Des similitudes entre El Tatio (Chili) et la planète Mars // Similarities between El Tatio (Chile) and Mars

drapeau-francaisEn 2007, Spirit, le module d’exploration de la planète Mars – Mars Exploration Rover (MER) – a atteint une plate-forme légèrement surélevée que les scientifiques ont baptisée Home Plate. Cet affleurement rocheux avait une base composée de cendres solidifiées avec, à proximité, des dépôts de basaltes riches en gaz. A côté de cette plate-forme, on apercevait sous la surface un sol de couleur claire mis à jour par les roues du robot. Les spectres des minéraux de ce sol ont été envoyés vers la Terre et les analyses ont révélé qu’il était composé presque entièrement de silice.
D’un point de vue géologique, il semblait y avoir deux hypothèses: Home Plate avait peut-être été une fumerolle volcanique, ou bien il pouvait s’agir des restes d’une source chaude riche en minéraux. Quoi qu’il en soit, l’eau et la chaleur avaient probablement joué un rôle, et la découverte a fait naître de nouvelles questions et de nouveaux projets d’études.
C’est à ce moment que le robot Spirit a décidé de se taire et de ne plus émettre ! Pour essayer de percer le mystère de la Home Plate martienne, les chercheurs ont parcouru la Terre dans l’espoir de trouver des signaux minéralogiques semblables à ceux observés sur Mars. Ils pensaient qu’en découvrant des conditions identiques ou quasiment identiques à l’environnement martien, ils pourraient être en mesure de reconstituer les événements qui ont ponctué l’ancien passé de la planète.
C’est pourquoi une équipe scientifique de l’Université d’Arizona s’est rendue à El Tatio, un ensemble de sources chaudes de l’altiplano chilien. À 4200 mètres d’altitude, le paysage froid et sec est proche de l’environnement martien. Une fois sur place, les chercheurs sont partis à la recherche de la silice opaline, une combinaison amorphe de dioxyde de silicium (SiO2) et d’eau qui forme une fine croûte de dépôts autour des canaux d’évacuation de l’eau. En utilisant le même type de spectromètre infrarouge que le robot Spirit sur Mars, ils ont cherché des échantillons montrant une forte capacité d’absorption au nombre d’ondes 1 260 dans le spectre. Alors que la plupart des bandes d’absorption sur Home Plate étaient plausibles en se référant la géologie terrestre, cette bande d’absorption de 1 260 restait mystérieuse.
Les scientifiques ont découvert que certains échantillons prélevés à El Tatio présentaient la capacité d’absorption à 1 260 dans le spectre ; de plus, ces échantillons présentaient une fine couche de chlorure de sodium (NaCl) au-dessus de la silice. En y regardant de plus près avec un microscope électronique, ces roches présentaient des couches minces qui faisaient alterner la silice compacte et une texture remplie de trous qui, semblables à des échantillons prélevés en Nouvelle Zélande, ont été façonnées par des activités microbiennes. Au fur et à mesure que les biofilms des communautés microbiennes denses croissent, ils excrètent une boue riche en sucre qui se lie à la silice ou aux minéraux riches en calcium qui précipitent hors de l’eau chaude. Des roches se forment, et tandis que certaines cellules sont trop lentes pour s’échapper et se trouvent noyées dans la silice, la plupart s’extirpent vers la surface, laissant derrière elles  un réseau de trous qui se remplit d’eau salée pour finir recouvert de halite (espèce minérale solide composée de chlorure de sodium de formule brute).
Suite à leurs observations à El Tatio, les scientifiques de l’Arizona ont publié un rapport faisant valoir que la silice opaline à Home Plate provenait probablement d’une source chaude plutôt que d’une fumerolle volcanique.

Source: Discover Magazine.

Et pendant ce temps, les abysses de nos océans, où se cachent les zones de subduction génératrices de puissants séismes et tsunamis, restent dans l’obscurité. Comme me le faisait remarquer le biologiste marin Laurent Ballesta il y a quelque temps, plus de 75 % des zones très profondes restent inexplorées.

———————————-

drapeau-anglaisIn 2007, the Mars Exploration Rover (MER) Spirit came across a slightly raised platform which scientists named Home Plate. The rocky outcrop had a base of solidified ash, with nearby deposits of gas-filled basalts. Next to the plateau, a light-coloured soil just beneath the surface was exposed by the rover’s wheels. Mineralogical spectra of this soil were beamed back to Earth, revealing that it was composed almost entirely of silica.

From a geological standpoint, there seemed to be two main options: Home Plate may have been a volcanic fumarole, or it could signify the remnants of a mineral rich hot spring. Either way, water and heat were likely involved, and the discovery led to new questions and exciting plans for further studies.

But then, the Spirit rover went silent. To pursue the Home Plate mystery, they travelled over the Earth for mineralogical signals most similar to those found on Mars. They thought that by determining the conditions that best recapitulate the Martian data, they might be able to piece together the events of Mars’ ancient past.

Which is why a team of scientists at Arizona State University travelled to El Tatio, a series of hot springs in Chile’s altiplano. At 4,200 metres high, the cold and dry landscape was close to the Martian environment. Once there, they tracked down opaline silica, an amorphous combination of SiO2 and water that forms thin, crusty deposits around water channels. Using the same type of infrared spectrometer that the Spirit rover deployed on Mars, they looked for samples that showed a strong absorption feature at 1,260 wavenumbers in the spectrum. While most of the Home Plate absorption bands made sense based on terrestrial geology, that 1,260 band had remained mysterious.

Remarkably, some samples at El Tatio showed the 1,260 feature – samples that had a thin crust of NaCl on top of the silica. Looking even closer with electron microscopy, these rocks showed thin layers that alternated between compacted silica and a hole-filled texture that has, in similar samples from New Zealand, been shaped through microbial activity. As biofilms of dense microbial communities grow, they excrete sugar-rich slime, which binds silica or calcium minerals that precipitate out of the hot water. Rocks are constructed, and while some cells are too sluggish to escape and are entombed by the silica, most squirm upward to the surface, leaving a network of holes that is filled in with salty water and ultimately coated with halite.

Bringing several types of data together – mineralogical, morphological, and chemical – The Arizona scientists have published a report arguing that the opaline silica at Home Plate came from a hot spring rather than a volcanic fumarole.

Source : Discover Magazine.

And during this time, the abysses of our oceans, where subduction zones are generating powerful earthquakes and tsunamis, remain in complete darkness. As marine biologist Laurent Ballesta told me some time ago, more than 75% of the very deep ocean areas remain unexplored.

el-tatio-blog

« Geysers » d’El Tatio (Photo: C. Grandpey)

L’aspect trompeur des panaches volcaniques // The confusing aspect of volcanic plumes

drapeau-francaisL’Observatoire des Volcans d’Hawaï (HVO), géré par l’USGS, a publié un article très intéressant sur les panaches volcaniques qui peuvent parfois être source de confusion. L’Observatoire indique qu’il reçoit de temps à autre des appels d’Hawaiiens qui sont inquiets parce qu’ils pensent que les panaches de l’Halema’uma’u ou du Pu’uO’o deviennent «énormes». En fait, il n’y a rien à craindre, du moins pour le moment. L’éruption au sommet du Kilauea et sur l’East Rift Zone continue sans grand changement, comme c’est le cas depuis de nombreux mois.
Les personnes qui observent attentivement les panaches de gaz et de vapeur du Kilauea savent que leur apparence et leur étendue dépendent de plusieurs facteurs tels que la quantité émise par les bouches éruptives, la direction et la vitesse du vent, mais aussi la température et l’humidité relative de l’air dans le secteur du volcan. Une émission de gaz plus importante entraîne généralement un panache d’apparence plus volumineuse. Une température plus basse de l’air et une humidité relative plus élevée peuvent produire un résultat similaire. Par ailleurs, les alizés, vents dominants à Hawaii, ont tendance à rabattre les panaches de gaz et de particules vers le sol et les envoient généralement vers des zones peu peuplées au sud-ouest des bouches actives du Kilauea.
Il convient de noter que les conditions atmosphériques au cours des derniers mois ont contribué à donner l’impression que les émissions du sommet et des zones de rift du Kilauea étaient plus denses. Il y a plusieurs explications à ce phénomène.
Tout d’abord, depuis le mois de novembre, l’hiver hawaiien a fait chuter les alizés, comme cela se produit régulièrement à cette saison. Les vents du sud, moins soutenus, ont pris le relais, ce qui a dirigé les émissions du Kilauea vers les zones voisines situées à l’est, entre Volcano et Hilo, et au-delà.
Ensuite, le phénomène El Niño, qui est le plus intense des 20 dernières années, a joué un rôle non négligeable. Les conditions météo générées par El Niño à Hawaii entraînent en général des inversions venteuses qui entraînent une sécheresse. Selon les dernières prévisions, El Niño devrait se poursuivre jusqu’au début de l’été. Si cette prédiction se réalise, il est probable que de grands panaches éruptifs vont continuer à monter verticalement au-dessus du Kilauea.

Il y a quelques années, tout en effectuant des mesures de température sur l’île sicilienne de Vulcano*, j’ai remarqué que le volume des panaches de gaz émis par le cratère de la Fossa pouvaient devenir particulièrement volumineux, surtout aux premières heures de la journée. J’ai également eu l’impression que leur apparence était différente en fonction des conditions météorologiques. Malgré cela, la température constante des fumerolles prouvait que la densité des panaches de gaz et de vapeur n’était pas été liée à une activité volcanique. Je décidai alors de faire une étude de la situation, à l’aide de trois instruments: un thermomètre, un baromètre et un hygromètre. J’ai passé 4 jours complets sur le volcan (entre 6 heures et 20 heures) et effectué des relevés toutes les heures. Mes résultats ne font que confirmer les conclusions du HVO. En ce qui concerne le cratère de la Fossa, l’humidité de l’air et la température ambiante ont un impact certain sur les panaches de gaz et de vapeur en début de matinée, ce qui explique leur densité plus élevée avant le lever du soleil. Lorsque l’air se réchauffe et devient plus sec, les panaches deviennent de plus en plus diffus. Plus tard, je remarqué le même phénomène sur le site des geysers d’El Tatio au Chili.

* Voir le mémoire intitulé « L’Ile de Vulcano » que j’ai rédigé il y a quelques années et qui est disponible après de l’Association Volcanologique Européenne.

———————————–

drapeau anglaisThe USGS Hawaiian Volcano Observatory (HVO) has written a very interesting article about volcanic plumes that can sometimes be confusing. The Observatory indicates it sometimes receives phone calls from local residents who worry because they think the plumes from Halema’uma’u or Pu’uO’o are getting “enormous”. Actually, there is nothing to worry about, at least for the time being. The summit and rift eruptions are going along steadily, as they have been for many months
Seasoned plume watchers know that the appearance and extent of the Kilauea’s plumes depends on several factors, including the amount of gas coming out of the vents, the direction and speed of the wind, and the temperature and relative humidity of the air around the volcano. More gas discharge generally means a plume that looks bigger, but lower air temperature or higher relative humidity can produce a similar result. Besides, Hawaii’s prevailing trade winds typically press the plumes close to the ground and carry gas and particle emissions to sparsely populated areas southwest of Kilauea’s vents.
It should be noted that atmospheric conditions during the past months have conspired to make Kilauea’s summit and rift emissions disconcertingly more evident to plume watchers. Several explanations can be given.
First, since November, Hawaii’s winter has brought a seasonally characteristic disruption to the trade winds. Slow-moving southerly winds have taken their place, bringing Kilauea’s emissions into nearby East Hawaiii communities, from Volcano to Hilo and beyond.
Second, but equally important, is the coincidence of the strongest El Niño in nearly 20 years. Typically, El Niño conditions in Hawaii produce wind direction reversals which sustain very dry conditions. According to the latest forecasts, El Niño is expected to continue until early summer. If this prediction comes true, it’s likely that tall, eruption plumes will keep rising vertically above the volcano.

A few years ago, while making temperature measurements on the Sicilian island of Vulcano, I noticed that the volume of the gas plumes coming out the Fossa crater could become voluminous, especially in the early hours of the day. Besides, I had the impression their appearance was different according to weather conditions. Anyway, the steady temperature of the fumaroles proved the density of the gas and vapour plumes was not related to any volcanic activity. I then decided to make a study of the situation, using three instruments: a thermometer, a barometer and a hygrometer. I spent 4 complete days on the volcano (between 6:00 and 20:00) and made hourly measurements. The results do confirm the HVO conclusions. As far as the Fossa crater is concerned, air humidity and temperature had a definite impact on the gas and vapour plumes in the early morning, which accounted for their higher density before sunrise. When the air got warmer and drier, the plumes were becoming more diffuse. I later noticed the same phenomenon at the El Tatio geysers in Chile.

Kilauea-panache

Panache de gaz de l’Halema’uma’u à Hawaii

Vulcano3 Champ fumerollien

Champ fumerollien dans le cratère de la Fossa à Vulcano

ESA-30-bis

« Geysers » d’El Tatio (Chili)

(Photos: C. Grandpey)

Dans les profondeurs des geysers // In the depths of geysers

drapeau francaisDes chercheurs de l’Université de Californie à Berkeley ont essayé de comprendre comment fonctionnent les geysers et pourquoi certains d’entre eux se manifestent avec la régularité d’une horloge. Pour leurs recherches, ils sont allés à Yellowstone, où ils ont observé le Vieux Fidèle et le Lone Star, et au Chili où les geysers d’El Tatio sont une attraction touristique. Leur conclusion est que des geysers comme le Vieux Fidèle entrent en éruption périodiquement en raison de la présence de boucles ou de chambres latérales dans leur plomberie souterraine.
En cliquant sur le lien ci-dessous, vous verrez une expérience en laboratoire destinée à illustrer ce sujet.
https://www.youtube.com/watch?feature=player_embedded&v=SUNwIm3o-64

Selon les scientifiques, la clé du fonctionnement des geysers est « un coude ou une boucle souterraine qui piège la vapeur, puis la libère lentement sous forme de bulles qui vont chauffer la colonne d’eau au-dessus jusqu’à ce que sa température soit juste en deçà du point d’ébullition. Au final, les bulles de vapeur provoquent l’ébullition soudaine de la tête de la colonne, libérant la pression sur l’eau en dessous et lui permettant de bouillir elle aussi. La colonne d’eau entre en ébullition de haut en bas, propulsant eau et de vapeur à des dizaines de mètres de hauteur. »

De nombreux scientifiques ont voulu savoir pourquoi certains geysers se manifestent périodiquement, parfois avec la régularité d’une horloge. Selon le chimiste allemand Robert Bunsen qui a étudié le Grand Geyser en Islande en 1846, les éruptions commencent lorsque l’eau commence à bouillir à la surface, ce qui réduit la pression dans la colonne d’eau surchauffée et ce qui permet à l’ébullition de se propager de la surface vers le bas. L’eau sous pression bout à une température plus élevée, donc la réduction de pression de l’eau surchauffée lui permet de bouillir.
Les chercheurs de Berkeley ont conclu que Bunsen avait globalement raison, mais que ce sont les bulles qui s’échappent de la vapeur emprisonnée dans les conduits sous le geyser qui portent la colonne d’eau au point d’ébullition. Lorsque la colonne d’eau jaillit à la surface de la terre, plus de la moitié des émissions sont constituées de vapeur, même si la plus grande partie de la masse est de l’eau liquide. Le panache que l’on peut voir de loin est surtout dû à la condensation de la vapeur qui se transforme en gouttelettes d’eau dans l’air.

Au 20ème siècle, quelques chercheurs ont introduit des caméras à l’intérieur des geysers. Les images obtenues laissent supposer qu’il existe des cavités ou des boucles qui piègent les bulles de vapeur. Ils ont effectué de telles observations dans la Vallée des Geysers au Kamchatka. J’ai rédigé une note à ce sujet en février 2013:
http://volcans.blogs-de-voyage.fr/2013/02/16/a-linterieur-des-geysers-inside-geysers/

Aujourd’hui, les mesures effectuées à Yellowstone et au Chili établissent un lien entre les changements de température et de pression dans la colonne d’eau et la plomberie souterraine du geyser, ce qui explique les éruptions périodiques.

Les chercheurs californiens pensent que l’étude des geysers pourrait permettre de mieux comprendre les éruptions volcaniques qui ont beaucoup de points communs, mais qui sont beaucoup plus difficiles à étudier. En effet, il est possible d’introduire des capteurs de température et de pression jusqu’à une dizaine de mètres dans les geysers – chose impossible à faire sur un volcan – et de les corréler avec les mesures de surface à l’aide de capteurs sismiques et d’inclinomètres permettant d’étudier la séquence d’événements souterrains conduisant à l’éruption du geyser.
Source: Université de Berkeley (Californie)

 —————————————————

drapeau anglaisResearchers from the University of California at Berkeley have tried to understand how geysers work and why some of them erupt with the regularity of a clock. For their research, they went to Yellowstone where they observed Old Faithful and Lone Star, and to Chile where the Tatio geysers are a tourist attraction. Their conclusion is that geysers like Old Faithful erupt periodically because of loops or side-chambers in their underground plumbing.

By clicking on the link below, you will see an experiment in a lab destined to illustrate this topic.

https://www.youtube.com/watch?feature=player_embedded&v=SUNwIm3o-64

According to the scientists, the key to geysers is “an underground bend or loop that traps steam and then bubbles it out slowly to heat the water column above until it is just short of boiling. Eventually, the steam bubbles trigger sudden boiling from the top of the column, releasing pressure on the water below and allowing it to boil as well. The column essentially boils from the top downward, spewing water and steam tens of metres into the air.”

Why geysers erupt periodically, some with the regularity of a clock, has drawn the interest of many scientists. According to German chemist Robert Bunsen who studied the Great Geysir in Iceland in 1846, eruptions start when water starts to boil at the surface, reducing pressure within the superheated water column and allowing boiling to propagate downward from the surface. Pressurized water boils at a higher temperature, so reducing the pressure on overheated water allows it to boil.

The Berkeley researchers concluded that Bunsen was essentially correct but also that it’s the escaped bubbles from trapped steam in the rock conduits below the geyser that heat the water column to the boiling point. As the entire water column boils out of the ground, more than half the volume of stuff emerging is steam, though most of the mass is liquid water. The plume seen from afar is mostly steam condensing into water droplets in the air.

In the 20th century, a few researchers have stuck video cameras into geysers and seen features that suggest there are underwater chambers or loops that trap steam bubbles. They did it in the Valley of Geysers (Kamchatka). I wrote a note about this in February 2013:

http://volcans.blogs-de-voyage.fr/2013/02/16/a-linterieur-des-geysers-inside-geysers/

This time, the measurements made in Yellowstone and Chile link the temperature and pressure changes down the water column with the underground plumbing to explain the periodic eruptions.

The Californian researchers think that studying geysers might allow to gain insight into volcanic eruptions, which bear many similarities to geysers but are much harder to study. It is possible to feed temperature and pressure sensors as deep as 10 metres into geysers – something impossible to do with a volcano – and correlate these with above-ground measurements from seismic sensors and tiltmeters to deduce the sequence of underground events leading to an eruption.

Source: Université de Berkeley (Californie).

Lone-Star-Geyser

Lone Star Geyser (Parc de Yellowstone)   Photo:  C.  Grandpey