Quand un volcan franchit le mur du son…. // When a volcano breaks the sound barrier…

drapeau-francaisEn août 2014, le Tavurvur a connu une éruption explosive en Papouasie-Nouvelle-Guinée et propulsé des nuages de cendre à plus de 15 000 mètres de hauteur. Parfois, les explosions étaient si fortes qu’elles généraient des ondes de choc. L’une d’elles, particulièrement spectaculaire, a été filmée par les passagers d’un bateau qui naviguait pas très loin du volcan. Ces gens ont ressenti l’onde de choc qui s’est accompagnée un bang semblable à celui produit par un avion qui franchit le mur du son. La vidéo se trouve à cette adresse :
Https://youtu.be/Hx5UecbuYw8

On peut lire la description de l’événement sur le site web de Forbes (http://www.forbes.com/). L’onde de choc trouve son origine dans la libération soudaine d’une poche de gaz qui s’est trouvé piégée sous le cratère, probablement à cause d’un bouchon de matériaux qui obstruait les conduits à l’intérieur du volcan. En arrivant à la surface, cette bulle de gaz soumise à une énorme pression se dilate et explose en propulsant des fragments de lave et de la cendre à une très grande vitesse. Au moment de la sortie du cratère, la poussée des gaz comprime l’air de l’atmosphère et crée une onde de choc.
Sur la vidéo, on voit très nettement cette onde de choc qui repousse les nuages qui se trouvaient au-dessus du volcan et se propage également horizontalement. Après environ 13 secondes, l’onde de choc frappe le bateau et ses passagers avec un bang semblable à celui produit par un jet supersonique.

L’auteur de l’article sur le site web de Forbes indique qu’il est difficile de dire s’il s’agit vraiment d’un bang supersonique. Techniquement, cette expression ne fait référence qu’aux ondes de choc générées par un objet qui se déplace plus vite que la vitesse du son. Toutefois, si on regarde attentivement la vidéo, on peut voir que les matériaux éjectés par l’éruption se déplacent à une vitesse supérieure à celle du son. En effet, autour de la pointe du nuage éruptif, on aperçoit un cône de vapeur semblable à celui qui se forme autour d’un avion qui se déplace à une vitesse supersonique.

En sachant que le son se déplace dans l’air à une vitesse de 340-350 mètres par seconde selon la température ambiante, on peut essayer de calculer la vitesse de déplacement de l’onde de choc sur la vidéo. Je pense personnellement que l’embarcation se trouvait à environ 5 kilomètres du volcan. Dans ce cas, l’onde de choc aurait dû mettre près de 15 secondes pour parvenir au bateau. Comme elle n’a mis que 13 secondes, on, peut logiquement penser qu’elle a franchi le mur du son. J’aimerais avoir l’opinion d’un physicien (il y en a qui fréquentent mon blog) sur ce sujet.

————————————

drapeau-anglaisIn August 2014, Tavurvur Volcano was erupting explosively in Papua New Guinea, sending ash clouds more than 15,000 metres into the sky. Sometimes, the explosions were so strong that they generated shockwaves. One of them was very dramatic and was captured on film by the passengers of a boat that was sailing not very far from the volcano. These people could feel the shockwave with a boom similar to the one produced by a plane breaking the sound barrier

https://youtu.be/Hx5UecbuYw8

The description of the event can be read on the Forbes website (http://www.forbes.com/). It is caused by the sudden release of a gas pocket that was trapped beneath the crater, probably because of a plug of volcanic material obstructing the conduits of the volcano. Upon reaching the surface, this slug of highly-pressurized gas expands upwards and outwards at an incredible speed, shooting plenty of lava and ash into the air with it. The outward rush of gas dramatically compresses the air in the atmosphere around it, creating a shockwave.

On the video, one can see very clearly this shockwave obliterating the pre-existing clouds above the volcano and creating create new, temporary ones. After about 13 seconds or so, the shockwave impacted the boat and its passengers with a boom similar to the one produced by a supersonic jet.

The author of the article on the Forbes website indicates that it is difficult to tell whether or not this was a true sonic boom. Technically, this expression only refers to shockwaves generated by an object travelling faster than the speed of sound. However, if you look closely, you can see that the volcanic debris ejected by the eruption was moving at speeds in excess of the speed of sound. Around the tip of the debris cloud, you can spot a vapour cone, much the same as the one that forms around a plane travelling at supersonic speeds.

Assuming that the sound moves through the air at a speed of 340-350 meters per second depending on the ambient temperature, one can try to calculate the speed of the shock wave on the video. I personally think the boat was travelling about 5 kilometers from the volcano. In this case, the shock wave would have needed nearly 15 seconds to reach the boat. As it took it only 13 seconds to do so, one can think that it has broken the sound barrier. I would like to have the opinion of a physicist (some of them come to visit my blog) on this topic.

tavurvur-2009

Eruption du Tavurvur en 2009 (Crédit photo: Wikipedia)

 

Accélération de la fonte de la calotte glaciaire au Groenland // Ice sheet melting is accelerating in Greenland

drapeau-francaisLa calotte glaciaire du Groenland fond à un rythme record, en raison d’une météo inhabituellement chaude et des vagues de chaleur de ce début d’été. Une photo avec des couleurs réelles, prise par le satellite  Earth Observing-1 de la NASA le 15 juin 2016, montre la situation. Le site qui apparaît sur l’image se situe à environ 500 km au nord-nord-est de Nuuk. On peut voir un paysage découpé par les lacs et des rivières de fonte, en total contraste avec le paysage de blancheur photographié au même endroit en 2014.
En 2016, la fonte de la banquise a commencé tôt et a été rapide. Il y a eu trois accélérations de la fonte vers la mi-juin. En conséquence, le rythme de la fonte jusqu’à présent est plus rapide que pendant les trois dernières années, mais plus lent qu’en 2013 qui reste l’année record. Les zones côtières ont été généralement plus chaudes que la moyenne. Par exemple, la température à Nuuk a grimpé jusqu’à 24°C le 9 juin 2016 ; c’est la plus haute température jamais enregistrée en juin à cet endroit. La fonte de la glace que l’on peut voir sur la photo de 2016 a commencé relativement tôt, en avril, mais n’a pas été continue. Elle a fait une pause avant de recommencer en mai pour aboutir au paysage aquatique du mois de juin visible sur l’image.
La fonte de la glace de surface peut, par son ruissellement, contribuer directement à l’élévation du niveau de la mer. L’eau de fonte peut également se frayer un chemin à travers les crevasses et atteindre la base d’un glacier, ce qui accélère temporairement l’écoulement de la glace et contribue indirectement à l’élévation du niveau de la mer. En outre, l’accumulation d’eau de fonte peut « assombrir » la surface de la calotte glaciaire et provoquer encore davantage de fonte. Les périodes de fonte ne suivent pas toutes la même progression. Il n’y avait presque pas d’eau de fonte en surface à la mi-juin 2014 et 2015 ; ces années-là, les volumes d’eau de fonte ont atteint leur maximum à la mi-juillet.
La seconde image montre la même zone (à environ 500 km au nord-nord-est de Nuuk) le 10 juin 2014. Elle a été photographiée depuis le satellite Landsat 8. (La couverture nuageuse trop importante n’avait pas permis de réaliser un cliché en juin 2015). 2014 n’a pas été une année de fonte exceptionnelle. La période a été dans l’ensemble plus froide et plus humide et il se peut même que la photo fasse apparaître quelques chutes de neige récentes.
Il faudra voir comment la fonte à la surface de la banquise va se comporter en 2016. Il se peut que la fonte se poursuive en juillet, ou se stabilise. Jusqu’à présent, elle a été plus importante que la moyenne. Toutefois, les scientifiques doivent observer l’évolution de la situation au cours des prochaines semaines qui seront cruciales car c’est l’époque où le soleil est au plus haut dans le ciel et où le pic de fonte se produit habituellement.
Source: NASA.

Une étude s’appuyant sur des données satellitaires et publiée récemment dans la revue Geophysical Research Letters  indique que la calotte glaciaire du Groenland a perdu un billion (1012) de tonnes de glace entre les années 2011 et 2014. Une grande partie de la perte provient de seulement cinq glaciers pour lesquels les scientifiques expriment les plus grandes craintes. Les climatologues surveillent attentivement la région car elle est susceptible de contribuer considérablement à l’élévation du niveau de la mer. On pense que la perte de glace du Groenland a déjà contribué jusqu’à 2,5 cm d’élévation du niveau de la mer au cours du dernier siècle et jusqu’à 10 pour cent de l’élévation du niveau de la mer pour l’ensemble de la planète depuis les années 1990.
La nouvelle étude s’attarde sur la perte de glace du Groenland entre 2011 et 2014 en utilisant les mesures du CryoSat-2, un satellite de recherche sur l’environnement lancé par l’Agence Spatiale Européenne en 2010. Elles reposent sur l’altimétrie qui mesure les variations d’altitude de la surface du Groenland au fil du temps en fonction des gains ou des pertes de glace.

———————————–

drapeau-anglaisThe Greenland Ice Sheet is melting at a record pace, thanks to some unusually warm weather and early season surges. A natural-colour image captured by NASA’s Earth Observing-1 satellite on June 15th 2016 shows the effects. The site recorded, about 500 km north-northeast of Nuuk, shows a landscape etched with dark blue melt ponds and streams – a sharp contrast to the mostly white conditions recorded in the same place in 2014.

In 2016, the transition started early and fast. The ice sheet saw three extreme spikes in melt by mid-June. As a result, the pace of melting so far is ahead of the past three seasons, but behind the record melt year of 2012. Coastal areas have been generally warmer than average. For instance, temperatures in Nuuk soared to 24°C on June 9th 2016, the highest June temperature ever recorded there. Melting shown in the 2016 NASA photo began relatively early in April but was not sustained. It started up again in May and grew into the watery June scene of the image.

Surface melt can directly contribute to sea level rise via runoff. It can also force its way through crevasses to the base of a glacier, temporarily speeding up ice flow and indirectly contributing to sea level rise. Also, ponding of meltwater can “darken” the ice sheet’s surface and lead to further melting. Not every melt season follows the same progression. Almost no lake water was present in mid-June in 2014 and 2015, then volumes of meltwater peaked each year by mid-July.

The second image shows the same area on June 10th 2014, as observed by the Landsat 8 satellite. (Clouds obscured the view from space in June 2015.) 2014 was not an exceptional melting year. The season was generally colder and wetter, and it’s possible that there is even some recent snowfall visible in the image.

It remains to be seen how surface melt in 2016 will progress. Melting could continue in July or level off. So far, melting has been above average. But scientists still need to see what will happen over the next few weeks, which are crucial as it is when the sun is strongest and the peak of melting usually occurs.

Source: NASA.

A satellite study, recently published in the journal Geophysical Research Letters, indicates that the Greenland ice sheet lost 1 trillion (1012) tons of ice between the years 2011 and 2014. A big portion of the loss came from just five glaciers about which scientists now have more cause to worry than ever. Climate scientists are keeping a close eye on the region because of its potentially huge contributions to future sea-level rise. Ice loss from Greenland may have contributed as much as 2.5 cm of sea-level rise in the last 100 years and up to 10 percent of all the sea-level rise since the 1990s.

The new study takes a detailed look at ice loss in Greenland between 2011 and 2014 using measurements from the CryoSat-2, an environmental research satellite launched by the European Space Agency in 2010. It relied on a type of measurement known as altimetry — which measures how the surface of Greenland’s altitude changed over time in response to ice gains or losses.

Greenland 01

Calotte glaciaire du Groenland le 15 juin 2016

Greenland 02

Calotte glaciaire du Groenland le 10 juin 2014.

(Crédit photo: NASA)

Des chiffres à méditer avant la COP 21 // Figures to take into account before the Paris Climate Conference

drapeau-francaisMon amour de l’Alaska n’est un secret pour personne et je garde des contacts quasi permanents avec le 49ème Etat de l’Union. Plusieurs visites m’ont permis de constater avec effroi la vitesse avec laquelle les glaciers fondent. Les relevés de températures de ces dernières années sont plutôt inquiétants et devraient inciter les participants à la COP 21 à prendre des mesures contraignantes car il y a urgence.
Voici les relevés des températures moyennes dans les principales villes de l’Alaska pour le mois d’octobre des trois dernières années. Ce sont les chiffres officiels communiqués par l’Alaska Climate Research Center (http://climate.gi.alaska.edu/). Les températures sont communiquées en degrés Fahrenheit, mais cela ne change rien au problème. Hormis un réchauffement moins flagrant en 2014, 2013 et 2015 affolent le mercure !

——————————–

drapeau-anglaisMy love for Alaska is no secret and I keep almost permanent contact with the 49th State of the Union. Several visits have enabled me to see how fast glaciers are melting. The temperature readings of recent years are rather worrying and should encourage participants to the COP 21 to take binding measures because it is urgent.
Here are the average temperatures recorded in the main cities of Alaska in October for the last three years. These are the official figures provided by the Alaska Climate Research Center (http://climate.gi.alaska.edu/). Temperatures are reported in degrees Fahrenheit, but this does not change the problem. Apart from some less blatant warming in 2014, 2013 and 2015 temperatures were incredibly high!

°°°°°°°°°°

Températures moyennes pour octobre 2013// Average temperatures for October 2013:

Fairbanks: 36.1°F, 11.9°F au-dessus de la normale. (= above normal)
Anchorage: 43.0°F, 8.2°F au-dessus de la normale (= above normal). Le mois le plus chaud depuis que des relevés sont effectués en Alaska // The warmest October on record.
Barrow: 24.7°F, 7.5°F au-dessus de la normale (= above normal).
Delta Junction: 37.2°F, 13.1°F au-dessus de la normale (= above normal).
Juneau: 44.7°F, 2.3°F au-dessus de la normale (= above normal).
Ketchikan: 47°F, 1.7°F au-dessus de la normale (= above normal).
King Salmon: 42.9°F, 9.4°F au-dessus de la normale (= above normal).
Kodiak: 44.4°F, 3.9°F au-dessus de la normale (= above normal).
Nome: 35.6°F, 6.9°F au-dessus de la normale (= above normal).

Températures moyennes pour octobre 2014 // Average temperatures for October 2014:

Fairbanks: 25.2°F, 1.0°F au-dessus de la normale (= above normal).
Anchorage: 33.4°F, -1.4°F en-dessous de la normale (= below normal).
Barrow: 21.3°F, 4.1°F au-dessus de la normale (= above normal)..
Delta Junction: 21.7°F, 2.4°F en-dessous de la normale (= below normal)..
Juneau: 43.8°F, 1.4°F au-dessus de la normale (= above normal)..
Ketchikan: 48.7°F, 3.4°F au-dessus de la normale (= above normal).
King Salmon: 32.0°F, 1.5°F en-dessous de la normale (= below normal)..
Nome: 29.1°F, 0.4°F au-dessus de la normale (= above normal).

Températures moyennes pour octobre 2015 // Average temperatures for October 2015:

Fairbanks: 31.8°F, 7.6°F au-dessus de la normale (= above normal). .
Anchorage: 40.5°F, 5.7°F au-dessus de la normale (= above normal).
Barrow: 20.6°F, 3.4°F au-dessus de la normale (= above normal).
Delta Junction: 31.9°F, 7.8°F au-dessus de la normale (= above normal).
Juneau: 44.6°F, 2.2°F au-dessus de la normale (= above normal).
Ketchikan: 49.8°F, 4.5°F au-dessus de la normale (= above normal).
Kodiak: 45.5°F, 5.0°F au-dessus de la normale (= above normal).

Gla 14

…et pendant ce temps, les glaciers fondent!

…and in the meantime, glaciers are melting!

(Photo: C. Grandpey)

L’activité reste intense à Stromboli (Sicile / Italie) // Activity remains intense at Stromboli (Sicily / Italy)

drapeau francaisL’activité est particulièrement intense depuis quelques jours à Stromboli. Outre les épisodes stromboliens classiques, on observe régulièrement des coulées de lave qui avancent sur la Sciara del Fuoco. L’INGV indique que des débordements et coulées de lave à partir le la terrasse intracratérique ont été observés entre le 22 et le 24 juin, puis le 29 juin, avec une belle activité de spattering au niveau de la source éruptive. Un nouveau débordement s’est produit le 7 juillet au matin, avec une coulée qui a suivi la même trajectoire que les précédentes. Au même moment, l’effondrement d’un petit cône pyroclastique a déclenché une nuée ardente avec un nuage de cendre et de poussière qui est descendu jusqu’à la mer. En cliquant sur ce lien, vous verrez une petite vidéo en accéléré qui montre parfaitement cet événement :

http://www.youtube.com/watch?v=OZpgF_yTlUg

Un tel phénomène n’est pas rare sur le Stromboli, surtout quand l’activité est intense, avec son lot de projections et d’accumulations de matériaux. Leur poids associé à la pente raide de la Sciara del Fuoco provoque inévitablement des effondrements.

De nouvelles coulées de lave sur la Sciara del Fuoco ont été observées les 10 et 16 juillet.

 —————————————————-

drapeau anglaisActivity has been quite intense in recent days at Stromboli. Besides the conventional Strombolian episodes, lava flows can often be seen travelling along the Sciara del Fuoco. INGV indicates that overflows and lava flows starting from the crater terrace were observed between June 22nd and 24th and on June 29th, with a nice spattering activity at the eruptive source. A new overflow occurred on July 7th  in the early morning, with a lava flow that followed the same path as the previous ones. At the same time, the collapse of a small pyroclastic cone triggered a small pyroclastic flow with a cloud of ash and dust that came down to the sea. By clicking this link, you will see a small time lapse video which perfectly shows this event:
http://www.youtube.com/watch?v=OZpgF_yTlUg

Such a phenomenon is not uncommon at Stromboli, especially when activity is intense, with a lot of ejections and accumulations of materials. Their weight together with the steep slope of the Sciara del Fuoco inevitably leads to collapses.
New lava flows were observed on the Sciara del Fuoco on July 10th and 16th.