Contrôle de l’acidification des océans // Monitoring of ocean acidification

drapeau-francaisL’Alaska est l’un des rares Etats américains à avoir créé un site Web dont le but est de contrôler l’acidification des océans. L’Alaska Ocean Acidification Network, créé grâce à la collaboration de scientifiques, d’organismes environnementaux, de groupes de pêche et d’aquaculture, est opérationnel depuis le mois dernier. Son objectif est de fournir un forum aux scientifiques, diffuser les résultats des recherches et informer les populations côtières concernées.
L’acidification des océans se produit lorsque le dioxyde de carbone, émis principalement par les combustibles fossiles, est absorbé par l’océan. Il augmente la corrosivité de l’eau de mer, ce qui nuit à la formation des écailles et des coquilles des animaux marins. L’Alaska est particulièrement menacée par l’acidification car ses eaux sont plus froides et retiennent davantage le dioxyde de carbone.
En Alaska, le secteur des fruits de mer est évalué à environ 5,8 milliards de dollars chaque année et représente le plus grand employeur du secteur privé de cet Etat.
Depuis 2011, le réseau d’observation des océans a échantillonné le pH sur différents sites de la Mer de Béring, du Golfe de l’Alaska et à la pisciculture Alutiiq Pride de Seward. Les chercheurs ont également recueilli 1200 échantillons d’eau à bord des navires chaque année. Selon la NOAA, le pH moyen des océans aujourd’hui dans le monde est de 8,1. Plus le pH est bas, plus l’acidité est forte. Les solutions avec un pH inférieur à 7 sont acides tandis que celles avec un pH supérieur à 7 sont basiques.
L’Alaska n’a pas, pour le moment, observé les effets directs de l’acidification sur les coquillages et crustacés, mais les modèles informatiques indiquent que l’eau océanique va devenir acide plus tôt que prévu. Ces modèles prévoient que la Mer de Beaufort sera la première à voir son pH baisser vers 2025, suivie de la Mer des Tchouktches en 2027 et de la Mer de Béring en 2044. Selon les estimations de l’acidification des océans à l’échelle de la planète, le pH de la Mer de Béring pourrait se situer entre 7,5 et 7,8 dans les 75 à 100 prochaines années, voire plus tôt.
Source: Alaska Dispatch News.

—————————————–

drapeau-anglaisAlaska is one of a few U.S. states to launch a website aimed at keeping track of ocean acidification. The Alaska Ocean Acidification Network, a collaboration of state and federal scientists, agencies, tribes, conservation, fishing and aquaculture groups, went live last month. Its goal is to provide a forum for researchers to share findings and connect with concerned coastal residents.

Ocean acidification happens when carbon dioxide, generated primarily from the burning of fossil fuels, is absorbed by the ocean. It causes seawater to become corrosive, making it tough for marine creatures to grow scales and shells. Alaska is particularly susceptible to acidification because its waters are colder and hold more carbon dioxide.

In Alaska, the seafood industry is valued at about $5.8 billion every year, and it is the largest private sector employer in the state.

Since 2011 the ocean-observing system has sampled pH levels at moorings in the Bering Sea, Gulf of Alaska and at the Alutiiq Pride Hatchery in Seward. Researchers also take 1,200 shipboard water samples each year. The average pH in the world’s oceans today is 8.1, according to NOAA. The lower the pH, the higher the acidity. Solutions with a pH less than 7 are acidic and solutions with a pH greater than 7 are basic.

No direct effects of acidification are showing up yet in Alaska sea creatures, but computer models predict the ocean will become acidic sooner than previously thought. They are anticipating that the Beaufort Sea will be first to leave its natural range of pH variability around 2025, followed by the Chukchi in 2027 and the Bering in 2044. Based on global estimates of ocean acidification, the Bering Sea may reach a pH level of 7.5 to 7.8 in the next 75 to 100 years, if not earlier.

Source: Alaska Dispatch News.

NOAA 2

Carte montrant, à l’échelle mondiale, les sites de contrôle de l’acidification des océans par la NOAA.

NOAA_modifié-1

Carte des sites de contrôle de l’acidification de l’eau par la NOAA sur le continent américain.

Acidification de l’Océan Arctique sibérien // Acidification of the Siberian Arctic Ocean

drapeau francaisJ’ai souvent insisté dans ce blog sur le rôle joué par la fonte du pergélisol dans le réchauffement climatique en raison des énormes quantités de méthane envoyées dans l’atmosphère.
Selon une nouvelle étude effectuée par une équipe scientifique de l’Université de l’Alaska à Fairbanks, l’Académie des Sciences de Russie et d’autres organismes en Russie et en Suède, la fonte du permafrost en Sibérie, conjuguée à l’effritement des côtes russes et l’effet érosif de grandes rivières – comme la Léna – qui se jettent dans l’Arctique, déverse de vastes quantités de carbone organique dans les eaux océaniques, accélérant leur acidification et mettant en danger dans un avenir proche l’ensemble de l’Océan Arctique.
Les scientifiques ont étudié pendant des années le plateau arctique de Sibérie orientale, une zone maritime qui représente environ le quart des eaux de l’Océan Arctique. Les observations faites depuis 1999 montrent que, dans certains secteurs, l’acidité a atteint des niveaux que les chercheurs ne pensaient pas observer avant l’année 2100, en partie à cause d’une très forte sous-saturation en aragonite.
L’aragonite est une forme de carbonate de calcium qui est omniprésente dans les eaux océaniques et qui contribue à maintenir leur pH à son niveau de base. Le carbone présent dans l’eau acidifie cette dernière et fait donc baisser le pH. La mesure de la saturation en aragonite donne une indication sur la teneur générale en calcium et, par voie de conséquence, sur l’augmentation de carbone dans l’eau. Lorsqu’il y a plus d’aragonite que l’eau peut en absorber, ont dit qu’elle est sursaturée ; l’excès de calcium est alors utilisé par les organismes marins pourvus de coquilles. Inversement, quand il y a moins d’aragonite que l’eau pourrait normalement absorber, elle est considérée comme sous-saturée. Comme le plateau arctique de Sibérie orientale joue un rôle important pour l’ensemble des eaux de l’Océan Arctique, les modifications chimiques pourraient avoir des effets profonds sur les écosystèmes marins de toute la région.
Les eaux de la Mer de Beaufort, la Mer des Tchouktches et la Mer de Béring sont déjà connues pour être vulnérables à l’acidification en raison de leurs températures froides qui gardent le carbone et d’autres composants. Les dernières recherches effectuées sur le plateau arctique de Sibérie orientale confirment l’accélération de l’acidification de l’Océan Arctique.
À l’échelle mondiale, on considère généralement que l’acidification des océans est un sous-produit des émissions de carbone dans l’atmosphère. Comme environ un quart du carbone est absorbé par les océans, les émissions anthropiques de dioxyde de carbone sont considérées comme la principale source d’acidification des océans dans le monde entier. Cependant, sur le plateau arctique de Sibérie orientale, le carbone déversé dans la mer par l’érosion du pergélisol et par les rivières qui y débouchent dépasse largement le carbone en provenance de l’atmosphère et peut à lui seul provoquer l’acidification.
Source: Alaska Dispatch Nouvelles: http://www.adn.com/

—————————————

drapeau-anglaisI have often insisted on the contribution of the thawing of the Arctic permafrost to the current global warming because of the huge quantities of methane it sends into the atmosphere.

According to a new study by a team of scientists from the University of Alaska Fairbanks, the Russian Academy of Sciences and other institutions in Russia and Sweden, as Siberian permafrost thaws, crumbling Russian coastlines and big rivers flowing north along eroding banks are dumping vast loads of organic carbon into marine waters, accelerating their acidification and signalling future danger for the entire Arctic Ocean.

The scientists have been studying for years the East Siberian Arctic Shelf, a marine area that accounts for about a quarter of the Arctic Ocean’s open waters. Observations made since 1999 showed signs that in some locations acidity has reached levels researchers didn’t expect to emerge until the year 2100, due in part to « extreme aragonite undersaturation. »

Aragonite is a form of calcium carbonate that is pervasive in the ocean and tilts the chemistry toward the base level of the pH scale. Carbon in the water tilts the pH scale toward the acid level. The degree to which the water is saturated with aragonite is a marker of overall calcium levels, and a marker of acidification caused by increasing loads of carbon in the water. When there is more aragonite than can be absorbed by the water, it is considered to be supersaturated, leaving excess amounts to be used by shell-bearing marine organisms. But when there is less aragonite than the water could normally absorb, it is considered undersaturated. Since the East Siberian Arctic Shelf is so important to the Arctic Ocean’s open water, the chemistry changes could have wide-ranging effects on marine ecosystems in the entire Arctic Ocean.

Marine waters in the far north – in areas like the Beaufort, Chukchi and Bering seas – are already known to be vulnerable to acidification because of their cold temperatures that hold carbon and other attributes. The research from the East Siberian Arctic Shelf now adds to evidence pointing to a faster-acidifying Arctic Ocean.

Globally, ocean acidification is generally considered a byproduct of carbon emissions into the atmosphere. Since about a quarter of that atmospheric carbon winds up absorbed by the ocean, human-caused carbon dioxide emissions are considered the major source of ocean acidification worldwide. However, on the East Siberian Arctic Shelf, the carbon washed into the sea by eroding permafrost and river outwash far outpaces the carbon coming from the atmosphere and is enough to cause acidification on its own.

Source: Alaska Dispatch News: http://www.adn.com/

Sibérie-arctique

Source: Climats et Voyages

L’acidification des océans Arctique et Antarctique // Acidification of Arctic and Antarctic oceans

drapeau-francaisUne étude récente de la National Oceanic and Atmospheric Administration (NOAA) montre que l’Océan Arctique et l’Océan Pacifique Nord, ainsi que les eaux antarctiques, s’acidifient plus vite qu’ailleurs dans le monde. L’étude, qui a analysé des mesures fournies par des milliers de stations à travers le monde, révèle que les eaux de ces océans s’acidifient plus rapidement car le dioxyde de carbone absorbé dans l’atmosphère se combine avec des sources naturelles de carbone transportées par les courants marins et maintenues par les basses températures dans ces régions du globe.
L’eau plus acide dissout plus facilement le carbonate de calcium grâce auquel de nombreuses espèces marines fabriquent leurs coquilles. Cet excès d’acidité de l’eau pourrait bouleverser les écosystèmes entiers et nuire indirectement à d’autres espèces importantes comme le saumon.
La nouvelle étude utilise les données de stations d’échantillonnage permettant d’évaluer les niveaux de saturation en aragonite dans les océans du monde entier. L’aragonite est une forme de carbonate de calcium présente dans l’eau de mer que de nombreuses créatures utilisent pour façonner leurs coquilles. Lorsque l’eau est saturée, elle contient une quantité maximale d’aragonite dissoute. Quand elle est sursaturée, elle contient d’un excès d’aragonite en suspension. Tous les océans du monde, à une profondeur de 50 mètres, sont normalement sursaturés en aragonite. Pourtant, les dernières mesures montrent que les niveaux de saturation en aragonite diminuent à l’échelle mondiale.
L’étude révèle qu’à des profondeurs inférieures à 100 mètres, les niveaux de saturation en aragonite ont diminué en moyenne de 0,4 pour cent par an entre la décennie 1989-1998 et la décennie 1998-2010. De faibles niveaux de saturation en aragonite ont été constatés dans l’Océan Pacifique Nord, à des latitudes supérieures à 50 degrés. À des profondeurs de 200 mètres et au-dessous, toutes les régions de cette partie du Pacifique où ont été effectuées les mesures ont montré une sous-saturation en aragonite.
En revanche, dans l’Océan Atlantique, on a constaté que les eaux étaient sursaturées en aragonite à des niveaux beaucoup plus profonds, grâce à une teneur inférieure en carbone résiduel en provenance d’organismes en décomposition.
L’Arctique, l’Antarctique et le Pacifique Nord sont vulnérables à l’acidification en grande partie à cause de leurs eaux froides qui retiennent le dioxyde de carbone. Ces régions, ainsi que quelques autres dans le monde, comme une zone au large de la côte africaine, sont plus vulnérables parce que les flux générés par les courants océaniques en perpétuel mouvement introduisent des eaux riches en dioxyde de carbone en provenance d’autres régions du monde, ce qui fait remonter des eaux plus anciennes vers la surface.
Source: NOAA.

——————————-

drapeau-anglaisA new National Oceanic and Atmospheric Administration (NOAA) study shows that the Arctic Ocean and the northern Pacific Ocean, along with Antarctic waters, are acidifying faster than the rest of the world’s marine waters. The study, which analyzed measurements from thousands of monitoring stations across the globe, found these bodies acidified faster as carbon dioxide absorbed from the atmosphere combines with natural sources of carbon swept into them by marine currents and held fast by low temperatures.
The increasingly acidic water more easily dissolves the calcium carbonate from which many marine species make their shells. That could upend entire ecosystems, harming other important species, including salmon.
The new study uses data from sampling stations to evaluate aragonite saturation levels in oceans worldwide. Aragonite is a form of calcium carbonate that sea creatures use to build shells, is held in the water. When water is saturated, it holds the maximum amount of dissolved aragonite. When it is supersaturated, it holds excess suspended aragonite. All the world’s oceans, measured down to a depth of 50 meters, are supersaturated with aragonite. Still, those measurements show that aragonite saturation levels have slipped globally.
The study found that at depths shallower than 100 meters, aragonite saturation levels declined by an average rate of 0.4 percent a year from the decade 1989-1998 to the decade 1998-2010. Low levels of aragonite saturation were pronounced in the North Pacific Ocean at latitudes above 50 degrees north, according to the study. At depths of 200 meters and below, all the sections measured in that part of the Pacific showed undersaturated states for aragonite.
In contrast, the Atlantic Ocean was found to have aragonite-supersaturated waters down to much deeper levels, thanks to a lower level of lingering carbon from decaying organisms.
The Arctic, Antarctic and North Pacific are vulnerable to acidification in part because of their cold waters, which hold in carbon dioxide. Those regions, along with some other marine areas in the world, such as a region off the coast of Africa, are more vulnerable because the pattern of ever-moving ocean currents brings in carbon-dioxide-rich waters from elsewhere in the world and causes that older water to rise up to shallower levels closer to the surface.
Source : NOAA.

Aragonite copie

Source: NOAA.

Le CO2 et l’acidification des océans // Carbon dioxide and Ocean acidification

drapeau francaisDes scientifiques de la National Oceanic and Atmospheric Administration (NOAA) et de l’Institut d’Etudes Maritimes et Atmosphériques de l’Université de Miami ont mis en évidence les modifications spectaculaires subies par les communautés coralliennes qui se transforment en tapis d’algues dans les eaux de l’Océan Pacifique, dans une région où un volcan sous-marin émet du dioxyde de carbone.
La nouvelle étude, publiée en ligne le 10 août dans Nature Climate Change, a été effectuée sur les Iles Maug, un ensemble de trois petites îles volcaniques inhabitées dans les Mariannes du Nord, à environ 700 kilomètres de Guam. En disposant des instruments sous-marins capables de mesurer en continu les effets du dioxyde de carbone, les scientifiques ont créé un laboratoire naturel qui montre que la couverture corallienne à proximité des bouches volcaniques a diminué sous l’effet de quantités importantes de dioxyde de carbone, laissant place à des rochers couverts d’algues.
L’étude donne une bonne idée de l’acidification des océans dans les années à venir, autrement dit de l’absorption par les océans de la planète des quantités de dioxyde de carbone émises par l’homme en quantités de plus en plus importantes. Les scientifiques prédisent que les quantités importantes de dioxyde de carbone absorbées par les océans de la planète vont entraîner des modifications des écosystèmes, ce qui empêchera le corail de développer de nouveaux squelettes et permettra aux plantes et aux animaux de les éroder plus facilement.
Cette étude est la première à prouver, grâce à un travail sur le terrain, que l’augmentation de l’acidification des océans a pour résultat un changement spectaculaire d’un écosystème qui passe du corail aux algues. Les récifs coralliens sains fournissent de la nourriture et un abri aux poissons ; ils permettent aussi le développement du tourisme et protègent le littoral contre les tempêtes. La transformation du corail en roches couvertes d’algues s’accompagnera inévitablement d’une perte de la diversité des espèces et des avantages offerts par les récifs.
Source: NOAA.

———————————————–

drapeau anglaisScientists from the National Oceanic and Atmospheric Administration (NOAA) and the Institute for Marine and Atmospheric Studies at the University of Miami have documented a dramatic shift from coral communities to carpets of algae in remote Pacific Ocean waters where an underwater volcano spews carbon dioxide.

The new research, published online August 10th in Nature Climate Change, was conducted on Maug, an uninhabited volcanic island in the Northern Mariana Islands, about 700 kilometres from Guam. By setting up underwater instruments to continuously measure the effects of carbon dioxide, scientists were able to use this natural laboratory to show that coral cover decreased under higher levels of carbon dioxide, giving way to algae-covered rocks near the volcano’s vents.

The research provides a stark look into the future of ocean acidification – the absorption by the global oceans of increasing amounts of human-caused carbon dioxide emissions. Scientists predict that elevated carbon dioxide absorbed by the global oceans will drive similar ecosystem shifts, making it difficult for coral to build skeletons and easier for other plants and animals to erode them.

The research is the first field evidence that increasing ocean acidification results in a dramatic ecosystem change from coral to algae. Healthy coral reefs provide food and shelter for abundant fisheries, support tourism and protect shorelines from storms.  A shift from coral to algae-covered rocks is typically accompanied by a loss of species diversity and the benefits that reefs provide.

Source: NOAA.

Acidif

Modélisation bathymétrique des Iles Maug (Source: NOAA)