Nouvel effondrement dans les Alpes

Quand on parle du dégel du permafrost – ou pergélisol – on pense à celui qui recouvre les terres arctiques, la Sibérie et l’Alaska en particulier, qui subissent une nouvelle vague de chaleur au moins de juin 2023.

Le permafrost est également présent à haute altitude dans nos montagnes. C’est lui qui assure la cohésion de la roche en jouant un rôle de ciment. S’il vient à dégeler, la cohésion de la roche n’est plus assurée et elle s’effondre.

C’est ce qui vient de se produire le 11 juin dans les Alpes suisses où un spectaculaire éboulement a emporté le sommet sud du Fluchthorn. La moitié du sommet de la montagne ainsi que la croix qui s’y trouvait ont disparu. Les 100 derniers mètres se sont effondrés en quelques minutes, comme on peut le voir sur cette vidéo :

.https://youtu.be/sOC7cVcPOlI

Le nuage de pierre et de poussière provoqué par cet effondrement est descendu sur un peu plus de 1000 mètres d’altitude pour une longueur de près de 2 km. Heureusement, personne ne se trouvait sur la trajectoire de cette avalanche de matériaux. .

Selon un membre des secours en montagne de Galtür, la récente fonte des neiges, exacerbée par le réchauffement climatique ces dernières années, a provoqué l’effondrement du pic.

Ceux qui fréquentent régulièrement la haute montagne savent à quel point elle est en train de se transformer.. En haute altitude, jusqu’à environ 2 000 mètres, la durée d’enneigement a diminué d’un mois depuis les années 1970, et le phénomène n’est pas près de s’arrêter, vu que rien n’est fait pour ralentir le réchauffement climatique.

Les scientifiques s’inquiètent du dégel du permafrost car cette couche gelée depuis des milliers d’années contient d’énormes quantités de carbone et de méthane dont la libération viendra s ‘ajouter aux énormes quantités de gaz à effet de serre déjà présentes dans l’atmosphère.

Source : presse transalpine. Merci à Ludovic Ravanel de nous avoir informés de cet événement qui vient s’ajouter à l’effondrement observé sur l’Iliamna (Alaska) le 5 juin 2023 (voir ma note du 11 juin).

Image extraite de la vidéo

Erosion côtière en Alaska : causes et conséquences // Coastal erosion in Alaska : causes and consequences

Au cours de ma conférence « Glaciers en péril, les effets du réchauffement climatique », j’insiste sur les conséquences de la fonte de la glace de mer en Alaska. À mesure que la banquise arctique fond, les côtes déjà fragiles deviennent vulnérables ; elles se trouvent exposées aux vagues au moment des tempêtes. On assiste alors à une accélération de l’érosion qui affecte les personnes et la faune.
Jusqu’à ces dernières années, la glace de mer empêchait les vagues de l’océan de se fracasser contre la côte. Une épaisse couche de glace de mer absorbait la puissance des grosses vagues et les empêchait de déferler sur les plages et contre les falaises. Aujourd’hui, la glace de mer fond et s’éloigne du rivage. L’océan a donc le champ libre pour venir à sa guise saper les côtes et inonder les villages côtiers.

Crédit photo: Wikipedia

Contrairement aux rivages des latitudes moyennes, ceux de l’Arctique sont constitués de pergélisol. Avec des températures plus élevées en été, ce sol dégèle, rendant les côtes arctiques particulièrement sensibles à l’érosion. Le réchauffement de l’eau et l’élévation du niveau de la mer aggravent encore le problème, avec de plus grosses vagues qui viennent frapper les côtes.

Dégel du permafrost dans la toundra (Photo: C. Grandpey)

Deux événements se combinent souvent à l’automne dans l’Arctique : les tempêtes les plus fortes et la plus faible étendue de glace de mer. Après un été de fonte de la glace de mer qui ouvre de vastes étendues d’eau libre, les grosses tempêtes peuvent causer des dégâts considérables, contribuer à l’érosion du littoral et à la perte d’habitat terrestre.
Par exemple, en septembre 2022, le reliquat du typhon Merbok a frappé la côte ouest de l’Alaska avec des vents de force ouragan qui ont obligé à des évacuations, arraché des bâtiments de leurs fondations, sculpté de nouveaux rivages et envoyé entre un et deux mètres d’eau le long de 1 600 kilomètres de côtes. Pour de nombreuses communautés, les dégâts aux infrastructures ont été immédiats. Comme ces communautés dépendent également d’une économie de subsistance, la perte des ressources de la terre a laissé certains habitants dépourvus de réserves pour l’hiver.
Le sol de l’Arctique, autrefois gelé toute l’année, fait maintenant face à plusieurs mois de dégel. Certaines régions dégèlent plus rapidement et plus substantiellement que d’autres. Depuis les années 1990, les températures dans l’Arctique ont augmenté d’environ 0,6 °C par décennie, soit le double de la moyenne mondiale. Les données des services météorologiques de l’Alaska indiquent que de 1971 à 2019, le réchauffement de l’Arctique a été trois fois plus rapide que la moyenne mondiale. Une étude fait même état d’un réchauffement quatre fois plus rapide. Certaines estimations montrent un été sans glace de mer dès 2035. Avec moins de glace de mer pour empêcher les grosses vagues de s’écraser contre les côtes, l’érosion côtière va certainement s’amplifier.
Les températures plus chaudes de l’Arctique font également dégeler le pergélisol. La terre autrefois rigide et solide sous l’effet du gel devient un sol mou et humide qui s’effrite plus facilement sous les assauts des vagues. Le dégel du pergélisol libère également dans les eaux voisines et dans l’atmosphère des gaz à effet de serre autrefois emprisonnés, ce qui accélère le réchauffement climatique. Certaines estimations indiquent que les zones de pergélisol stockent environ 1 700 milliards de tonnes de gaz à effet de serre sous forme de méthane et de dioxyde de carbone ; c’est environ le double du total actuel dans l’atmosphère. Un autre sous-produit du dégel du permafrost est le mercure. Autrefois congelé, il s’échappe désormais dans le sol et les eaux avoisinantes, avec un effet désastreux sur la chaîne alimentaire.

En Alaska, des villages entiers sont déjà confrontés à la nécessité de se déplacer à cause de l’érosion côtière. Le dégel du pergélisol et les vagues érodent le littoral arctique à raison de 50 centimètres par an en moyenne. Dans le nord de l’Alaska, le chiffre atteint 1,40 mètre par an. Sur certains zones littorales comme à Drew Point, en Alaska, l’érosion atteint 20 mètres par an.
Une étude de février 2022 explique que l’érosion pourrait doubler dans l’Arctique d’ici la fin du 21ème siècle. Au fur et à mesure que les scientifiques en sauront davantage sur le moment et l’ampleur de l’érosion côtière dans l’Arctique, les collectivités pourront prendre les mesures nécessaires pour essayer d’y faire face.
Source : National Snow and Ice Data Center (NSIDC).

——————————————–

During my conference « Glaciers at risk », I insist on the consequences of the melting of the sea ice in Alaska. As Arctic sea ice melts, fragile coastlines become vulnerable to bigger waves from storms, leading to accelerated erosion that impacts people and wildlife.

Up to recent years, sea ice keeps the churning ocean from splashing up against the coast. A thick layer of sea ice absorbs the power of big waves, preventing them from slamming into beaches and sea cliffs. But as sea ice melts and recedes away from shore, the ocean can wear away coastlines and flood seaside villages.

Unlike shorelines in the mid-latitudes, Arctic shorelines have permafrost. With higher temperatures in the summer, these soils are thawing, making Arctic coasts especially sensitive to erosion. Warming water and sea level rise compound the issue further as bigger waves pound the coasts.

Two events often collide in the autumn in the Arctic: the strongest storms and lowest sea ice extent. After a summer of sea ice melt, with large areas of open water, large storms can do considerable damage and contribute to shoreline erosion and terrestrial habitat loss.

For example, in September 2022, remnants of Typhoon Merbok battered Alaska’s western coast with hurricane-force winds, forcing evacuations, uprooting buildings, carving out new shores, and surging one ti two meters of water along 1,600 kilometers of coastline. For many communities, the impact from damage to infrastructures was immediate. However, as these communities also rely on subsistence living, the loss of resources from the land left several residents vulnerable without stocks for the winter.

The Arctic’s soil, once frozen all year round, now faces several months of thaw, with some regions thawing faster and more substantially than others. Since the 1990s, temperatures in the Arctic have been increasing at roughly 0.6°C per decade, twice the rate of the global average. Data from Alaskan weather services indicaate that from 1971 to 2019, the rate of Arctic warming was three times as fast as the global average. Another study suggests a four-fold warming. Some estimates showi a summer free of sea ice as early as 2035. With less sea ice preventing big waves from crashing against the shores, coastal erosion is sure to increase.

Warmer Arctic temperatures are also thawing permafrost, turning once frozen-solid land into soft, wet soil that crumbles more easily with wave attacks. Permafrost thaw also releases once-frozen greenhouse gases into nearby waters and the atmosphere, feeding further warming. Some estimates state that permafrost zones store about 1,700 billion metric tons of carbon, both in methane and carbon dioxide form ; this is about twice the current total within the atmosphere. Another byproduct is the release of once-frozen mercury into soil and nearby waters, polluting the food chain.

In Alaska, entire villages are already facing the need for relocation from coastal erosion. Together, thawing permafrost and waves erode the Arctic coastline at an average rate of 50 centimeters per year. In northern Alaska, the rates are 1.4 meters per year, with some sections, like Drew Point, Alaska, eroding much as 20 meters per year.

A study from February 2022 suggests that erosion may double in the Arctic by the end of the 21st century. As scientists learn more about the timing and magnitude of coastal erosion in the Arctic, communities can develop necessary mitigation and adaptation resources.

Source : National Snow and Ice Data Center (NSIDC).

L’effondrement des Alpes (suite) // The collapse of the Alps (continued)

Comme je l’ai expliqué à plusieurs reprises, le dégel du pergélisol dans les Alpes provoque des chutes de pierres et des glissements de terrain qui peuvent devenir une menace pour les localités situées en aval. Un exemple récent a été donné par Brienz, un petit village (moins de 100 habitants) des Alpes suisses, dans le canton oriental des Grisons, dont la population a été évacuée car la montagne menace de s’effondrer. On craint que les fortes pluies de ces derniers jours déstabilisent deux millions de mètres cubes de roche qui pourraient dévaler la pente et atteindre les maisons. Les villageois ont eu seulement 48 heures pour emballer leurs affaires et abandonner leurs domiciles. Ils doivent maintenant attendre, dans des logements temporaires, que la montagne s’effondre, en espérant qu’elle épargnera leurs maisons. Même les vaches ont été évacuées après que les géologues ont averti que le glissement de terrain était imminent.
La situation à Brienz a soulevé des questions sur la sécurité de certaines localités de montagne, car le réchauffement climatique modifie l’environnement alpin. Le village, jugé à risque géologique depuis un certain temps, est construit sur un terrain qui s’affaisse en direction de la vallée, ce qui a provoqué l’inclinaison de la flèche de l’église et l’apparition de profondes fissures dans les bâtiments.
Source : BBC News.

————————————-

As I explained several times before, the thawing of permafrost in the Alpes is causing rockfalls and landslides which can become a threat to communities downslope. A recent example was given by Brienz, a small village (fewer than 100 residents) of the Swiss Alps, in the eastern canton of Graubünden, whose population has been evacuated as the mountain is threatening to collapse. Days of heavy rain could bring two million cubic metres of loosened rock crashing down the mountainside onto the houses. The villagers were given just 48 hours to pack what they could and abandon their homes. They now must wait, in temporary accommodation, for the rock to fall, and hope it misses their homes. Even the dairy cows were loaded up for departure after geologists warned a rockfall was imminent.

The situation in Brienz has raised questions about the safety of some mountain communities, as global warming changes the alpine environment. The village has been judged a geological risk for some time and is built on land that is subsiding down towards the valley, causing the church spire to lean and large cracks to appear in buildings.

Source : BBC News.

Source: BBC News.

Clonage d’animaux préhistoriques ? // Cloning prehistoric animals ?

Le dégel du permafrost sibérien a permis d’extraire, au cours de l’été 2022, le corps momifié d’un bison qui a vécu dans la région il y a quelque 9 000 ans. Aujourd’hui, des scientifiques russes espèrent cloner l’animal à partir d’échantillons de tissus.
Une fois récupéré, le bison momifié a été confié au Mammoth Museum de l’Université Ammosov. Bien que la carcasse de l’animal soit incomplète, ses membres antérieurs, sa tête et une partie de sa poitrine sont bien conservés. Les scientifiques ont pu retirer le cerveau et prélever des échantillons de peau, de laine, des muscles et des tissus mous. Cela incite les chercheurs à croire qu’ils seront peut-être capables de cloner le bison à partir des cellules recueillies.
Les scientifiques pensent que le bison avait entre 1,5 et 2 ans lorsqu’il est mort. Ils estiment qu’il vivait il y a entre 8 000 et 9 000 ans en se référant à l’âge géologique d’une espèce similaire découverte dans la région en 2009 et 2010. Les bisons ont été extraits du permafrost dans le nord-est de la Russie. Les chercheurs veulent y retourner pendant l’été 2023 en espérant trouver d’autres restes fossilisés.
Certains scientifiques pensent qu’il ne sera pas possible de cloner des animaux disparus à partir de tissus comme ceux du bison. Même si les tissus sont « exceptionnellement bien conservés », l’ADN qu’ils contiennent est probablement trop dégradé pour être cloné. Un chercheur a suggéré de séquencer le génome du bison et de le combiner avec l’ADN de l’espèce disparue et du bison d’aujourd’hui.
Ce ne sera pas la première fois que des scientifiques tentent d’inverser l’extinction d’une espèce. Les scientifiques du laboratoire TIGRR et de la société texane Colossal tentent de redonner vie au tigre de Tasmanie. Les scientifiques ont également réussi à cloner des loups arctiques en Chine. Le 28 mars 2023, la société australienne Vow qui commercialise de la nourriture a annoncé qu’elle était capable de produire des boulettes de viande de mammouth laineux élaborées en laboratoire alors qu’elle travaillait sur une « alternative plus écologique à la production de viande traditionnelle ». Toutefois, pour l’instant, les boulettes de viande de mammouth laineux ne sont pas considérées comme étant suffisamment sûres d’un point de vue sanitaire.
Source : Mammoth Museum of the Ammosov University

———————————————

An ancient bison was frozen inside Siberian permafrost for up to 9,000 years until the melting ice released its mummified body in summer 2022. Now scientists in Russia hope to clone the ancient beast from its tissue samples.

After scientists retrieved the mummified bison, they donated it to the Mammoth Museum of the. Ammosov North-Eastern Federal University for research. Though the carcass is incomplete, its forelimbs, head and part of its chest were well-preserved, meaning scientists were able to perform a necropsy to remove the brain and take samples of its skin, wool, muscles and soft tissues. That led researchers to believe they may be able to clone the bison from the preserved cells.

Scientists believe the bison was between 1.5 to 2 years old when it died. They estimated it lived between 8,000 and 9,000 years ago based on the geological ages of a similar species of bison discovered in the area in 2009 and 2010. The bison were found in northeastern Russia, and researchers want to return there in the summer 2023 to search for more fossilized remains.

Some escientists think it will not be possible to clone extinct animals from tissues like those of the bison. Even though the tissues are « exceptionally well-preserved », the DNA within them is likely too degraded to be cloned. One researcher has suggested sequencing the bison’s genome and combining it with DNA from the extinct species and from living bison.

It wouldn’t be the first time scientists have tried to reverse a species’ extinction. Scientists at the TIGRR Lab and Texas-based company Colossal are trying to bring the Tasmanian tiger back to life. Scientists have also successfully cloned arctic wolves in China. And on March 28th, 2023, Australian food company Vow announced it produced lab-grown woolly mammoth meatballs as it works toward a “more environmentally friendly alternative to traditional meat production.” But for now, the woolly mammoth meatballs are not considered safe for us modern humans to eat.

Source : Mammoth Museum of the M.K. Ammosov North-Eastern Federal University.

Crédit photo: Mammoth Museum of North-Eastern Federal University