Le bruit le plus fort jamais enregistré // The loudest sound ever recorded

Aujourd’hui, notre société est devenue extrêmement bruyante et certains sons peuvent atteindre des volumes dangereusement élevés, suffisamment forts pour provoquer une perte auditive permanente. Ainsi, on reproche souvent aux jeunes d’écouter de la musique à un volume beaucoup trop élevé et les concerts envoient des décibels à tout va, sans que cela soit contrôlé.

Mais quel est le bruit le plus fort jamais enregistré sur Terre ?
L’éruption du Krakatau en Indonésie en 1883 est souvent considérée comme le son le plus fort de l’histoire. On a entendu l’explosion à plus de 3 000 kilomètres de distance, et les baromètres du monde entier ont capté la variation de pression que l’événement a provoquée. À 160 km de distance, l’éruption a atteint environ 170 décibels, un niveau sonore suffisant pour causer des problèmes auditifs permanents. À 64 km de distance, des marins ont déclaré que le bruit était si puissant qu’il pouvait leur perforer les tympans. Cependant, nous ne savons pas exactement quel était le niveau de bruit de l’éruption du Krakatau à sa source, car personne n’était présent pour effectuer des mesures avec des instruments fiables. En général, l’oreille humaine tolère des sons jusqu’à environ 140 décibels. Au-delà, le bruit devient douloureux et insupportable. Selon les Instituts nationaux de la santé (NIH), l’écoute de 85 décibels pendant quelques heures, de 100 décibels pendant 14 minutes ou de 110 décibels pendant deux minutes peut causer des dégâts à notre appareil auditif.
On pense aujourd’hui que l’explosion du Krakatau a atteint environ 310 décibels. À ce niveau, les ondes sonores ne se comportent plus comme des sons normaux. Aux alentours de 194 décibels, elles se transforment en ondes de choc. Il s’agit de puissantes zones de pression créées lorsqu’un objet se déplace à une vitesse supersonique. L’onde de choc du Krakatau était si puissante qu’elle a fait sept fois le tour de la Terre. Comme je l’ai indiqué plus haut, il convient de préciser qu’il ne s’agit que d’estimations, car le bruit émis par l’explosion du Krakatau n’a jamais été mesuré scientifiquement.

L’Anak Krakatau aujourd’hui


Séquence éruptive sur l’Anak Krakatau (Photos: C. Grandpey)

Un autre candidat au titre de bruit le plus fort est l’explosion de la météorite de Toungouska en 1908 au-dessus de la Sibérie. Le 30 juin 1908, cet événement a rasé des centaines de kilomètres carrés d’arbres et propagé des ondes de choc à travers le monde. L’explosion de Toungouska a été à peu près aussi forte que celle du Krakatau, avec un niveau sonore d’environ 300 à 315 décibels. Cependant, comme pour l’éruption du Krakatau, l’explosion de Toungouska n’a été enregistrée que par des instruments situés à très grande distance et aucune mesure n’a été effectuée à la source.

Situation et zones d’impact de la météorite de la Toungouska. Zone 1 (R=20 km) : forêt détruite (rouge) Zone 2 (R=100 km) : dégâts, brûlures, morts d’animaux (orange) Zone 3 (R=1500 km) : bruit de l’explosion (dégradé bleu) [Source: Wikipedia]

Plus récemment, on pense que le son le plus fort jamais enregistré est celui de l’éruption du Hunga Tonga-Hunga Haʻapai, un volcan sous-marin de l’archipel tongien, dans le Pacifique Sud, en janvier 2022. L’énergie de l’explosion du 15 janvier 2022 a été mesurée, et est équivalente à celle d’un séisme de magnitude 5,8. Cette puissante éruption a produit une onde sonore qui a fait plusieurs fois le tour du globe et a été entendue par des personnes à des milliers de kilomètres de distance, notamment en Alaska et en Europe centrale.
Tout autour du monde, les baromètres ont enregistré l’onde de choc provoquée par l’explosion. Elle s’est déplacée autour de la planète à une vitesse de 1100 km/h. Selon l’Organisation Mondiale de la Météo, un baromètre suisse a mesuré une amplitude de 2,5 hectoPascals (hPa) de pression.

Source: NASA, NOAA

Étrangement, l’onde de pression la plus puissante de l’histoire récente était presque inaudible pour l’oreille humaine. Des scientifiques ont tenté de créer d’énormes ondes de pression en laboratoire. Lors d’une expérience, des chercheurs ont utilisé un laser à rayons X pour projeter un jet d’eau microscopique. Ils ont produit ainsi une onde de pression estimée à environ 270 décibels. C’est plus bruyant que le décollage de la fusée Saturn V qui a transporté les astronautes d’Apollo sur la Lune, estimé à environ 203 décibels. Cependant, l’expérience au laser a été réalisée dans une chambre à vide, de sorte que l’onde de pression de 270 décibels était totalement inaudible. Les ondes sonores ont besoin d’un milieu, comme l’air, l’eau ou un matériau solide, pour se propager.

En fin de compte, la plupart des scientifiques s’accordent à dire que l’onde sonore la plus puissante enregistrée à l’époque moderne a été celle émise lors de l’éruption du volcan Tonga en 2022.

Source : Live Science via Yahoo News.

———————————————–

Today, our society is noisier than ever and some noises can reach dangerously high volumes, loud enough to cause permanent hearing loss. Youngsters are often reproached for listening to music with a volume tht is much too high. Concerts send high levels of decibels with no control.

But what was the loudest sound ever recorded on Earth?

The 1883 eruption of Krakatau in Indonesia is often considered the loudest sound in history. People heard the blast more than 3,000 kilometers away, and barometers around the world picked up its pressure wave. At 160 km away, the eruption reached an estimated 170 decibels, enough to cause permanent hearing damage. At 64 km away, sailors said that the boom was strong enough to rupture eardrums.However, we don’t really know with precision how loud the Krakatau eruption was at its source because no one was close enough to measure it with reliable instruments.

Typically, people can tolerate sounds up to around 140 decibels, beyond which sound becomes painful and unbearable. According to the National Institutes of Healthearing, damage can occur after listening to 85 decibels for a few hours, 100 decibels for 14 minutes or 110 decibels for two minutes.

Modern estimates suggest that the Krakatau blast reached about 310 decibels. At this level, sound waves no longer behave like normal sound. Instead, at around 194 decibels, they turn into shock waves. These are powerful pressure fronts created when something moves faster than the speed of sound. Krakatau’s shock wave was so strong that it circled the planet seven times.

Again, these are just estimates as the noise emitted by the Krakatau explosion was never scientifically mrasured.

Another contender for the loudest sound is the 1908 Tunguska meteor explosion over Siberia that flattened trees across hundreds of square kilometerss and sent pressure waves around the world. The Tunguska explosion was approximately as loud as the Krakatau blast, at circa 300 to 315 decibels. However, like the Krakatau eruption, the Tunguska blast was recorded only by instruments that were very far away.

More recently, it is believed that the loudest sound recorded is the January 2022 eruption of Hunga, Tonga-Hunga Haʻapai, a submarine volcano in the Tongan archipelago in the southern Pacific Ocean. This powerful eruption produced a sound wave that traversed the globe multiple times and was heard by humans thousands of kilometers away, including in Alaska and Central Europe.

One of the closest scientific stations to the underwater eruption – in Nukua’lofa, about 68 km away – recorded a pressure jump of about 1,800 pascals. One researcher explained that « if you were to try to turn that into a normal « decibel » number at 1 meter from the source, you’d get about 256 decibels. » However, he added that would be bad science, because this wasn’t a normal sound wave at all. Close to the source, it acted more like fast-moving air being pushed outward by the explosion. The Tonga blast was simply too big to fit into the normal decibel scale.

Strangely, the most powerful pressure wave in recent history was mostly inaudible to people. Scientists have tried to create huge pressure waves in laboratories. In one experiment, researchers used an X-ray laser to blast a microscopic water jet, which produced a pressure wave estimated at about 270 decibels. This is louder than the launch of the Saturn V rocket that carried Apollo astronauts to the moon, which was estimated at about 203 decibels. However, the laser experiment was done inside a vacuum chamber, so the 270-decibel pressure wave was completely silent. Sound waves need a medium such as air, water or solid material to travel.

In the end, most scientists admit that the most powerful sound-like wave recorded in the modern era was during the Tonga eruption in 2022.

Source : Live Science via Yahoo News.

La formation de la faille de Denali (Amérique du Nord) // Formation of the Denali Fault (North America)

Impossible de le rater – sauf si le temps est bouché – lorsque l’on voyage en Alaska. Le Denali, autrefois appelé mont McKinley, est la plus haute montagne du continent nord-américain. Il culmine à 6 190 m d’altitude.

 

Photos: C. Grandpey

Ces dernières années, de nombreuses questions se sont posées sur la formation de la montagne. Il semble qu’une nouvelle étude apporte une réponse définitive. Nous savons enfin comment s’est formée la faille qui a donné naissance au Denali.
Baptisée faille de Denali, elle s’étire dans la moitié sud de l’Alaska, dans la Chaîne de l’Alaska. Elle mesure plus de 2 000 kilomètres de long et traverse le sud de l’Alaska, le sud-ouest du Yukon et revient vers le sud-est de l’Alaska. La face nord du Denali, connue sous le nom de Wickersham Wall, s’élève à 4 500 mètres de sa base et est le résultat d’un mouvement vertical relativement récent le long de la faille.

Source : USGS

Selon une nouvelle étude publiée en octobre 2024 dans la revue Geology, la faille de Denali est en fait une ancienne suture où deux masses terrestres se sont autrefois jointes (En géologie, une suture désigne la zone de contact consécutive à la fermeture d’un domaine océanique entre deux domaines tectoniques). Il y a 72 à 56 millions d’années, une plaque océanique appelée Terrane Composite de Wrangellia est entré en contact avec la bordure occidentale de l’Amérique du Nord et s’y est amarrée.
Selon l’auteur principal de l’étude, « notre compréhension de la croissance lithosphérique, ou croissance des plaques, le long de la marge occidentale de l’Amérique du Nord devient plus claire ».
La faille de Denali est une faille décrochante – ou coulissante – un endroit où deux morceaux de croûte continentale glissent l’un sur l’autre. Le 3 novembre 2002, la faille a bougé et déclenché un séisme de magnitude M7,9 qui a fait rompre les amarres d’embarcations à Seattle, à plus de 2 400 kilomètres de là.

 La conception de l’oléoduc trans-Alaska qui a tenu compte de la faille de Denali a permis d’éviter la rupture de la structure lors du séisme de M7,9 du 3 novembre 2002 (Source : USGS)

Les chercheurs ont étudié trois sections de la faille : les Clearwater Mountains du sud-est de l’Alaska, le lac Kluane dans le territoire canadien du Yukon et les montagnes côtières près de Juneau. Ces sites sont distants de plusieurs centaines de kilomètres le long de la ligne de faille. Les sites sont répartis sur environ 1 000 kilomètres.
Des recherches menées dans les années 1990 avaient laissé entendre que, malgré cette distance, ces trois sections de faille se sont formées au même moment et au même endroit, pour ensuite se séparer plus tard lorsque les deux côtés de la faille ont glissé l’un contre l’autre. Toutefois, personne n’avait confirmé cette hypothèse.
Pour avoir la confirmation de cette hypothèse, l’auteur principal de l’étude a analysé un minéral appelé monazite dans les trois sections de la faille. Ce minéral, qui est composé d’éléments de terres rares, se modifie lorsque la roche qui l’héberge se transforme sous une pression ou une température élevée, ce qui permet de comprendre l’histoire de la roche.
Les auteurs de l’étude ont montré que chacune de ces trois ceintures métamorphiques inversées indépendantes s’est formée en même temps, dans des conditions similaires. De plus, toutes occupent un cadre structural très similaire. Non seulement elles ont le même âge, mais elles se sont toutes comportées de manière similaire. Leur âge diminue, structurellement.
Cette diminution d’âge est la conséquence d’un phénomène appelé métamorphisme inversé, par lequel les roches formées sous des températures et des pressions élevées se trouvent au-dessus des roches formées sous des températures et des pressions plus basses. C’est le contraire du schéma habituel, étant donné que plus on descend dans la croûte terrestre, plus la température et la pression sont élevées. Le métamorphisme inversé se rencontre dans les endroits où les forces tectoniques ont déformé la croûte et repoussé des roches plus profondes sur des roches moins profondes.
L’étude révèle que ces trois régions se sont formées au même endroit et au même moment. Cet endroit est la zone de suture terminale entre la plaque nord-américaine et la sous-plaque de Wrangell, une mini-plaque tectonique qui fait partie du puzzle complexe de la côte nord du Pacifique.
Source : Live Science via Yahoo News.

——————————————————-

You can’t miss it when travelling across Alaska. Denali – formerly called Mount Mc Kinley – is the highest mountain of the North American continent. It culminayes 6,190 m above sea level.

In the past years, many questions were asked about the formation of the mountain. It looks as if a new study is providing an answer. We finally know how a fault that gave rise to Denali first formed.

Called the Denali Fault, it is located in the southern half of Alaska in the Alaska Range. It is more than 2,000 kilometers long, arcing through southern Alaska, southwestern Yukon, and back into southeastern Alaska. The steep north face of Denali, known as the Wickersham Wall, rises 4,500 meters from its base, and is a result of relatively recent vertical movement along the fault

According to a new study published in October 2024 in the journal Geology, the Denali Fault is actually an ancient suture mark where two land masses once joined together. Between 72 million and 56 million years ago, an oceanic plate called the Wrangellia Composite Terrane bumped into the western edge of North America and stuck there.

According to the lead author of the research, « our understanding of lithospheric growth, or plate growth, along the western margin in North America is becoming clearer. »

The Denali Fault is a strike-slip fault, a place where two chunks of continental crust slide past each other. On November 3rd,, 2002, the fault jolted, triggering an M7.9 earthquake that knocked houseboats off their moorings more than 2,400 kilometers away in Seattle.

The researchers studied three sections of the fault: The Clearwater Mountains of southeastern Alaska, Kluane Lake in Canada’s Yukon Territory, and the Coast Mountains near Juneau. These sites are hundreds of kilometers apart along the faultline. The sites are spread across about 1,000 kilometers.

Research in the 1990s had suggested that despite this distance, these three fault sections were formed at the same time and place, only to be torn apart later as the two sides of the fault slid against one another. But no one had confirmed that finding.

In an attempt to do so, the lead author of the study analysed a mineral called monazite at all three locations. This mineral, which is made of rare-Earth elements, changes as the rock hosting it is transformed under pressure or high temperature, giving a way to understand the rock’s history.

The authors of the study showed that each of these three independent inverted metamorphic belts all formed at the same time under similar conditions. Moreover, all occupy a very similar structural setting. Not only are they the same age, they all behaved in a similar fashion. They decrease in age, structurally, downward.

This decrease in age is an effect of a phenomenon called inverted metamorphism, whereby rocks formed under high temperatures and pressures are found above rocks formed under lower temperatures and pressures. This is the opposite of the usual pattern, given that the deeper you go in the Earth’s crust, the hotter and more pressurized it is. Inverted metamorphism is found in places where tectonic forces have warped the crust and pushed deeper rocks over shallower ones.

The study reveals that these three regions formed at the same place and time. That place was the terminal suture zone between the North American plate and the Wrangell subplate, a mini tectonic plate that makes up part of the complex jigsaw of the northern Pacific coast.

Source : Live Science via Yahoo News.

Eruptions sous-marines et rebond isostatique // Submarine eruptions and isostatic rebound

Lorsqu’une crue glaciaire s’est produite sur le Grimsvötn, volcan islandais sous la calotte glaciaire du Vatnajökull, les volcanologues locaux se sont demandé si l’événement serait suivi d’une éruption volcanique. Elle pourrait être provoquée par le relâchement de pression dû à l’énorme évacuation de l’eau de fonte contenue dans le lac sous-glaciaire. De telles éruptions se sont produites plusieurs fois dans le passé, en 2004 pour la dernière fois.
Lors de ma conférence « Glaciers en péril », j’explique que la fonte des calottes glaciaires au-dessus des volcans pourrait provoquer un rebond isostatique avec un relâchement de pression qui pourrait provoquer une éruption. Cependant, aucune éruption de ce type n’a été, jusqu’à présent, clairement liée à la fonte directe d’une calotte glaciaire. S’agissant du Grimsvötn, c’est plutôt la vidange d’un lac d’eau de fonte sous-glaciaire qui est susceptible de déclencher une éruption.
Une récente étude menée par des scientifiques du Royaume-Uni et de Suède et publiée dans la revue Nature Geoscience, a examiné les 360 000 ans d’histoire de l’activité volcanique à Santorin en Grèce. L’île se trouve au sud de la Mer Égée, à environ 200 km au sud-est de la Grèce continentale.
Il y a environ 3 600 ans, Santorin a connu l’une des plus grandes éruptions historiques. Le cataclysme est responsable de la disparition de la civilisation minoenne en Crète, à seulement 100 km au sud, où elle a été ensevelie par d’épaisses couches de matériaux volcaniques.
Les chercheurs ont analysé les enregistrements des éruptions préservés dans les carottes de sédiments marins à proximité. Les couches de cendres ont été datées avec précision à l’aide de méthodes radiométriques, et les chercheurs sont arrivés à la conclusion que l’activité volcanique océanique peut varier selon que le niveau de la mer monte et descend. En d’autres termes, le poids de l’eau peut supprimer ou donner naissance à l’activité volcanique.
Des modélisations numériques ont déjà indiqué que le poids de l’eau peut supprimer ou déclencher l’activité volcanique. Lorsque le niveau de la mer baisse de plus de 40 mètres, la lave commence à remonter dans les roches au-dessus de la chambre magmatique. Lorsque le niveau de la mer descend à moins 70 ou 80 mètres, des éruptions sont probables. Au fur et à mesure que le niveau de la mer remonte, l’activité volcanique diminue : 208 des 211 éruptions se sont produites lorsque le niveau de la mer a baissé.
Il faut toutefois beaucoup de temps pour que les variations de pression se propagent à travers la roche solide, de sorte que les changements d’activité volcanique ne sont pas instantanés. Il y a un décalage d’environ 30 000 ans entre le moment où niveau de la mer descend en dessous de 40 mètres et le début des éruptions. De plus, comme le niveau de la mer remonte beaucoup plus vite qu’il ne baisse, il n’y a qu’un décalage plus court, d’environ 11 000 ans, entre le moment où le niveau de la mer s’élève à plus de 40 mètres et la cessation des éruptions.
Selon l’étude, Santorin est probablement entrée dans une phase calme. La chambre magmatique qui alimente le volcan est peu profonde, à seulement quatre kilomètres environ sous le plancher marin. D’autres volcans ont des chambres magmatiques plus profondes, donc l’effet de la pression devrait changer plus lentement, tout en continuant, malgré tout, à réagir aux variations du niveau de la mer. Cette hypothèse est importante car 57% des volcans dans le monde sont des îles ou se trouvent le long des côtes où ils sont, soumis à la pression générée par la montée et la descente du niveau des mers.
Source : Yahoo News.

———————————————-

When a glacial outburst flood occurred at Grimsvötn, an Icelandic volcano beneath the Vatnajökull icecap, local volcanologists wondered whether the event would be followed by a volcanic eruption. It would be caused by the release of pressure due to the huge evacuation of the meltwater in the subglacial lake. Such eruptions occured several times in the past, in 2004 for the last time.

During my conference « Glaciers at risk », I explain that the melting of icecaps above volcanoes might cause an isostatic rebound with a release of pressure which, in turn, might cause an eruption. However, no such eruption has benn clearly linked so far to the direct melting of an icecap. As far as Grimsvötn is concerned, it is rather the drainage of a subglacial meltwater lake that may trigger an eruption.

A recent bit of research by scientists from the United Kingdom and Sweden, published in the journal Nature Geoscience, examined the 360,000 year history of volcanic activity at Santorini in Grece. The island lies in the south Aegean Sea, about 200 km southeast of the Greek mainland.

Around 3,600 years ago, Santorini exploded in one of the largest eruptions in recorded history.The cataclysm is blamed for the demise of the Minoan civilization, based on the island of Crete, just 100 km to the south, which was buried by huge l ayers of volcanic debris.

Looking at the record of eruptions in cores obtained by drilling in nearby marine sediments, whose ash layers can be precisely dated using radiometric methods, the researchers came to the conclusion that ocean volcanic activity may vary when sea levels rise and fall; the weight of the water can suppress or release volcanic activity.

Numerical modeling had already indicated the weight of water could suppress or release volcanic activity. When sea level fell by more than 40 meters, lava started working its way up into the rocks above the chamber. When sea level fell to minus 70 or 80 meters, eruptions occurred. As sea level rose again, volcanic activity decreased: 208 of 211 eruptions occurred when sea level dropped.

It takes time for the changes in stress to propagate through solid rock, so the changes are not instantaneous. There is a time lag of about 30,000 years between sea level dropping below minus-40 meters and the start of eruptions. Also, because sea level rises much faster than it falls, there is a time lag of only about 11,000 years between sea level rising above the minus-40 meter mark and the cessation of eruptions.

The study suggests that Santorini might be entering a quiet phase. The magma chamber feeding Santorini is shallow, only about four kilometers below the sea bottom. Other volcanoes have deeper magma chambers, so the stress should change more slowly, but still react to changes in sea level. That is significant because 57% of the world’s volcanoes are islands or along the coast, subject to pressure produced by rising and falling seas.

Source: Yahoo News.

Processus du rebond isostatique (Source: Wikipedia)

Les lacs de lave du Kilauea, Ambrym et Nyiragongo // Kilauea, Ambrym and Nyiragongo lava lakes

En 2018, la pression du magma a entraîné la hausse de niveau du lac de lave au sommet du Kilauea (Hawaii). Cette forte pression magmatique a débouché sur une très spectaculaire éruption qui a provoqué la vidange rapide du lac de lave et l’effondrement du cratère sommital du Kilauea

La même séquence d’événements s’est également produite en 2018 à Ambrym, un volcan très actif au Vanuatu. On note beaucoup de points communs avec l’éruption du Kilauea. Avant 2018, la caldeira sommitale d’Ambrym hébergeait cinq lacs de lave. Dans les semaines précédant l’éruption, la lave dans au moins l’un des lacs a montré une hausse significative, comme cela a été observé avant l’éruption du Kilauea en 2018.

Source : GeoHazards

Une hausse de la sismicité a été enregistrée au sommet le 14 décembre à Ambrym et très vite le magma est entré dans la zone de rift sud-est, provoquant une fracturation importante du sol. En deux jours, les cinq lacs se sont vidangés et les cratères se sont effondrés, tandis que des panaches de cendres s’élevaient du sommet.

Le 17 décembre, la migration du magma s’est arrêtée à Ambrym. Peu de temps après, les habitants ont observé de la pierre ponce en train de dériver sur le rivage, preuve qu’une éruption sous-marine s’était produite plus loin dans la zone de rift. Au sommet, un lac d’eau a rapidement remplacé l’un des lacs de lave dans le cratère effondré.

La fracturation du sol à Ambrym a causé des dégâts aux bâtiments en 2018, mais l’éruption aurait pu être plus dévastatrice si elle s’était produite sur terre.

En 1913, un schéma d’activité identique s’est produit à Ambrym, avec une éruption sur terre qui a détruit un hôpital. Une étude sur l’éruption d’Ambrym en 2018 souligne que l’élévation du niveau du lac de lave avant l’éruption était probablement due à une accumulation de pression dans la chambre magmatique sommitale. Les auteurs de l’étude notent que ce processus a été décrit en détail pour le Kilauea qui dispose d’un réseau de surveillance plus performant.

En conclusion, on peut dire que les lacs de lave sommitaux sont de bons indicateurs de la pression qui règne dans la chambre magmatique sous-jacente, et jouent le rôle de baromètres à liquide.

L’analyse de la lave a montré que le dyke magmatique d’Ambrym avait, sur son parcours le long de la zone de rift, rencontré une poche périphérique de magma plus ancien. Ce mélange de magmas a également eu lieu lors de l’éruption dans la Lower East Rift Zone du Kilauea en 2018, avec des conséquences sur les débits éruptifs et les risques associés.

Les observations des éruptions d’Ambrym et du Kilauea indiquent que l’élévation rapide du niveau des lacs de lave sommitaux pourrait être un bon indicateur des prochaines éruptions latérales de ces volcans.

Ce processus éruptif a des implications pour les risques associés au Nyiragongo, en République Démocratique du Congo. Le volcan héberge un grand lac de lave actif depuis des décennies. L’élévation du niveau de ce lac de lave a précédé de grandes éruptions latérales en 1977 et 2002. L’éruption de 1977 du Nyiragongoa produit des coulées de lave particulièrement rapides qui ont tué des dizaines de personnes. Les coulées de lave de l’éruption de 2002 ont envahi une grande partie de la ville de Goma, laissant 120 000 personnes sans abri et en déplaçant de nombreuses autres. Actuellement, le lac de lave du Nyiragongo a un niveau élevé, semblable à celui d’avant les éruptions de 1977 et 2002. Une étude récente, menée par une équipe internationale de scientifiques, a conclu que la situation actuelle sur le Nyiragongo pourrait déboucher sur une nouvelle éruption latérale dans plusieurs années.

Source : Wikipedia

S’agissant du Kilauea, il convient de noter que le lac de lave actuel qui a commencé à se former en décembre 2020 dans le cratère de l’Halema’uma’u est très différent de celui que l’on pouvait observer avant 2018. Le lac actuel est formé par accumulation de la lave qui coule passivement au fond du cratère. Il ne se trouve pas directement au-dessus du conduit en provenance de la chambre magma. Cela signifie que les changements de son niveau ne peuvent pas être utilisés comme indicateurs de la pression magmatique.

Lac de lave avant l’éruption du Kilauea en 2018 (Source : HVO)

‘Lac’de lave actuel sur le Kilauea (Source: HVO

Au fil des ans, les pentes du Kilauea, d’Ambrym et du Nyiragongo ont été dévastées par des éruptions alimentées par un magma s’écoulant depuis leurs sommets. Les scientifiques espèrent aboutir à une meilleure compréhension de ces éruptions latérales et de leurs signes avant-coureurs. Ils pourront ainsi utiliser ces connaissances pour réduire les risques et améliorer la prévision éruptive.

Source: USGS / HVO.

Pour ceux qui possèdent l’ouvrage, des descriptions des éruptions tragiques d’Ambrym et du Nyiragongo se trouvent dans mon livre Killer Volcanoes, aujourd’hui épuisé.

—————————————-

In 2018, rising summit lava lake levels, caused by building magmatic pressure, culminated in a large eruption of Kilauea (Hawaii) which abruptly drained the summit lava lake and initiated crater collapse.

The same sequence of events also occurred in 2018 on Ambrym, a highly active volcano in Vanuatu, with that paralleled those on Kilauea. Prior to 2018, the summit caldera on Ambrym hosted five lava lakes. In the weeks prior to the eruption, at least one of the lava lakes showed a significant rise, similar to what happened before Kilauea’s 2018 eruption.

Earthquakes began at the summit on December 14th, and soon magma intruded along Ambrym’s southeast rift zone, creating extensive ground cracking. Within two days, all five lakes had drained and the craters collapsed inwards, as ash plumes rose from the summit.

On December 17th, the magma migration stopped. Soon after, residents observed pumice drifting onshore, signaling that a submarine eruption had occurred far down the rift zone. At the summit, a water lake soon replaced one of the lava lakes in the collapsed crater.

Although ground cracking at Ambrym produced damage to buildings in 2018, the eruption could have been more hazardous if it had happened onshore. In 1913, a similar pattern of activity occurred at Ambrym, producing an onshore eruption that destroyed a hospital.

A study on the 2018 Ambrym eruption highlights that the rising lake level prior to the eruption was a likely sign of building pressure in the summit magma chamber. The authors note that this pattern has been documented in detail at Kilauea, which has a more extensive monitoring network.

In essence, summit lava lakes are giant pressure gauges of the underlying magma chamber, akin to a liquid barometer. Analysis of the lava chemistry showed that the magmatic dike at Ambrym had intersected a peripheral, isolated pocket of older magma on its route along the rift zone. This mixing of new and old magma also occurred during the 2018 lower East Rift Zone eruption of Kīlauea, with implications for eruption rates and hazards.

The Ambrym and Kīlauea observations suggest that rapidly rising summit lava lakes may be a common harbinger of upcoming flank eruptions.

This process has implications for hazards at Nyiragongo, in the Democratic Republic of the Congo, which hosts a large summit lava lake that has been intermittently active for decades.

Rising lake levels preceded large flank eruptions in 1977 and 2002 at Nyiragongo. The 1977 eruption produced unusually fast lava flows, killing scores of people. Lava flows from the 2002 eruption covered a large portion of the city of Goma, leaving 120,000 people homeless and displacing many more. Currently, the Nyiragongo lake has risen to a high level, roughly similar to that before the 1977 and 2002 eruptions. A recent study, by a different international team of scientists, has forecast that this could lead to a new flank eruption in several years.

It’s worth noting that the current lava lake at Kilauea, which started forming in December 2020, is fundamentally different from the lake that was present before 2018. The current lake is lava that is passively ponding at the bottom of the Halema’uma’u crater and is not situated directly over the conduit that rises from the magma chamber. This means its lava level changes can’t be used as a pressure gauge in the same manner.

Over the years, communities on Kilauea, Ambrym, and Nyiragongo have been devastated by eruptions fed by magma draining from their summits. Scientists hope to develop a better understanding of these flank eruptions and their precursors and use that knowledge to reduce risk and improve forecasts in the future.

Source: USGS / HVO.