La vie au fond de l’océan Pacifique // Life at the bottom of the Pacific Ocean

Dans une étude publiée le 8 août 2025 dans la revue Science Advances, des chercheurs chinois expliquent avoir découvert un système hydrothermal géant, jusqu’alors inconnu, au fond de l’océan Pacifique, et qui pourrait permettre de mieux comprendre les origines de la vie. Le système de Kunlun, au nord-est de la Papouasie-Nouvelle-Guinée, est composé de 20 grands cratères, dont le plus grand mesure environ 1 800 mètres de diamètre et 130 mètres de profondeur. Ce groupe de cratères libère d’importantes quantités d’hydrogène qui alimentent la vie qui prospère dans tout le système.

Site hydrothermal de Kunlun, à proximité de la fosse de Mussau (Source: Xiao et al. 2025, Science Advance

Kunlun a beaucoup de points communs avec un champ hydrothermal dans l’océan Atlantique connu sous le nom de « Cité perdue », situé dans le massif sous-marin Atlantis, à l’intersection entre la dorsale médio-atlantique et la faille transformante d’Atlantis. Cependant, le site de Kunlun présente plusieurs caractéristiques qui le rendent unique, notamment sa taille extraordinaire. Il couvre une superficie d’environ 11 kilomètres carrés. Il est donc des centaines de fois plus grand que la Cité perdue.
Le système hydrothermal de Kunlun offre aux scientifiques une nouvelle perspective sur la serpentinisation des grands fonds marins, processus par lequel l’eau de mer réagit chimiquement avec les roches du manteau sous-marin pour créer des serpentines – groupe de minéraux connus pour leur couleur verdâtre – et libérer de l’hydrogène.
Les chercheurs pensent pouvoir étudier les liens potentiels entre ces émissions d’hydrogène et l’émergence de la vie à Kunlun. On pense que le système contient des fluides riches en hydrogène, semblables à l’environnement chimique de la Terre primitive.
Les auteurs de l’étude ont été surpris par le potentiel écologique du site. Ils ont observé une vie marine diversifiée avec crevettes, galatées, anémones et vers tubicoles, des espèces qui pourraient dépendre de la chimiosynthèse alimentée par l’hydrogène.

Crevettes sur des rochers dans le système hydrothermal de Kunlun.

La lumière du soleil n’atteignant pas les profondeurs océaniques, la vie au fond de l’océan ne peut donc pas utiliser la photosynthèse. Une partie de la vie dans les profondeurs océaniques dépend donc de la chimiosynthèse, qui consiste à utiliser des substances chimiques comme l’hydrogène comme source d’énergie pour produire de la nourriture. Une autre équipe de recherche dirigée par la Chine a récemment utilisé un submersible habité pour filmer des communautés basées sur la chimiosynthèse au fond du Pacifique Nord-Ouest, à environ 9 500 mètres de profondeur. Ces communautés sont rarement documentées car la grande majorité des fonds océaniques reste inexplorée.
Dans la nouvelle étude, les chercheurs ont utilisé le même submersible pour cartographier le site de Kunlun et explorer quatre de ses plus grands cratères. En mesurant les concentrations d’hydrogène dans les fluides hydrothermaux de Kunlun, les scientifiques ont estimé que le champ hydrothermal produisait plus de 5% de l’hydrogène sous-marin non vivant dans le monde.
L’équipe chinoise pense que le groupe de cratères qu’elle a analysé s’est formé par étapes. D’abord, l’hydrogène s’est accumulé sous la surface et a été libéré lors d’explosions majeures. Des fractures se sont ensuite formées le long des bords et du fond des structures résultantes, en déclenchant de nouvelles éruptions intenses de fluides hydrothermaux riches en hydrogène. Ces fractures ont ensuite été lentement obstruées par des minéraux en formation, ce qui a permis à l’hydrogène de s’accumuler à nouveau et potentiellement d’alimenter d’autres explosions de moindre intensité.
Le site de Kunlun se distingue des systèmes hydrothermaux sous-marins d’origine volcanique plus courants, que l’on trouve en limite de plaques tectoniques. Ces systèmes présentent souvent des structures en forme de cheminée, comme les fumeurs noirs, avec des températures d’environ 400 °C. Les systèmes de serpentinisation comme celui de Kunlun et de la Cité perdue sont plus froids, avec des températures inférieures à 90 °C.

 

Kunlun est non seulement plus grand que la Cité perdue, mais il occupe également un emplacement plus inhabituel. La Cité perdue est proche d’une dorsale médio-océanique qui se forme le long des limites de plaques divergentes et expose la roche mantellique. En revanche, Kunlun se trouve à l’intérieur de la plaque tectonique, loin de toute dorsale. Le système Kunlun se distingue par son flux d’hydrogène exceptionnellement élevé, son échelle et son contexte géologique unique. Il démontre que la production d’hydrogène par serpentinisation peut se produire loin des dorsales médio-océaniques, et remet donc en question d’anciennes hypothèses.
Source : Live Science via Yahoo News.

————————————————-

In a study published on 8 August 2025 in the journal Science Advances, Chinese researchers explain that they have discovered a giant, previously unknown hydrothermal system at the bottom of the Pacific Ocean that could shed light on the origins of life. The Kunlun system, northeast of Papua New Guinea, is made up of 20 large craters, the largest of which is about 1,800 meters wide and 130 meters deep. These craters are clustered together and they release copious amounts of hydrogen, which may feed the life that thrives throughout the system.

Kunlun is similar to an Atlantic hydrothermal field known as the Lost City, which is located on the Atlantis Massif underwater mountain range. However, Kunlun has several features that make it unique, including its extraordinary size. It covers an area of about11 square kilometers, making it hundreds of times larger than the Lost City.

The Kunlun system offers scientists a new window into deep-sea serpentinization, which is the process by which seawater chemically reacts with mantle rocks beneath the seafloor to create serpentine minerals (a group of minerals known for their greenish color) and release hydrogen.

Researchers think they can study the potential links between these hydrogen emissions and the emergence of life at Kunlun. The system is thought to have hydrogen-rich fluids that are similar to early Earth’s chemical environment.

The authors of the study were surprised at the ecological potential of the site. They observed diverse deep-sea life – shrimp, squat lobsters, anemones, and tubeworms – species that may depend on hydrogen-fueled chemosynthesis. »

Sunlight doesn’t reach the deep ocean, so life at the seafloor can’t use photosynthesis. Some life in the deep ocean therefore relies on chemosynthesis, which involves using chemicals like hydrogen as an energy source to make food. A separate Chinese-led research team recently used a crewed submersible to film chemosynthesis-based communities at the bottom of the northwest Pacific, at depths of around 9,500 meters. Such communities are rarely documented asthe vast majority of the ocean floor is unexplored.

In the new study, researchers used the same submersible to map Kunlun and explore four of its largest craters. By measuring the hydrogen concentrations in Kunlun’s hydrothermal fluids, the scientists estimated that the field produced more than 5% of the world’s non-living submarine hydrogen output.

The Chinese team proposed that the cluster of craters they documented formed in stages. First, hydrogen accumulated beneath the surface and burst out in major explosions. Fractures then formed along the edges and bottom of the resulting structures, triggering further intense eruptions of hydrogen-rich hydrothermal fluids. These fractures then slowly became blocked by forming minerals, enabling hydrogen to accumulate again and potentially fuel additional smaller-scale explosions.

Kunlun is different from the more common volcano-powered hydrothermal seafloor systems found at plate boundaries. These systems often feature chimney-like structures, such as black smokers, with temperatures about 400 degrees Celsius. The serpentinization systems like Kunlun and the Lost City are cooler, with temperatures below 90° C.

Kunlun is not only bigger than the Lost City, it’s also in a more unusual location. The Lost City is close to a mid-ocean ridge, which form along diverging plate boundaries and expose mantle rock, while Kunlun is in the interior of its plate, far from any ridge.The Kunlun system stands out for its exceptionally high hydrogen flux, scale, and unique geological setting, It shows that serpentinization-driven hydrogen generation can occur far from mid-ocean ridges, challenging long-held assumptions.

Source : Live Science via Yahoo News.

Explosion hydrothermale à Yellowstone // Hydrothermal explosion at Yellowstone

Une explosion hydrothermale a eu lieu dans le Biscuit Basin du Parc national de Yellowstone vers 10h00 le 23 juillet 2024, avec de gros dégâts causés au sentier d’accès. Des vidéos diffusées sur les réseaux sociaux montrent des visiteurs en train de courirt pour se mettre en sécurité. Aucun blessé n’a été signalé.

https://www.facebook.com/watch/?v=497664519308104

L’explosion a eu lieu près du Sapphire Pool. Les explosions hydrothermales se produisent lorsque de l’eau surchauffée se transforme rapidement en vapeur sous terre. De tels événements sont relativement courants à Yellowstone. Un événement de ce type a été signalé dans le Norris Geyser Basin le 15 avril 2024 et un autre dans ce même Biscuit Basin le 17 mai 2009.
Pour anticiper des commentaires stupides, l’USGS précise que les explosions hydrothermales comme celle-ci ne sont pas le signe d’une éruption volcanique imminente et qu’elles ne sont pas provoquées par une remontée de magma vers la surface.
Source : USA Today.

Photo: C. Grandpey

——————————————-

A hydrothermal explosion took place at Yellowstone National Park’s Biscuit Basin at aabout 10:00 am on July 23rd, 2024, damaging a boardwalk. Videos released on the social networks show visitors running to safety. No injuries have been reported.

https://www.facebook.com/watch/?v=497664519308104

The explosion originated near the Sapphire Pool. Hydrothermal explosions are geothermal explosions that occur when superheated water rapidly flashes to steam underground. Such events are relatively common in Yellowstone. A similar event was reported in the Norris Geyser Basin on April 15th, 2024 and another in Biscuit Basin on May 17th, 2009.

To anticipate stupid comments, USGS specifies that hydrothermal explosions like this one are not a sign of impending volcanic eruptions, and they are not caused by magma rising towards the surface..

Source : USA Today.

Séismes sous le Myrdalsjökull (Islande) : rien d’inquiétant // Earthquakes beneath Myrdalsjökull (Iceland) : nothing to worry about

Dès qu’une hausse de la sismicité est enregistrée sur le Myrdalsjökull, un glacier dans le sud de l’Islande, de nombreuses personnes craignent qu’elle soit liée au Katla, un volcan situé sous la calotte glaciaire, et qu’elle soit le signe d’une prochaine éruption.
Le 30 juin 2023, à 1h18 du matin, un essaim sismique s’est déclenché sous le Mýrdalsjökull. Plus de 70 secousses ont été signalés, dont six d’une magnitude supérieure à M 3,0. L’événement le plus significatif avait une magnitude de M 4,4.
La première séquence de l’essaim a duré environ 45 minutes, puis il y a eu une légère pause et l’essaim a recommencé. Il a inclus quelque 70 événements, dont certains ont été ressentis principalement à Þórsmörk.
Selon les scientifiques islandais, cette sismicité est liée au système hydrothermal situé sous le glacier Mýrdalsjökull, et il ne devrait pas y avoir « une éruption ou quoi que ce soit de ce genre ». Elle est très superficielle (environ 0,1 km de profondeur) et rien n’indique une augmentation de la conductivité électrique ou du niveau de l’eau.
La sismicité est présente sous le Mýrdalsjökull depuis plusieurs semaines, et c’est cette même activité qui se poursuit. Elle pourrait encore fluctuer pendant un certain temps.
Source : Icelandic Met Office.

———————————————-

As soon as an increase in seismicity is recorded at Myrdalsjökull in southern Iceland, many people fear it might be related to Katla, a volcano that lies beneath the icecap, and that it might be the sign of an upcoming eruption.

At 1.18 AM on June 30th, 2023, a seismic swarm started beneath the Mýrdalsjökull glacier. More than 70 quakes have been reported and six quakes of more than M 3.0 have been reported. The largest event had a magnitude M 4.4.

The first sequence of the swarm lasted about 45 minutes, then there was a slight pause, and then it started again. The swarm included about seventy quakes, some of which were felt mainly in Þórsmörk..

According to Icelandic scientists, this seismicity is related to a geothermal system located under Mýrdalsjökull glacier, and they are not expecting « an eruption or anything like that. » Nothing indicates an increase in electrical conductivity or water level

There has been activity in Mýrdalsjökull glacier for a few weeks now, it’s just the same activity that continues. It is very shallow (about 0.1 km deep) and might still fluctuate some time.

Source : Icelandic Met Office.

Photo: C. Grandpey

Dernières nouvelles des Champs Phlégréens (Campanie / Italie) // Latest news of the Phlegraean Fields (Campania / Italy)

Les Champs Phlégréens, c’est un peu comme le monstre du Loch Ness, ça ressort périodiquement dans la presse générale et scientifique. La différence, c’est que cette zone volcanique à la périphérie de Naples est plus menaçante que le monstre écossais. Les volcanologues nous rappellent régulièrement les risques qu’une éruption de ce volcan ferait courir à la région qui est fortement peuplée.

Un article paru dans la revue italienne Rivista della Natura fait le point sur la situation dans les Champs Phlégréens, Campi Flegrei en italien. L’article s’attarde en particulier sur la fumerolle de Pisciarelli, l’un des sites les plus surveillés. Une étude récente de l’INGV et de l’Université de Palerme a mis en évidence les modifications significatives intervenues dans les paramètres géochimiques et géophysiques, avec une extension de la zone de dégazage. Ces derniers paramètres devraient conduire à une mise à niveau du système de surveillance.
Depuis quelques années, on observe une augmentation simultanée de tous les paramètres géochimiques et géophysiques avec un seul moment de stabilité survenu en juin 2017, mais qui a été suivi d’une nouvelle intensification de l’activité. En particulier, les émissions de CO2 ont été multipliées par 3 depuis 2012, de même que l’hydrogène sulfuré (H2S) qui a connu une hausse constante au cours de la même période. Les paramètres gazeux vont de pair avec la pression du système hydrothermal, qui a montré une tendance à la hausse de 2012 à 2017, puis une légère baisse et enfin une nouvelle hausse entre 2018 et 2019.La pression du système hydrothermal des Champs Phlégréens est d’environ 44 bars et augmente rapidement.

Parallèlement à cette augmentation de pression du système hydrothermal, on a observé une élévation continue du sol de l’ordre de 8,5 cm / an et une augmentation de l’activité sismique (environ 448 événements sismiques pendant la seule année 2018). Il faut toutefois noter que les phénomènes bradysismiques sont fréquents dans la région des Champs Phlégréens. À cela, il faut associer une augmentation visible de la surface de la mare de boue dont la surface est agitée par les gaz ; elle est passée d’environ 40 m2 à une centaine de mètres carrés.
La fumerolle de Pisciarelli, ainsi que la Solfatara de Pouzzoles qui se trouve à proximité, constituent le point de rejet en surface des fluides volcaniques qui remontent le long de la croûte par des failles et des fractures. Contrairement à la Solfatara, située au fond d’un grand cratère, la région de Pisciarelli se trouve dans une vallée étroite sur les flancs de la structure volcanique et se caractérise par la présence de grandes mares de boue atteignant une température d’environ 90°C au niveau d’un point d’émission appelé « Soffione » (le Soufflard) qui s’est ouvert en 2009, et à partir duquel le gaz sort à une température d’environ 115ºC.
L’augmentation des paramètres géochimiques et géophysiques observés à Pisciarelli s’inscrit dans le contexte des « crises volcaniques » des Champs Phlégréens qui se caractérisent par des épisodes cycliques de mise sous pression du système hydrothermal par des fluides magmatiques venant des profondeurs, et pouvant causer parfois des dégâts

A la longue, ces « crises volcaniques » pourraient accroître l’instabilité thermique ou mécanique de la couche superficielle du système d’alimentation des Campi Flegrei, et créer des conditions favorables au développement d’une activité phréatique dans la région de Pisciarelli. Pour cette raison, les auteurs de l’étude soulignent la nécessité de poursuivre la mise en œuvre du système de surveillance de cette zone.

Actuellement, le niveau d’alerte des Champs Phlégréens est à la couleur Jaune, sur une échelle qui va du Vert au Rouge, en passant par le Jaune et l’Orange, selon le risque estimé par les autorités compétentes (INGV, Protection Civile, etc). Selon le dernier rapport disponible, en date du mois de mai 2019, l’activité sismique a été marquée par des événements à faible énergie avec un hypocentre situé à une profondeur d’environ 2 km, à la verticale de la zone de Pouzzoles-Accademia-Pisciarelli.
En résumé,  malgré une tendance globalement en hausse, la situation des Champs Phlégréens n’est pas plus préoccupante que précédemment et le niveau d’alerte est maintenu à la couleur Jaune, comme c’est le cas depuis décembre 2012.
Source : Rivista della Natura.

————————————————-

The Phlegrean Fields is a bit like the Loch Ness monster: they come out periodically in the general and scientific press. The difference is that this volcanic area on the outskirts of Naples is more threatening than the Scottish monster. Volcanologists regularly remind us of the risks that an eruption of this volcano would cause to the region which is densely populated.
An article in the Italian magazine Rivista della Natura sums up the situation in the Phlegraean Fields, Campi Flegrei in Italian. The article focuses on the Pisciarelli fumarole, one of the most monitored sites. A recent study by INGV and the University of Palermo highlighted significant changes in the geochemical and geophysical parameters, with an extension of the degassing area. These latter parameters should lead to an upgrade of the surveillance system.
In recent years, there has been a simultaneous increase in all geochemical and geophysical parameters with a single moment of stability in June 2017, but this has been followed by a further intensification of activity. In particular, CO2 emissions have been multiplied by 3 since 2012, as has hydrogen sulphide (H2S), which has been steadily increasing over the same period. The gas parameters go hand in hand with the pressure of the hydrothermal system, which has shown an upward trend from 2012 to 2017, then a slight decrease and finally a new increase between 2018 and 2019.The pressure of the hydrothermal system of the Phlegrean Fields is about 44 bars and is growing rapidly.
In parallel with this pressure increase of the hydrothermal system, a continuous elevation of the soil of about 8.5 cm / year and an increase of the seismic activity (about 448 seismic events during the year 2018) were observed. It should be noted, however, that bradyismic phenomena are frequent in the Phlegrean Fields region. To this, we must associate a visible increase in the surface of the mud pool whose surface is agitated by the gases; it extended from about 40 to about 100 square metres.
The Pisciarelli fumarole, along with the nearby Solfatara in Pozzuoli, is the point of discharge of volcanic fluids up the crust through faults and fractures. Unlike the Solfatara, located at the bottom of a large crater, the region of Pisciarelli is located in a narrow valley on the flanks of the volcanic structure and is characterized by the presence of large pools of mud reaching a temperature of about 90°C at a point of emission called « Soffione » (the Blower) which opened in 2009, and from which the gas escapes at a temperature of about 115ºC.
The increase in the geochemical and geophysical parameters observed at Pisciarelli is in the context of the « volcanic crises » of the Phlegrean Fields, which are characterized by cyclic episodes of pressurisation of the hydrothermal system by magmatic fluids coming from the depths, and which can sometimes cause damage
In the long run, these « volcanic crises » could increase the thermal or mechanical instability of the surface layer of the Campi Flegrei feeding system, and create favorable conditions for the development of phreatic activity in the Pisciarelli region. For this reason, the authors of the study stress the need to continue the implementation of the surveillance system in this area.

Currently, the alert level of the Phlegraean Fields is yellow, on a scale that goes from Green to Red, via Yellow and Orange, depending on the risk estimated by the competent authorities (INGV, Civil Protection, etc.). According to the latest available report, dated May 2019, the seismic activity was marked by low-energy events with a hypocenter located at a depth of about 2 km, vertically beneath the area of Pozzuoli-Accademia-Pisciarelli.
In brief, despite an overall increasing trend, the situation of the Phlegraean Fields is no more worrying than previously and the alert level is maintained at Yellow, as it has been since December 2012.
Source: Rivista della Natura.

                                                Bouche active dans la Solfatara
                       Pouzzoles: Temple de Sérapis et traces de l’activité bradysismique

(Photos: C. Grandpey)