Les tunnels de lave : la solution à la vie sur Mars ? // Lava tubes : the solution to life on Mars ?

Aujourd’hui, les hommes – du moins certains d’entre eux – rêvent d’une vie sur la planète Mars, mais les défis à relever sont si nombreux que ce rêve est actuellement impossible. Le rayonnement cosmique fait partie des obstacles à surmonter. Contrairement à la Terre, Mars n’est pas entourée d’un champ magnétique ni d’une atmosphère empêchant le rayonnement cosmique d’atteindre sa surface. En raison de cette absence d’atmosphère protectrice, la survie de la matière organique est extrêmement difficile. Selon les estimations transmises par le robot Curiosity, le risque de développer diverses formes de cancer chez les futurs astronautes augmenterait de 5 %, même si la NASA fixe le seuil maximal acceptable à 3 %.
Sous la surface de la Planète Rouge, la situation pourrait être bien différente. Les tunnels de lave pourraient être LA solution pour protéger les astronautes du rayonnement cosmique. Ils pourraient également être la clé de la découverte de vie extraterrestre. C’est pourquoi des études ont été menées sur Terre où l’on trouve de tunnels très longs, comme à Hawaï ou aux îles Canaries.

Tunnel de lave à Lanzarote (Photo: C. Grandpey)

Une nouvelle étude explique que ces tunnels volcaniques, déjà considérés comme des abris parfaits pour les futurs astronautes, pourraient également être le meilleur endroit pour rechercher des biosignatures sur Mars. Après avoir examiné scrupuleusement les vastes tunnels sous Lanzarote, aux îles Canaries, les scientifiques étudient où et comment nous pourrions découvrir des signes de vie sous la surface de la Planète Rouge.
Les tunnels de lave se forment lors des éruptions volcaniques, lorsque la surface d’une coulée de lave durcit tandis que la roche en fusion continue de s’écouler en dessous. Une fois l’éruption terminée, la lave laisse derrière elle de longs tubes caverneux.
Des chercheurs ont récemment pénétré dans les anciens tunnels de lave de Lanzarote pour étudier leur composition minérale et y rechercher la vie. Leurs découvertes, publiées dans Communications Earth & Environment, pourraient remodeler notre recherche de vie sur Mars. En effet, l’équipe scientifique a découvert que ces tunnels offrent un environnement stable, idéal pour préserver les minéraux et l’activité microbienne. Ils ont découvert des colonies de bactéries prospères à l’intérieur, ainsi que des sulfates de calcium et de sodium qui témoignent de la présence d’une vie microbienne depuis un certain temps.

Un avantage essentiel des tunnels de lave est qu’ils pourraient fournir une protection naturelle contre les températures extrêmes et protéger des rayonnements cosmiques mortels. Par ailleurs, les tunnels de lave martiens contiennent probablement des minéraux riches en sulfates, que certaines bactéries utilisent comme source de nourriture. Cela les rend non seulement protecteurs, mais aussi potentiellement habitables.
Les résultats de cette nouvelle étude montrent que les futures missions devraient se concentrer non seulement sur la surface, mais aussi sur ces anciens tunnels de lave, où la vie a pu exister autrefois… et pourrait encore exister.
Source : Futura Sciences.

 

S’agissant de l’emplacement des tunnels sur Mars, une étude récente présentée lors de la 55e Conférence sur les sciences lunaires et planétaires a examiné où, comment et pourquoi les tunnels et grottes de lave pourraient contribuer à la survie des futurs astronautes martiens.
Cette étude pourrait permettre aux scientifiques et aux ingénieurs de mieux gérer les risques pour les futurs astronautes martiens et déterminer les mesures à prendre pour y parvenir.
Les auteurs de l’étude ont examiné plusieurs sites martiens présentant des grottes et des tunnels de lave propices à de futures implantations, notamment Arsia Mons, l’un des trois volcans composant Tharsis Montes.

Caverne dans le sol martien (Source : NASA)

L’étude mentionne également plusieurs autres sites martiens où des grottes ou des lucarnes ont été observées.
Une étude de 2007 a analysé sept lucarnes observées sur des images orbitales et les a interprétées comme les entrées de grottes de lave. Cette étude indique que le diamètre de ces grottes de lave pourrait être compris entre 100 et 250 mètres. Cela signifie que ces grottes pourraient servir à la création des premières colonies permanentes. L’étude indique que ces grottes « permettront de se protéger efficacement contre une exposition à de fortes radiations. Un inconvénient majeur résidera dans la nécessité d’organiser l’approvisionnement en glace d’eau pour fournir aux astronautes les ressources en eau et les matières premières nécessaires à l’extraction de l’oxygène et de l’hydrogène, indispensables aux moteurs des fusées.»
Source : phys.org.

———————————————–

Today, men (at least some of them) are dreaming of a life on Mars, but so many challenges need to be overcome that this dream is currently impossible. Cosmic radiation is one of them. Unlike Earth, Mars is not surrounded by a magnetic field or atmosphere that prevents cosmic radiation from hitting its surface. Because id this lack of protective atmosphere, harmful radiation easily reaches the surface, making it extremely difficult for organic matter to survive up there. Because of this, the risk of developing various forms of cancer for future astronauts would increase by 5%, according to estimates from the Curiosity rover. However, NASA sets the maximum acceptable threshold at 3%.

But below ground, the story could be very different. Lava tubes on the Red Planet could be one solution to protect astronauts from cosmic radiation. They could also be the key to discovering alien life. This is why studies have been made using lava tubes on Earth. Some of them are very long, like in Hawaii or on the Canary Islands. A new study suggests that these deep volcanic tunnels, already considered ideal shelters for future astronauts, might also be the best place to look for biosignatures on Mars. Inspired by places like the vast tunnels beneath Lanzarote in the Canary Islands, scientists are rethinking where and how we might uncover signs of life beneath the Red Planet’s surface.

Lava tubes form during volcanic eruptions when the surface of a lava flow hardens while the molten rock underneath keeps flowing. Once the eruption ends, the lava drains away, leaving behind long, cavernous tubes.

Researchers recently entered the ancient lava tubes on Lanzarote to study their mineral makeup and to look for life. What they found, published in Communications Earth & Environment, could reshape how we search for life on Mars.

The team discovered that these tunnels offer a stable environment perfect for preserving both minerals and microbial activity. They found colonies of bacteria thriving inside, as well as calcium and sodium sulfates that show that microbial life had been present for quite some time.

An essential advantage of the lava tubes is that they could provide natural insulation from extreme temperatures and shield life from deadly cosmic radiation.

Even more promising: Martian lava tubes likely contain minerals rich in sulfates, which some bacteria use as a food source. That makes them not just protective, but potentially habitable.

It’s highly likely that Martian lava tubes closely resemble those found on Earth, especially in terms of mineral composition, including sulfate-rich materials that certain bacteria rely on to survive.

The findings of the new study strongly suggest that future missions should shift their focus from the surface down into these ancient lava tunnels, where life may have once existed… or still might.

Source : Futura Sciences.

As far as the location of tunnels on Mars is concerned, a recent study presented at the 55th Lunar and Planetary Science Conference investigated where, how, and why lava tubes and lava caves could aid future Mars astronauts regarding their survival.

This study holds the potential to help scientists and engineers help mitigate risks for future Mars astronauts and what steps that need to be taken to make that a reality.

The authors of the study examined several locations across Mars that have been found to possess lava caves and lava tubes suitable for future first-time settlements, including Arsia Mons, which is one of three extinct volcanoes that comprise Tharsis Montes. The study mentions several other locations across Mars where pits or skylights have been observed,

It is here that a 2007 study discussed seven alleged skylights observed from orbital images that were later interpreted to be entrances to lava caves. This recent study mentions that the diameters of these lava caves could be between 100 and 250 meters wide. As a consequence, these caves could be used to create the first permanent settlements. One couls read in the study that the caves « will allow you to reliably protect yourself from powerful radiation exposure. And a certain drawback will be the need to organize the delivery of water ice to provide the settlers with water resources and raw materials for extracting the much-needed oxygen and hydrogen fuel for rocket engines. »

Source : phys.org.

Les nouvelles bactéries du Hunga Tonga-Hunga Ha’apai // Hunga Tonga-Hunga Ha’apai’s new bacteria

L’éruption du Hunga Tonga-Hunga Ha’apai ne cesse de surprendre les scientifiques. Il ne se passe guère de semaine sans que de nouvelles découvertes apparaissent.

Rappelons que fin décembre 2014, un volcan sous-marin est entré en éruption dans le Royaume des Tonga, avec des panaches de vapeur et de cendres, ainsi que des projections de matériaux. Les panaches de cendres sont montés jusqu’à 9 kilomètres d’altitude. Lorsque l’éruption s’est finalement arrêtée en janvier 2015, une nouvelle île – qui culminait à 120 mètres de hauteur – s’était édifiée entre deux îles plus anciennes, et les trois édifices étaient visibles depuis l’espace. Le Hunga Tonga-Hunga Ha’apai était la troisième masse continentale à être apparue au cours des 150 dernières années et à avoir résisté pendant plus d’un an aux assauts des vagues. C’était aussi la première à être née dans les régions tropicales,
Au cours de ses sept années d’existence, l’île Hunga Tonga-Hunga Ha’apai a offert aux scientifiques une fenêtre rare pour étudier le développement de la vie sur une nouvelle terre émergée… jusqu’à ce que l’éruption dévastatrice de 2022 la fasse disparaître.
Dans une étude publiée dans la revue mBio, les chercheurs déclarent avoir été surpris par ce qu’ils ont découvert sur la nouvelle île. Au lieu des familles de bactéries censées coloniser l’île dans un premier temps, ils ont trouvé un étrange groupe de microbes provenant probablement des profondeurs. Ils pensaient voir des organismes observés habituellement lors du recul des glaciers, ou des cyanobactéries, des espèces colonisatrices plus classiques. Au lieu de cela, ils ont découvert un groupe unique de bactéries qui métabolisent le soufre et les gaz atmosphériques.
Pour trouver quels microbes s’étaient installés sur la nouvelle île, les chercheurs ont collecté 32 échantillons de sol provenant de diverses zones dépourvues de végétation, depuis le niveau de la mer jusqu’au sommet du cratère de l’île et ses 120 mètres de hauteur. Ils ont ensuite extrait et analysé l’ADN trouvé à l’intérieur des échantillons.
Habituellement, les scientifiques s’attendent à ce que de nouvelles îles soient habitées par des bactéries que l’on trouve dans l’océan ou dans les excréments d’oiseaux. Ce ne fut pas le cas sur Hunga Tonga-Hunga Ha’apai. Les bactéries les plus répandues autour du cône du volcan étaient celles qui ingurgitaient du soufre et du sulfure d’hydrogène. Il se peut qu’elles aient atteint la surface de l’île à travers des réseaux volcaniques souterrains. Sur les 100 premières bactéries détectées par le séquençage, les chercheurs n’ont pas été en mesure de classer 40 % d’entre elles dans une famille bactérienne connue.
Source : Live Science, Yahoo Actualités.

——————————————

The Hunga Tonga-Hunga Ha’apai eruption continues to amaze scientists. Hardly a week goes by without new discoveries appearing.

At the end of December 2014, an underwater volcano erupted in the Kingdom of Tonga, with steam and ash plumes, as well as projections of material. Ash plumes rose up to 9 kilometers into the sky. When the eruption finally stopped in January 2015, the new island – which peaked at 120 meters in height – was well established between two older islands, and the three edifices could be observed by satellites. Hunga Tonga-Hunga Ha’apai was the third landmass in the last 150 years to appear and persist for more than a year, and the first in tropical regions,

During its seven-year existence, the Hunga Tonga-Hunga Ha’apai island gave scientists a rare window to study how life develops on new land masses, until the devastating 2022 eruption blasted it away.

In a study published in the journal mBio., recherches wrote they were surprised by what they found on the new island. Instead of the bacteria families that they expected would first colonize the island, they found a weird group of microbes that likely came from deep underground. They thought they would see organisms observed when a glacier retreats, or cyanobacteria, more typical early colonizer species. Instead, they found a unique group of bacteria that metabolize sulfur and atmospheric gases.

To find which microbes were making the new island their home, the researchers collected 32 soil samples from various non-vegetated surfaces ranging from sea level to the 120-meter-tall summit of the island’s crater, before extracting and analyzing the DNA found within.

Usually, scientists expect new islands to become populated with bacteria found in the ocean or in bird droppings. However, the most prevalent bacteria around the volcano’s cone were those that chowed down on sulfur and hydrogen sulfide gas; and they may have drifted to the island’s surface through underground volcanic networks. Of the top 100 bacteria picked up by the sequencing, the researchers were unable to classify 40% into a known bacterial family.

Source : Live Science, Yahoo News.

Source: Tonga Services

Fonte du Groenland (suite) // Greenland melting (continued)

Une étude par une équipe de chercheurs américains, publiée dans la revue Geophysical Research Letters en décembre 2020 apporte des nouvelles inquiétantes quand au dégel de la banquise arctique. Les scientifiques ont découvert que les bactéries présentes dans la banquise du Groenland favorisent l’agrégation de sédiments, ce qui accélère la fonte des glaces.

Les bédières tracées dans la glace de la banquise sont observées depuis plusieurs années par les glaciologues. L’eau de fonte s’infiltre et forme des petites rivières avec parfois des moulins très spectaculaires. Le problème, c’est que des sédiments (du sable et de la poussière notamment) s’accumulent dans ces courants et réduisent l’albedo, la faculté de la glace à réfléchir la lumière du soleil. La glace absorbe davantage de lumière, ce qui accélère sa fonte.

Dans le cadre de leur étude, les auteurs ont analysé les grains de poussière charriés par les sédiments, ainsi que le courant de l’eau, in situ au sud-ouest du Groenland là où les courants sont nombreux. Cette région a déjà été étudiée par d’autres équipes de chercheurs et ses caractéristiques sont donc bien connues.

En observant les grains de sable, ils se sont rendus compte qu’ils étaient trop petits pour ne pas être emportés par le courant de l’eau. Leur immobilité serait due à la présence de bactéries dans les sédiments. Ces bactéries maintiennent les grains entre eux pour former des boules beaucoup plus grosses qui ne sont pas emportées par l’eau.

Selon les auteurs de la dernière étude, le réchauffement climatique serait responsable de l’accélération de la croissance des bactéries qui existaient avant l’ère industrielle. Avec les températures qui deviennent plus douces, elles prolifèrent et se regroupent dans des trous dans la glace, des cryoconites, où elles deviennent encore plus difficiles à déloger.

Le phénomène est observé ailleurs, notamment en Alaska et dans l’Himalaya. Au Groenland, le phénomène est encore plus problématique puisque la banquise y est plus épaisse, autorisant des dépôts de bactéries plus importants et donc davantage de sédiments. Au final, le processus débouche sur une accélération de la fonte de la glace. C’est un véritable effet boule de neige dans lequel le réchauffement climatique favorise la concentration de bactéries, laquelle entraîne un réchauffement climatique encore plus important.

Plus récemment, des chercheurs ont étudié l’effet des sédiments venus du Sahara, poussés par le sirocco début février 2021, sur la neige des Alpes. Les premières analyses ont montré des grains ensevelis sous la neige fraîche, ce qui pourrait accélérer sa fonte.

Cette étude ne fait qu’accroître l’inquiétude autour du réchauffement climatique dans l’Arctique. En effet, si la hausse des températures se poursuit, les bactéries risquent de devenir plus nombreuses et plus problématiques. Il s’agit désormais de prévoir l’ampleur de cette évolution pour savoir quel sera son impact sur le réchauffement à venir et sur l’élévation du niveau des mers.

Source : Numerama.

—————————————–

 A study by a team of American researchers, published in the journal Geophysical Research Letters in December 2020 brings disturbing news about the melting of the Arctic uce sheet. Scientists have found that bacteria in the Greenland ice sheet promote aggregation of sediment, which accelerates the melting of the ice.

The glacial rills traced in the ice sheet have been observed for several years by glaciologists. The meltwater seeps in and forms small rivers with sometimes very spectacular mills. The problem is that sediment (especially sand and dust) accumulates in these currents and reduces albedo, the ice’s ability to reflect sunlight. Ice absorbs more light, which makes it melt faster. As part of their study, the authors analyzed dust grains carried by sediments, as well as the water current, in situ in southwest Greenland where the glacial rills are numerous. This region has already been studied by other teams of researchers and its characteristics are therefore well known.

As they observed the grains of sand, they realized that they were too small not to be washed away by the water current. Their immobility would be due to the presence of bacteria in the sediments. These bacteria hold the grains together to form much larger balls that are not washed away.

According to the authors of the latest study, global warming is responsible for accelerating the growth of bacteria that already existed before the industrial age. With the temperatures getting warmer, they proliferate and cluster in holes in the ice, cryoconites, where they become even more difficult to dislodge.

The phenomenon is observed elsewhere, notably in Alaska and the Himalayas. In Greenland, the phenomenon is even more acute since the ice sheet is thicker there, allowing more significant deposits of bacteria and therefore more sediment. In the end, the process leads to an acceleration of the melting of the ice. This is a real snowball effect in which global warming promotes the concentration of bacteria, which leads to even greater global warming.

More recently, researchers have studied the effect of sediments from the Sahara, pushed by sirocco in early February 2021, on snow in the Alps. The first analyses showed grains buried under fresh snow, which could accelerate its melting.

This study only heightens concerns about global warming in the Arctic. Indeed, if the rise in temperatures continues, bacteria may become more numerous and more problematic. It is now necessary to predict the magnitude of this proliferation to know what its impact will be on future warming and on sea level rise.

Source: Numerama.

Rivières dans la glace du Groenland (Source: NASA)

Les sources chaudes de Yellowstone et le coronavirus // Yellowstone hot springs and COVID-19

Les sources chaudes et les geysers du Parc National de Yellowstone sont l’un des hauts lieux du tourisme aux États-Unis. Cependant, très peu de visiteurs savent que ces sources contiennent des éléments essentiels à la science. Une fois encore, la Nature peut aider à sauver des vies.
Au cours de cinq visites à Yellowstone – dont une avec des mesures de température pour le compte de l’Observatoire – j’ai pris des centaines de photos des geysers, des sources chaudes et des mares de boue. On me demande souvent dans mes conférences pourquoi ces sources ont des couleurs aussi vives. J’explique qu’elles sont dues aux bactéries thermophiles (elles aiment la chaleur de l’eau) qui colonisent les sources chaudes. Ces couleurs extraordinaires varient également en fonction de la température de l’eau: bleu, jaune, orange, vert
Un article très intéressant sur le site Web du National Geographic nous apprend que certaines bactéries découvertes à Yellowstone sont utilisées en science, et plus particulièrement en science médicale. Un microbiologiste a découvert un jour un microbe qui produit des enzymes capables de résister remarquablement bien à la chaleur. Aujourd’hui, ces enzymes sont un élément clé de la réaction en chaîne par polymérase – Polymerase Chain Reaction ou PCR – une méthode utilisée dans les laboratoires du monde entier pour étudier de petits échantillons de matériaux génétiques en faisant des millions de copies. Cette technique est actuellement utilisée pour augmenter le signal des virus dans la plupart des tests disponibles pour le COVID-19.
Alors que le nouveau coronavirus se propage sur toute la planète, les tests sont devenus le coeur du suivi et du ralentissement de la pandémie. Il ne faudra donc oublier que le processus de PCR, partie essentielle du test, relativement simple et rapide, a pu être réalisé grâce à un groupe de bactéries qui prospèrent dans les sources chaudes de Yellowstone.
Une autre bactérie découverte à Yellowstone est le Thermus aquaticus. Cette bactérie a révolutionné la biologie moléculaire en donnant aux scientifiques un nouvel outil pour manipuler et étudier l’ADN. Depuis la découverte de la double hélice de l’ADN en 1953, les scientifiques n’ont eu de cesse d’étudier ces minuscules molécules génétiques. Pour mieux comprendre les différents types d’ADN, les scientifiques avaient besoin d’échantillons à grande échelle.
Dans les années 1980, une nouvelle technique a été élaborée pour imiter la façon dont une cellule copie naturellement son ADN pour croître et se diviser. L’ADN doit être chauffé puis refroidi dans un cycle permanent, ce qui double plus ou moins chaque fois le nombre de copies génétiques. Le problème, c’est que dans les premières expériences, les températures élevées de chaque cycle endommageaient l’ADN polymérase nécessaire pour faire ces copies.
Les chercheurs ont réalisé qu’une enzyme des bactéries Yellowstone pouvait survivre aux cycles de chauffage et de refroidissement et accélérer le processus. Au fil des ans, de telles enzymes ont permis aux scientifiques d’automatiser le processus de copie d’ADN. Désormais, les chercheurs sont capables de produire des centaines de millions de copies génétiques en quelques heures. Le test du COVID-19 utilise ce même processus, mais en intégrant quelques étapes supplémentaires.
Ces découvertes ont permis à la science de progresser à grands pas. Les scientifiques savent maintenant que les microbes ont mis au point des techniques uniques pour pouvoir se développer dans presque tous les environnements extrêmes de la Terre, que ce soit les sources chaudes de Yellowstone ou les fumeurs noirs au fond des océans. Ces organismes contiennent une mine de mécanismes biologiques jusque-là inimaginables. Il ne reste plus q’à les découvrir et les exploiter !
Source: National Geographic.

———————————————–

Yellowstone hot springs and geysers are one of the highlights of tourism in the United States. However, very few visitors realise that these springs contain elements that are critical in science. Once again, Nature can help to save lives.

Having visited Yellowstone five times – once on behalf of the Observatory to take temperature measurements –, I have hundreds of photos of the geysers, hot springs and mud pools. I am often asked in my conferences about the cause of their vivid colours. I explain that they are due to the thermophile bacteries (they love the heat of the water) that colonise the hot springs. These colours are also different according to the water temperature : blue, yellow, orange, green

An interesting article on the National Geographic website explains that certain species of bacteria have been used in science, and more particularly medical science. A microbiologist once discovered a microbe that produces unusual heat-resistant enzymes. Today, those enzymes are a key component in polymerase chain reaction, or PCR, a method used in laboratories around the world to study small samples of genetic material by making millions of copies. This technique is currently being used to boost the signal of viruses in most of the available tests for COVID-19.

As the novel coronavirus sweeps around the world, testing has become the crux of tracking and slowing the extension of the pandemic. The PCR process that is an essential part of the test is relatively simple and quick, thanks to a cluster of bacteria thriving in the thermal pools of Yellowstone.

Another example of the importance of Yellowstone bacteria is the Thermus aquaticus which has revolutionised molecular biology by giving scientists a new tool to manipulate and study DNA. Since the discovery of DNA’s double helix in 1953, scientists have grappled with the challenge of studying these tiny genetic molecules. To see and understand different types of DNA, scientists needed large scale samples.

In the 1980s, a new technique was developed to mimic the way a cell naturally copies its DNA to grow and divide. The DNA has to be heated and then cooled in a cycle again and again, each time roughly doubling the number of genetic copies. But in early experiments, the high temperatures of each cycle damaged the DNA polymerase needed to make those copies.

The researchers realised that an enzyme from the Yellowstone bacteria could survive the cycles of heating and cooling and speed up the process. Over the years, these enzymes have allowed scientists to automate the DNA-copying process. Now, researchers can produce upward of hundreds of millions of genetic copies in hours. The COVID-19 test uses this same process—but with a few additional steps.

Such discoveries have made a world of difference. Scientists now know that microbes have perfected unique ways to make a living in nearly every extreme environment on Earth, from Yellowstone’s hot pools to the black smokers of the deep sea. These organisms contain a trove of previously unimagined biologic mechanisms just waiting to be found.

Source : National Geographic.

Photos: C. Grandpey