La source magmatique du Mauna Loa et du Kilauea (Hawaï) // The magma source of Mauna Loa and Kilauea (Hawaii)

En utilisant près de 200 années d’archives sur la chimie de la lave du Kilauea et du Mauna Loa, des scientifiques de l’Université d’Hawaï à Manoa et leurs collègues ont montré que les deux volcans les plus actifs d’Hawaï partagent une source magmatique commune au sein du panache mantellique hawaïen. Leur étude a été publiée dans le Journal of Petrology.
On pensait autrefois que la composition chimique distincte des laves du Kilauea et du Mauna Loa correspondait à des conduits d’alimentation magmatique complètement distincts depuis leur source dans le manteau jusqu’à la surface. Cependant, les dernières études montrent que c’est inexact. La matière en fusion provenant d’une source commune dans le manteau au sein du panache hawaïen peut alimenter alternativement le Kilauea ou le Mauna Loa sur une échelle de temps de plusieurs décennies.
Les chercheurs ont obtenu sur le long terme un modèle d’activité éruptive alternée entre le Kilauea et le Mauna Loa en analysant près de deux siècles de données sur la chimie de la lave. Les données indiquent que lorsqu’un volcan connaît une période prolongée d’activité, l’autre a tendance à rester en sommeil. Ce schéma semble lié à des changements dans le transport du magma en provenance de la source commune sous l’archipel hawaïen.
Le Mauna Loa est entré en éruption en 2022 après sa plus longue période d’inactivité connue. Cette période a en grande partie coïncidé avec l’éruption du Pu’uO’o sur le Kilauea, de 1983 à 2018. Elle s’est terminée par un effondrement de la caldeira sommitale et une éruption qui a détruit quelque 700 structures. Les fontaines de lave atteignaient jusqu’à 80 mètres de hauteur.
Les chercheurs ont observé que les variations dans la chimie de la lave correspondent aux changements dans la fréquence et l’intensité des éruptions. Le Kilauea est resté très actif pendant que le Mauna Loa est resté relativement calme entre le milieu du 20ème siècle et 2010. Au cours de cette période, la composition chimique de la lave du Kīlauea a ressemblé de plus en plus à celle de la lave typique du Mauna Loa. Ce changement tend à montrer que le magma s’est déplacé du Mauna Loa vers le Kilauea.
Depuis 2010, la composition chimique de la lave du Kilauea a de nouveau commencé à changer, ce qui indique que le magma se dirige maintenant vers le Mauna Loa. Ce changement a d’abord été observé dans les rapports d’éléments traces tels que le niobium et l’yttrium (Nb/Y), qui reflètent le degré de fusion du manteau. L’étude montre que ces changements chimiques pourraient être un précurseur d’une hausse d’activité éruptive au Mauna Loa dans les décennies à venir.
La nouvelle étude propose une nouvelle approche pour prévoir les éruptions sur la Grande Île d’Hawaï. Selon les chercheurs, la surveillance à long terme de la composition chimique de la lave pourrait permettre de savoir quel volcan est susceptible de devenir plus actif à l’avenir. «Notre étude montre que la surveillance de la composition chimique de la lave est un outil susceptible d’être utilisé pour prévoir la fréquence des éruptions de ces volcans voisins sur une échelle de temps de plusieurs décennies. Une hausse future de l’activité éruptive du Mauna Loa est probable si la composition chimique de la lave continue de changer sur le Kilauea. »

Les résultats de l’étude ont des implications pour l’évaluation des risques et les stratégies de surveillance. Les scientifiques pourraient être en mesure de fournir des prévisions plus précises sur le moment et le lieu de la prochaine éruption majeure si le mouvement du magma provenant de la source commune peut être suivi grâce à la chimie de la lave. Ces connaissances pourraient permettre de mieux gérer les risques dans les localités à proximité de ces volcans.
Source : Big Island Now.

Coulée de lave sur le Kilauea (Photo: C. Grandpey)

Dernière éruption du Mauna Loa en 2022 (Crédit photo: USGS)

—————————————————-

Using a nearly 200-year record of lava chemistry from Kīlauea and Mauna Loa, scientists from the University of Hawaiʻi at Mānoa and their colleagues revealed that Hawaii’s two most active volcanoes share a magma source within the Hawaiian plume. Their discovery was published in the Journal of Petrology.

In the past, the distinct chemical compositions of lavas from Kīlauea and Mauna Loa were thought to require completely separate magma pathways from their source in the mantle to the surface. However, the latest research shows that this is incorrect. Melt from a shared mantle source within the Hawaiian plume may be transported alternately to Kīlauea or Mauna Loa on a timescale of decades.

Researchers identified a long-term pattern of alternating eruptive activity between Kīlauea and Mauna Loa by analyzing nearly 2 centuries of lava chemistry data. The data indicates that when one volcano experiences an extended period of heightened activity, the other tends to remain dormant. The pattern has been linked to shifts in the transport of magma from the shared source beneath the Hawaiian Islands.

Mauna Loa erupted in 2022 after its longest-known dormancy period. The period of inactivity largely coincided with the prolonged Pu’uO’o eruption at Kīlauea which lasted from 1983 to 2018. It ended with a summit caldera collapse and a voluminous eruption. Lava fountains were as tall as 80 meters

Researchers have observed that variations in lava chemistry correspond to changes in the frequency and intensity of eruptions. Kīlauea was highly active while Mauna Loa remained relatively quiet between the mid-20th century and 2010. During this period, the chemical composition of Kīlauea’s lava became increasingly similar to typical Mauna Loa lava. The shift suggests that magma transport had moved from Mauna Loa to Kīlauea.

Since 2010, lava chemistry at Kīlauea has once again begun to change which indicates that magma is now being redirected back to Mauna Loa. The shift was first observed in trace element ratios such as niobium to yttrium (Nb/Y) which reflect the degree of mantle melting. The study suggests that these chemical shifts could be a precursor to increased eruptive activity at Mauna Loa in the coming decades.

The new study provides a new approach to forecasting volcanic eruptions on Hawaii Big Island. It suggests that long-term monitoring of lava chemistry could serve as an indicator of which volcano is likely to become more active in the future. “Our study suggests that monitoring of lava chemistry is a potential tool that may be used to forecast the eruption rate and frequency of these adjacent volcanoes on a timescale of decades. A future increase in eruptive activity at Mauna Loa is likely if the chemistry of lava continues to change at Kīlauea.”

The findings of the study have implications for hazard assessment and monitoring strategies.

Scientists may be able to provide more accurate predictions about when and where the next major eruption will occur if magma movement from the shared source can be tracked through lava chemistry. The knowledge could help mitigate risks for the communities living near these volcanoes.

Source : Big Island Now.

https://bigislandnow.com/

L’alimentation magmatique du Kilauea (Hawaii) // Kilauea Volcano’s magma supply (Hawaii)

drapeau-francaisLes observations du lac de lave dans le cratère de l’Halema’uma’u ont permis de mieux comprendre les lentes variations d’alimentation magmatique du Kilauea.

Tous les jours de la semaine, la cendre volcanique et les cheveux de Pele sont recueillis dans des récipients déposés près du lac de lave, sur la lèvre du cratère. La cendre est pesée, et les scientifiques peuvent calculer combien de grammes se déposent chaque heure dans les récipients. Des bulles éclatent à la surface du lac de lave pendant les épisodes de spattering, mais la vitesse à laquelle la cendre s’accumule dans les récipients varie en fonction de la direction du vent, des lieux de projection, de la profondeur du lac de lave, etc. Tout compte fait, sur un mois, ces effets à court terme ont tendance à s’annuler alors qu’une variation est observée d’un mois sur l’autre, avec des pics et des creux dans l’accumulation de la cendre. Les explications de ces variations ont été données par le HVO en observant le comportement du lac de lave proprement dit.
Presque quotidiennement, les scientifiques du HVO mesurent la profondeur de la surface du lac à l’aide d’un télémètre laser. Le niveau du lac monte pendant les épisodes d’inflation du sommet et chute pendant la déflation. Ces fluctuations durent généralement un jour ou deux, parfois plus, mais n’excèdent jamais un mois. Il s’avère que les variations mensuelles du niveau moyen du lac et de l’accumulation mensuelle de cendre correspondent. Sur une période de plusieurs mois, le niveau du lac et l’accumulation de cendre peuvent augmenter, s’accélérer et retomber. Ainsi, une plus grande quantité de cendre tombe dans les récipients quand le niveau de la lave est haut.
Les scientifiques du HVO se sont posé la question suivante: Pourquoi le niveau moyen du lac de lave varie-t-il sur des périodes de plusieurs mois? La réponse se trouve dans les fluctuations d’alimentation magmatique du réservoir peu profond qui se trouve sous la caldeira.
Généralement, on considère que l’alimentation magmatique du Kilauea est relativement stable. En revanche, il y a une dizaine d’années, pendant trois ou quatre ans, cette alimentation était plus importante qu’elle ne l’est aujourd’hui. Il s’agit d’une évolution sur le long terme, qui se distingue par son ampleur et sa durée. Aujourd’hui, c’est différent. Le lac de lave monte et descend sur des périodes de quelques mois seulement, ce qui montre une variation à plus court terme de l’alimentation. Un examen des données GPS sur une période de plusieurs mois – pour minimiser les effets à court terme – montre une correspondance avec le niveau du lac. L’élévation du niveau du lac indique une inflation plus rapide du sommet, tandis que la baisse de niveau traduit un soulèvement sommital plus lent.
L’explication la plus simple de tout cela est que l’apport en magma varie lentement sur des périodes de plusieurs mois. Il ne s’agit pas simplement de transférer le magma d’un lieu vers un autre. C’est l’ensemble du sommet qui monte ou descend, ce qui traduit la hausse et la baisse de l’alimentation magmatique de tout le réservoir sommital. Une seule fois, en 2012, la partie sud du réservoir a baissé alors que la partie nord montait.
Le HVO a identifié environ une douzaine de telles variations d’alimentation depuis le début de l’éruption dans le cratère de l’Halema’uma’u en 2008. Ces variations peuvent être provoquées par des fluctuations de fusion dans le manteau, ou elles peuvent se produire pendant le trajet de 80-100 km entre le manteau et le réservoir de stockage peu profond.
Sans le lac de lave et les mesures précises de son niveau, les scientifiques du HVO n’auraient pas pu détecter les variations d’alimentation et, par conséquent, ils n’auraient pas pu expliquer les variations mensuelles d’accumulation de cendre dans les récipients sur la lèvre du cratère de l’Halema’uma’u. La boucle est bouclée !
Source: USGS / HVO.

—————————————-

drapeau-anglaisA new concept has emerged from observations of the lava lake in Halema’uma’u. Crater: slowly pulsing magma supply to Kilauea. Every weekday volcanic ash and Pele’s hair are collected from buckets near the lava lake. The ash is weighed, and an ash accumulation rate is calculated, namely how many grams of ash fall into the buckets per hour. Bubbles at the surface of the lava lake are almost always breaking during spattering, but the rate at which ash accumulates in the buckets varies according to wind direction, locations of spattering, depth to the lava lake, and more. However, when averaged over a month, such short-term effects tend to cancel while month-to-month variation is observed, with peaks and troughs in ash accumulation lasting several months each. Explanations of these phenomena have been given by HVO by observing the behaviour of the lava lake itself.

Almost daily, HVO scientists measure the depth to the lake surface with a laser rangefinder. Lake level rises during summit inflation and drops during deflation. Such changes typically last a day or two, sometimes longer, but not for a month. It turns out that the average monthly lake level and the monthly accumulation of ash track each other. Over a several-month period, lake level and ash accumulation may rise, peak, and fall off. More ash falls in the buckets when lava level is high than when it is low.

The question to answer was: Why does the monthly average lake level change over periods of several months? The answer is: a pulsing rate of magma supply to the shallow storage reservoir under the caldera.

Generally, magma supply to Kilauea is considered to be pretty steady. For 3-4 years about a decade ago, the magma supply rate was higher than it is today. This was a long-term change and stood out by its magnitude and duration. Today is different. The rising and falling lava lake over periods lasting only several months suggests a shorter-term variation in the supply rate. Close examination of the GPS data, again averaged over month-long periods to minimize short-term effects, shows good correspondence with lake level. Rising lake level indicates faster summit uplift, and dropping lake level slower uplift.

The simplest explanation for all this is that the rate of magma supply is slowly pulsing over periods of several months. It isn’t simply a question of transferring magma from one place in the summit to another. The entire summit goes up or down, seemingly reflecting waxing and waning of the magma supply rate to the entire summit reservoir. Only once, in 2012, did the southern part of the reservoir go down when the northern went up.

HVO has identified about a dozen pulses since the Halema’uma’u eruption began in 2008. The pulses may be driven by changes in the rate of melting in the mantle or be induced during transport upward from the mantle to the shallow storage reservoir, an 80-100-km distance.

Without the lava lake and its precisely measured level, HVO scientists wouldn’t have detected a pulsing supply rate and, as a consequence, would not have been able to explain the monthly changes in ash accumulation.

Source: USGS / HVO.

halem-4-dec-2016

Vue du lac de lave dans le cratère de l’Halema’uma’u. La surface du lac – dont le diamètre est d’environ 255 mètres – se trouve souvent à une vingtaine de mètres sous la lèvre. Le niveau de la lave chute au cours des périodes de déflation du Kilauea et remonte lors des épisodes d’inflation. Un débordement peut se produire sur le plancher de l’Halema’uma’u, comme en mai 2015, mais un tel événement reste exceptionnel. (Crédit photo: USGS / HVO).

La Suède au chevet du Mont Cameroun // Swedish researchers study Mt Cameroon

drapeau-francaisDans une étude dont les résultats viennent d’être publiés dans la revue Scientific Reports, les géologues de l’Université d’Uppsala (Suède) ont analysé le comportement du magma sous le Mont Cameroun, ce qui pourrait permettre de mieux contrôler les futures éruptions de ce volcan.
Le Mont Cameroun est l’un des volcans les plus dangereux d’Afrique et ses éruptions constituent une menace pour près d’un demi million d’habitants qui vivent sur et autour de ses flancs. Une équipe de chercheurs de l’Université d’Uppsala a tenté de percer les mystères du système d’alimentation qui se cache sous le volcan afin de mieux comprendre son fonctionnement, ce qui permettrait d’améliorer la prévision et donc la prévention volcaniques.
Les recherches effectuées par les scientifiques suédois ont révélé un système d’alimentation complexe sous le Mont Cameroun grâce à l’analyse de cristaux en provenance des deux éruptions les plus récentes, celles de 1999 et 2000. Ils ont été en mesure de reconstituer les réservoirs magmatiques profonds, autrement dit ceux qui se trouvent dans la partie inférieure de la croûte terrestre, ainsi que les poches de magma superficielles dans la croûte supérieure. Ces poches peu profondes semblent migrer durant les périodes calmes et peuvent jouer un rôle crucial dans le déclenchement des éruptions.
Les résultats suggèrent en outre que, entre les éruptions, des volumes de magma migrent vers des profondeurs plus faibles où ils évoluent et augmentent leur potentiel explosif. En conséquence, plus le laps de temps entre les éruptions sera long, plus la dernière risquera d’être explosive et violente.
Selon les chercheurs suédois, les équipes de surveillance du Mt. Cameroun auraient tout intérêt à concentrer leur travail sur les signaux sismiques qui accompagnent la migration du magma depuis une vingtaine de kilomètres de profondeur, car ce sont ces signaux qui sont probablement les plus susceptibles de précéder les éruptions. La présence de poches de magma peu profondes joue probablement un rôle majeur dans la définition des styles éruptifs et doit donc être prise en compte dans la gestion des risques et la prévention. Les chercheurs pensent également que les résultats de leur étude serviront à mieux comprendre le processus éruptif sur d’autres volcans du même type que le Mt Cameroun, que ce soit en Islande, au Cap-Vert, dans les îles Canaries, ou dans de nombreux autres endroits à travers le monde.
Source: Université d’Uppsala.

———————————

drapeau-anglaisIn a study whose results have just been published in the journal Scientific Reports, geologists at Uppsala University (Sweden) have traced magma movement beneath Mt. Cameroon volcano, which might help monitoring for future volcanic eruptions.

Mt. Cameroon is one of Africa’s most dangerous volcanoes, and its eruptions pose a threat to nearly half a million inhabitants that live on and around its flanks. A team of researchers from Uppsala University set out to unravel the volcano’s underlying magma supply system in order to gather insight into the inner workings of the volcano and to help improve volcanic prediction and so the prevention.

The researchers revealed a complex magma plumbing system beneath Mt. Cameroon by analyzing crystals from the two most recent eruptions in 1999 and 2000. They were able to reconstruct deep-seated magma storage reservoirs at the bottom of the crust, as well as shallow magma pockets in the uppermost crust. These shallow pockets seem to migrate in times of volcanic quiescence and may play a crucial role in priming the volcano for eruption.

The results further suggest that between eruptions magma batches migrate to shallower depths where they evolve and increase their explosive potential. Hence a longer time between eruptions increases the likelihood of the next eruption being more explosive in style.

According to the Swedish researchers, the monitoring teams at Mt. Cameroon should focus on the seismic signals of magma migration from about 20 km depth, as such signals are very likely to precede eruptions. The occurrence of shallow magma pockets likely plays a major role in controlling eruptive styles during eruptions and should therefore be routinely considered in hazard mitigation efforts. The researchers also believe these results will have implications for other related volcanoes in Iceland, Cape Verde, the Canary Islands, and many other locations worldwide.

Source: Uppsala University.

mount_cameroon_craters

Vue des cratères du Mont Cameroun (Crédit photo: Wikipedia)

Pas de pénurie d’eau dans le District de Puna (Hawaii) // No water shortage in Puna District (Hawaii)

drapeau francaisAprès les inquiétudes sur l’alimentation en électricité dans le District de Puna et la protection des poteaux électriques, les autorités indiquent que les habitants de la région ne seront pas privés d’eau, même si la coulée du 27 juin devait détruire un réservoir de 1140 mètres cubes sur Apa’a Street. En effet, un autre réservoir près du lycée de Pahoa se trouve plus haut sur la pente et le Services des Eaux indique qu’il serait en mesure de subvenir aux besoins de ses clients situés en aval. Toutefois, aucun réservoir d’eau n’est actuellement menacé par la lave
Le réservoir de Apa’a Street est également le site d’un puits d’exploration qui n’est pas utilisé en ce moment. Le Service des Eaux prévoit de le protéger à l’aide de cendre et cylindres en béton afin qu’il puisse rester accessible si la lave devait le recouvrir. Une technique analogue a été utilisée pour protéger les poteaux électriques.
En outre, pour éviter la perte d’eau, le Service des Eaux  est en train d’installer des vannes sur les conduites dans les secteurs où le réseau pourrait être endommagé par la coulée. Même si les tuyaux sont enterrés, la chaleur intense de la lave pourrait causer des ruptures dans le système. Les vannes seraient alors utilisées pour isoler les segments endommagés.
Comme je l’ai écrit il y a quelques jours, les scientifiques du HVO disent qu’ils ne savent pas quelle trajectoire emprunteront les bras de lave qui avancent en amont de Apa’a Street. Si le front de coulée reste immobile, de nouvelles émissions de lave apparaissent ponctuellement à la surface et sur les côtés de la coulée, contribuant à son élargissement. Dans un tel contexte, les prévisions ne peuvent être faites qu’au jour le jour.

Source : West Hawaii Today.

 ——————————————-

drapeau anglaisAfter the worries about electricity supply in the District of Puna and the protection of electricity poles, authorities indicate that Puna residents would not lose water service should the June 27th lava flow destroy a 1,140 cubic-metre reservoir on Apa‘a Street. Indeed, another reservoir near Pahoa High School sits at higher elevation and the Department of Water Supply expects it would be able to supply its customers downslope. None are currently threatened by the flow

The Apa‘a Street reservoir also is the site of an exploratory well not currently being used. The Department is considering using cinder and concrete cylinders to protect the well so it could be accessed should lava cover it. Similar methods have been used to protect utility poles.

Besides, to avoid water loss, the Department is installing valves on pipes where the infrastructure could be damaged by the flow. While the pipes are buried, the lava’s intense heat above still could cause ruptures in the system. The valves would be used to isolate pipe segments that are damaged.

As I put it before, HVO geologists say it remains unclear what path the lava breakouts upslope of Apa‘a Street will follow. While the flow front remains stalled, new breakputs punctually appear at the surface or along the sides of the flow, and tend to widen it. This is the reason xhy predictions can only be made day after day.

Source : West Hawaii Today.

Pahoa-blog

 Vue de la coulée au sud du cimetière de Pahoa. On aperçoit la partie de voie d’accès épargnée par la lave.

(Crédit photo:  USGS / HVO)