jusqu’à une altitude de 4 500 mètres, ce qui peut potentiellement endommager les moteurs des avions. Afin de minimiser les pertes pour les passagers, les compagnies aériennes rembourseront tous les billets jusqu’à ce que l’aéroport de Manado soit de nouveau opérationnel.
On remarquera que la situation du trafic aérien ne s’est pas améliorée depuis l’éruption de l’Eyjafjallajökull en Islande en 2010, événement qui a cloué au sol les avions qui devaient voler dans l’espace européen. À l’époque, certaines compagnies avaient promis d’installer à bord des appareils des équipements permettant de détecter les cendres dans le ciel, mais aucune mesure n’a vraiment été prise. On se souvient que des sacs de cendres de l’Etna ont été déversés au-dessus du Golfe de Gascogne et que des avions ont traversé ces cendres, mais quelques mois plus tard, lorsque le volcan sicilien est véritablement entré en éruption, aucun avion ne s’est aventuré à l’intérieur des nuages de cendres ! En 2014, alors que je voyageais vers l’Alaska depuis Londres à bord d’un Boeing 767 de la British Airways, j’ai aperçu la fumée noire de l’éruption dans l’Holuhraun au-dessus du nord de l’Islande. J’ai demandé à un steward d’informer le pilote de l’événement. Le pilote est venu me voir et m’a dit qu’il n’avait jamais entendu parler de cette éruption et que, de toute façon, il n’y avait pas de système de détection de cendres à bord de l’avion… Je pense que ce n’est pas demain que les compagnies aériennes accepteront de mettre en danger la vie de milliers de passagers dans un texte contexte éruptif. C’est une sage décision quand on se souvient des catastrophes aériennes évitées de justesse lors des éruptions du Galunggung (Indonésie) en 1982 et du Redoubt (Alaska) en 1989. Ces deux incidents sont indirectement responsables des perturbations causées au trafic aérien au printemps 2010 par l’éruption de l’Eyjafjallajökull en Islande. En effet, ils ont largement été évoqués pour justifier le principe de précaution et l’annulation de nombreux vols.

Panaches de cendres sur l’Etna (Photo: C. Grandpey)

————————————————-

Because of the Mt Ruang eruption the Sam Ratulangi Airport in Manado, North Sulawesi, will be closed at least until Sunday at 12:00 p.m. local time. The extension was made considering safety concerns. Local authorities explain that it would be very dangerous if volcanic ash were attached to the aircraft. As a consequence, dozens of flights from and to Manado and other nearby airports had to be canceled due to the spread of volcanic ash from the eruption of Mount Ruang. Currently, ash clouds are still observed at an altitude of 4,500 meters, which has the potential to damage aircraft engines during flight. To minimize the losses for the passengers, the airlines have refunded all tickets until Manado Airport resumes operations.

It should be noticed that the situation of air traffic has not improved since the 2010 eruption of Eyjafjallajökull in Iceland that brought planes to a standstill in the European airspace. At the time, there were promises by some air companies that equipment would be installed aboard the aircraft to detect ash in the sky, but nothing has really happened since that time. One can remember that bags of ash from Mt Etna were poured above the Bay of Biscay with planes flying across it, but a few months later, when the Sicilian volcano really erupted, no plane ventured inside the ash clouds ! In 2014, while travelling to Alaska on board a British Airways Boeing 767, I could see the dark smoke from the Holuhraun eruption over northern Iceland. I asked a steward to inform the pilot about the vent. The pilot came to me and told me he had never heard about the eruption and that there was no ash detection system aboard the plane… I think air companies are not ready to endanger the lives of thousands of passengers during an eruptive period.  It is a wise decision when we remember the air disasters narrowly avoided during the eruptions of Galunggung (Indonesia) in 1982 and Redoubt (Alaska) in 1989. These two incidents are indirectly responsible for the disruptions caused to air traffic in spring 2010 by the eruption of Eyjafjallajökull in Iceland. Indeed, they have been widely cited to justify the precautionary principle and the cancellation of numerous flights.

Nuages de cendre volcanique // Volcanic ash clouds

De toute évidence, aucune mesure concrète et efficace dans le domaine du trafic aérien n’a fait suite à l’éruption de l’Eyjafjallajökull en Islande en 2010. Aucun système fiable de détection de la cendre volcanique n’a été installé dans les aéronefs. Cela m’a été confirmé par des pilotes de la British Airways et d’Air France. Les efforts ont essentiellement porté sur la recherche de solutions permettant de détecter la cendre depuis le sol jusqu’à une altitude minimale de 12 km et d’en évaluer la densité. Ainsi, les avionneurs sont en mesure de mieux comprendre les densités de cendre que leurs avions peuvent endurer. De plus, les Volcanic Ash Advisory Centres (VAACs), centres conseil en cendres volcaniques, disposent maintenant d’outils et de procédures beaucoup plus performants qu’en 2010 pour cartographier et localiser les nuages ​​de cendre.
Malgré tous ces efforts, la dernière éruption du Mont Agung a provoqué la fermeture de plusieurs aéroports indonésiens, ainsi que de nombreuses annulations de vols. La couleur de l’alerte aérienne est également passée au Rouge lors de la dernière éruption du Mayon aux Philippines. Le Mont Sinabung sur l’île de Sumatra est entré en éruption en février et a envoyé un nuage de cendre jusqu’à 7 kilomètres de hauteur. La couleur de l’alerte aérienne est, là aussi, passée au Rouge et les pilotes devaient donc éviter de s’approcher du volcan.
L’expérience a montré à plusieurs reprises aux compagnies aériennes que la cendre volcanique peut constituer un réel danger pour les avions. Le mélange de roches pulvérisées, de gaz et de minuscules éclats de verre peut causer des dégâts à la carlingue des avions, pénétrer à l’intérieur des réacteurs et même les bloquer. La cendre peut aussi réduire à néant les principaux systèmes de navigation et de communication. C’est pourquoi les neuf VAAC à travers le monde surveillent les éruptions volcaniques comme celle du Sinabung. Leur rôle est de suivre l’évolution et le déplacement des nuages ​​de cendre en temps réel et d’éloigner les avions.
À l’aide des images satellites, des rapports de pilotes et des données provenant d’observatoires volcanologiques, ces VAAC émettent des bulletins d’alerte avec des codes de couleurs différentes : Vert signifie qu’un volcan est calme; Jaune signifie que le volcan a commencé à entrer en activité; Orange signifie qu’une éruption est probable alors que Rouge signifie qu’une importante éruption est en cours ou a commencé. Les responsables des VAAC ne disent pas aux pilotes ce qu’ils doivent faire ; leur rôle se limite à fournir des informations essentielles sur la taille et l’emplacement des nuages de cendre, ainsi que leur direction.
Les VAAC ont été créés par l’Organisation de l’Aviation Civile Internationale (OACI) après que plusieurs avions aient failli s’écraser après avoir traversé des nuages ​​de cendre. En 1982, les moteurs de deux avions qui avaient volé à travers la cendre émise par le Galunggung (Indonésie) ont cessé de fonctionner et les pilotes ont dû effectuer des atterrissages d’urgence. L’un d’entre eux, un Boeing 747 de la British Airways, a décroché de plus de 6 000 mètres avant que le pilote réussisse à redémarrer trois des quatre moteurs. En 1989, un autre Boeing 747 a failli s’écraser après avoir traversé le nuage de cendre émis par le Mont Redoubt en Alaska; les quatre moteurs avaient cessé de fonctionner!
La cendre volcanique peut endommager un avion de plusieurs façons. L’une des conséquences les plus graves est, bien sûr, l’arrêt des moteurs. La cendre contient de minuscules particules de verre qui peuvent fondre sous l’effet de la chaleur d’un réacteur. Ce verre fondu peut pénétrer dans des pièces maîtresses, réduire la puissance du moteur, ou le bloquer carrément. Avec la vitesse de vol des avions, la cendre qui entre en contact avec l’extérieur de l’avion peut également briser les antennes, créer un écran sur les pare-brise ​​et générer de l’électricité statique susceptible de perturber les signaux de navigation et de communication. La cendre peut aussi détruire les systèmes indiquant la vitesse de l’avion. On a vu récemment les problèmes dramatiques provoqués par le mauvais fonctionnement des sondes Pitot.
Les compagnies aériennes ne savent pas évaluer la densité de cendre tolérable pour faire voler les appareils. Pendant longtemps, elles ont évité de les faire voler lorsque de la cendre était dans l’air. Toutefois, après que des millions de personnes aient été bloquées et que des milliards de dollars aient été perdus lors de l’éruption de l’Eyjafjallajökull en 2010, les scientifiques ont commencé à faire des recherches. Des tests ont été effectués mais, de toute évidence, les résultats ne sont pas fiables.
Au vu des statistiques de l’USGS, des avions ont traversé des nuages ​​de cendre volcanique à 253 reprises entre 1953 et 2016. Neuf d’entre eux ont connu une panne de moteur, mais aucun ne s’est écrasé. On ne sait pas pourquoi certains nuages ​​de cendre peuvent avoir un effet  dévastateur sur certains moteurs, alors que d’autres avions peuvent se sortir des nuages de cendre relativement indemnes. C’est probablement parce que la composition de la cendre peut varier d’un volcan à l’autre.
Un autre problème doit être pris en compte: Tous les volcans ne sont pas surveillés, en particulier dans certaines régions volcaniques du Pacifique, de sorte que des pilote peuvent devoir traverser des nuages de cendre sans avoir été prévenus de leur présence.

Au bout du compte, il semble bien que la situation n’ait guère évolué depuis l’éruption de l’Eyfjallajökull….

Adapté à partir d’un article paru dans The Verge., VAAC Toulouse, Météo France, Rolls Royce.

——————————————–

Apparently, the 2010 eruption of Eyjafjallajökull in Iceland did not bring any profitable lesson as far as air traffic is concerned. No reliable ash detection system has been installed in aircraft. This was confirmed to me by British Airways and Air France pilots. Efforts have essentially been made to investigate solutions to detect ash from the ground up to a minimum altitude of 12 km and to assess its density. In this way, plane manufacturers can better understand what densities of ash their aircraft are able to endure. Moreover, Volcanic Ash Advisory Centres (VAACs) now have significantly more sophisticated tools and procedures for mapping and forecasting the location of ash clouds than were available in 2010.

Despite all these efforts, the last eruption of Mt Agung caused the closure of several Indonesian airports, as well as many flight cancellations. The aviation colour code was also raised to Red during the last eruption of Mt Mayon in the Philippines. More recently, Mount Sinabung on Sumatra Island erupted in February and spewed an ash cloud up to 7 kilometres in the air. The aviation colour code was raised to Red, which meant that pilots should fly away from the volcano.

Experience has told aviation companies that volcanic ash can be a real danger to aircraft. The mixture of crushed rocks, gases, and tiny shards of glass can sandblast the plane’s exterior, get into the engine and block them, and ruin key navigational and communications systems. That’s why the nine Volcanic Ash Advisory Centers around the world keep watch for volcanic eruptions like Mt Sinabung’s. Their role is to track the ash clouds in real time and to divert the planes around.

Using a combination of satellite imagery, pilot reports, and data from volcano observatories, these VAACs issue colour-coded warnings: Green means a volcano is quiet; Yellow means the volcano is starting to get restless; Orange that an eruption is likely while Red means a big eruption is on its way, or has already started. The advisories don’t tell pilots what to do, but they provide key information about the size and location of the ash cloud and its direction.

The Volcanic Ash Advisory Centers were formed by the International Civil Aviation Organization after several planes almost crashed after flying through ash clouds. In 1982, two airplanes flying through ash emitted by Indonesia’s Mount Galunggung lost power to their engines and had to make emergency landings. One of them, a British Airways Boeing 747, plummeted more than 6,000 metres before the pilot could restart three of the four engines. Then, in 1989, another Boeing 747 nearly crashed after it flew through volcanic ash from Mount Redoubt in Alaska; all four of its engines had stopped functioning!.

Volcanic ash can damage an airplane in multiple ways. One of the most dangerous is by blocking the engine. Indeed, volcanic ash contains tiny glass particles that can melt in a jet engine’s heat. This molten glass can stick to key components, cutting the engine’s power, or killing it completely. At high speeds, ash coming into contact with the exterior of the plane can also break antennas, cloud windscreens, and generate static electricity that distorts navigation and communication signals. If ash flies into tubes that measure airspeed, it can also break the plane’s speedometer.

Air companies don’t know exactly how much ash is safe to fly through. For a long time, the aviation industry avoided flying when any ash was in the air. But after millions of people were stranded and billions of dollars were lost during the eruption of Iceland’s Eyjafjallajökull volcano in 2010, scientists began trying to figure out if there’s a middle ground. Tests were performed but the results obviously did not prove reliable.

All told, planes have flown through volcanic ash clouds about 253 times between 1953 and 2016, according to a report from the US Geological Survey. Only nine of those experienced engine failure, and none crashed. It’s not completely clear why certain ash clouds can have such a devastating effect on certain engines, and why other planes can fly through relatively unharmed. One possibility is that the composition of ash can vary from volcano to volcano.

There is another problem: not every volcano is monitored, especially in some volcanic regions of the Pacific, so it is still possible for planes to fly through ash clouds without warning.

To put it shortly, it seems the situation has not much changed since the 2010 eruption of Eyjafjallajökull…

Adapted from an article published in The Verge., VAAC Toulouse, Météo France, Rolls Royce.

Eruption du Galunggung en 1982 (Crédit photo: Wikipedia)

Eruption du Redoubt en 1990 (Crédit photo: Wikipedia)

Eruption de l’Eyjafjallajökull en 2010 (Crédit photo: Wikipedia)

 

L’Observatoire des Volcans de l’Alaska // Alaska Volcano Observatory

drapeau-francaisDans le cadre du Mois de la Sensibilisation aux Volcans, l’Observatoire des Volcans d’Hawaii (HVO) – géré par l’USGS – a consacré un article à l’Observatoire des Volcans de l’Alaska (AVO).
Le rôle de cet observatoire est essentiel car l’Alaska possède le plus grand nombre de volcans de tous les États-Unis. Sur les 169 volcans actifs de ce pays, 90 se trouvent en Alaska. Les éruptions sont monnaie courante et certains volcans restent actifs, même s’ils ne sont pas forcément en éruption

L’éruption de l’Augustine en 1986 a mis l’accent sur la nécessité d’un système de surveillance des volcans en Alaska. Elle a également donné naissance à l’AVO, créé en 1988. L’Observatoire travaille en collaboration avec trois organismes: l’USGS, l’Institut de Géophysique de l’Université d’Alaska à Fairbanks et le département d’études géologiques et géophysiques de l’Alaska. Ces trois institutions sont en charge des observations, mais au final les bulletins d’alerte sont émis par l’USGS qui fédère et a la responsabilité de l’ensemble des rapports.
L’AVO n’a pas eu à attendre longtemps après sa création pour montrer son utilité. Le 14 décembre 1989, le Redoubt est entré en éruption. Le lendemain, le vol KLM 867, entre Amsterdam et Tokyo, avec à son bord 231 passagers, s’apprêtait à faire escale à Anchorage. Le Boeing a traversé le panache de cendre du Redoubt, avec pour effet immédiat la mise à l’arrêt de ses quatre moteurs. L’avion a fait une chute de plus de 3000 mètres, cinq minutes avant que les pilotes réussissent à redémarrer les moteurs et atterrir en toute sécurité à Anchorage. Les quatre moteurs ont dû être remplacés, avec des dégâts qui se sont élevés à environ 80 millions de dollars. L’éruption du Reboubt a continué jusqu’au début du mois de juin 1990.
Il existe une différence importante entre l’AVO en Alaska et le HVO à Hawaï. À Hawaï, les scientifiques se concentrent principalement sur les risques volcaniques au sol, tels que les coulées de lave, alors qu’en Alaska ils doivent gérer à la fois les risques terrestres et aériens. La zone de contrôle – et donc de responsabilité – de l’AVO est également beaucoup plus vaste que celle du HVO. Elle s’étend du sud-est de l’Alaska à Anchorage, le long de la péninsule de l’Alaska, et le long la chaîne des Aléoutiennes vers la péninsule du Kamchatka en Russie.
Néanmoins, l’AVO utilise des méthodes de surveillance volcanique semblables à celles employées par le HVO, avec des webcams, des stations sismiques, le GPS et la cartographie géologique. Le travail sur le terrain n’est pas évident en raison de l’environnement hostile de l’Alaska et de l’éloignement d’un grand nombre de volcans, de sorte que les données satellitaires sont essentielles et largement utilisées. Comme on l’a vu récemment à propos du Bogoslof (Iles Aléoutiennes), les rapports des pilotes d’aéronefs sont également des sources importantes d’information sur les volcans d’Alaska
Depuis sa fondation, l’AVO a fait d’énormes progrès dans la cartographie des volcans les moins connus de l’Alaska afin de mieux comprendre leur histoire et leur potentiel éruptif. Certains des volcans éloignés des îles Aléoutiennes occidentales ont été instrumentés pour suivre leur activité et détecter les éruptions qui pourraient présenter un danger pour le trafic aérien. Il reste encore beaucoup à faire dans ce domaine car bon nombre de volcans des Aléoutiennes – comme le Bogoslof – sont dépourvus d’équipements et il faut s’appuyer sur les stations sismiques voisines ou sur les rapports de pilotes pour suivre leur activité
L’AVO a développé des outils de haute technologie pour interpréter les données satellitaires susceptibles de détecter les panaches de cendre et les anomalies thermiques. Certains de ces outils ont été exportés vers Hawaï, où les scientifiques du HVO les utilisent pour améliorer leur surveillance des volcans Kilauea et Mauna Loa.
Source: USGS / HVO.

—————————————-

drapeau-anglaisAs part of Volcano Awareness Month, the USGS Hawaiian Volcano Observatory (HVO)has dedicated an article to the Alaska Volcano Observatory (AVO).

The role of this observatory is essential as Alaska has the largest number of volcanoes of all the United States. Of the nation’s 169 active volcanoes, 90 are located in Alaska. Eruptions there are common and some volcanoes are in a semi-constant state of low-level activity.

The 1986 eruption of Augustine volcano emphasized the need for volcano monitoring and research in Alaska. It also prompted the establishment of AVO which was founded in 1988. The observatory is a partnership between three organizations: USGS, the Geophysical Institute of the University of Alaska Fairbanks, and the Alaska Division of Geological and Geophysical Surveys. These three groups contribute to observatory operations, although hazards notifications are issued by the USGS, which has federal responsibility for such declarations.

AVO did not have to wait long after its establishment for showing its utility. On December 14th, 1989, Redoubt volcano erupted. The next day, KLM flight 867, carrying 231 passengers from Amsterdam to Tokyo with a stop in Anchorage, flew through a Redoubt ash plume, causing all four engines to fail. The aircraft dropped more than 3 km in altitude within five minutes before the flight crew managed to restart the engines and land the plane safely in Anchorage. All four engines on the aircraft had to be replaced, with damages totaling about $80 million. The Redoubt eruption continued through early June 1990.

There is a significant difference between AVO in Alaska and HVO in Hawaii. In Hawaii, the scientists focus primarily on ground-based volcanic hazards such as lava flows, whereas Alaska has both ground and airborne concerns. AVO’s area of responsibility is also much broader than that of HVO, extending from southeast Alaska to Anchorage, along the Alaska Peninsula and then out the chain of Aleutian Islands towards Russia’s Kamchatka Peninsula—a distance of over 3000 km!

Nevertheless, AVO uses volcano monitoring methods similar to those employed by HVO, including webcams, seismic and GPS stations, and geological mapping. Ground-based monitoring and research field work are considerable challenges owing to Alaska’s harsh environment and the remoteness of so many volcanoes, so satellite data are used extensively. As we recently saw it about Bogoslof, aircraft pilot reports are also important sources of information about Alaskan volcanoes

Since its founding, AVO has made tremendous strides in mapping the largely unknown volcanoes of Alaska to better understand their eruptive histories and future eruptive potential. Even some of the remote volcanoes of the western Aleutian Islands have been instrumented to track unrest and detect eruptions that might be hazardous to aircraft.

AVO has also developed state-of-the-art tools for viewing the abundance of available satellite observations that can detect ash plumes and thermal anomalies. Some of these tools have been exported to Hawaii, where HVO scientists use them to enhance their monitoring of Kilauea and Mauna Loa volcanoes.

Source : USGS / HVO.

iliamna-blog

L’Iliamna et les volcans de Cook Inlet (Source: AVO)

iliamna

Volcan Iliamna et glaciers.

redoubt-blog

Vue du Redoubt.

augustine-blog-2

Vue de l’Augustine.

(Photos: C. Grandpey)