Etude des éruptions phréatiques du Poás (Costa Rica) // Study of phreatic eruptions at Poás volcano (Costa Rica)

drapeau-francaisLes éruptions phréatiques sont parmi les dangereuses et ont fait de nombreuses victimes. Il suffit de se rappeler l’éruption du Mt Ontake (Japon) en septembre 2014 qui a surpris des randonneurs et tué une cinquantaine d’entre eux. Les éruptions phréatiques sont extrêmement difficiles à prévoir car elles se produisent souvent avec peu ou pas de signes précurseurs.
Récemment, des chercheurs d’Amérique Centrale ont mesuré les émissions de gaz au niveau du lac de cratère du Poás (Costa Rica) pour essayer de détecter certains éléments précurseurs des éruptions phréatiques majeures. Le cratère du Poás est visité par des milliers de touristes chaque année et des explosions phréatiques se produisent fréquemment au niveau du lac. Elles peuvent se présenter sous la forme de simples petits jets de gaz ou d’explosions beaucoup plus puissantes qui projettent des roches, des sédiments, de la vapeur et de l’eau à plus de 400 mètres au-dessus de la surface du lac.
L’objectif des mesures était de quantifier les gaz émis (CO2, SO2, H2S) et de contrôler les variations dans leur composition. Avant cette étude, on pensait que les éruptions phréatiques étaient principalement générées par des changements dans les systèmes hydrothermaux et se produisaient sans signes précurseurs mesurables. La nouvelle étude montre qu’il se produit des changements évidents dans la composition des gaz juste avant les éruptions phréatiques du Poás, et qu’ils sont générés par de brèves périodes d’injection de gaz à haute température en provenance du système magmatique profond.
Les chercheurs ont mesuré in situ les gaz émis par le lac de cratère en utilisant une station d’analyses fixe de gaz multiples sur une période d’activité phréatique de deux mois en 2014. (Le lac a montré une activité phréatique intense entre 2006 et 2014.)
La précision des mesures est très importante pendant les analyses de gaz multiples. La station mesure les rapports entre les gaz, tels que SO2 / CO2 et H2S / SO2. Les premiers tests ont démontré que l’apparition d’éruptions et un rapport SO2 / CO2 élevé sont statistiquement corrélés, et qu’il existe une relation entre une période éruptive calme et un rapport SO2 / CO2 faible. Les données sur la composition des gaz présentent des variations significatives dans le rapport entre le SO2 et le CO2 ; il y a une corrélation entre ces variations d’une part et la fréquence et l’intensité des éruptions phréatiques d’autre part. Les scientifiques ont remarqué que la composition des gaz émis directement par le lac du Poás se rapproche de celle des gaz magmatiques les jours qui précèdent de fortes éruptions phréatiques. Les mesures de gaz effectuées à l’aide d’un mini-DOAS (spectroscopie d’absorption optique différentielle) montrent que les  émissions élevées de SO2 du lac se produisent pendant l’activité éruptive et sont également associées à un rapport SO2 / CO2 élevé. Ces résultats laissent supposer que de courtes périodes d’injection de gaz magmatiques très chauds sont directement responsables de l’apparition d’éruptions phréatiques ponctuelles.
Ces résultats montrent également que la surveillance continue des gaz émis par le Poás peut constituer un moyen efficace de prévision des éruptions phréatiques. Le principal problème à résoudre est le fonctionnement de l’instrument de mesure dans des conditions extrêmement difficiles. Les composants périphériques de la station ont été détruits par une puissante éruption en juin 2014, ce qui a mis un terme aux manipulations. Cependant, l’instrument proprement dit a survécu et analyse actuellement les changements dans la composition des gaz fumerolliens.
Il y a encore beaucoup de choses que les scientifiques ne connaissent pas dans les interactions entre les gaz magmatiques et les systèmes hydrothermaux. Cette étude montre en particulier que la cinétique joue un rôle majeur dans ces systèmes. La plupart des modèles géochimiques utilisés pour comprendre le dégazage volcanique supposent des conditions d’équilibre. Une fois que l’on aura admis que des facteurs cinétiques sont souvent plus influents que les conditions d’équilibre, on aura franchi un pas important dans la compréhension des processus de dégazage volcanique.
Source: Université du Nouveau-Mexique: http://www.unm.edu/

———————————-

drapeau-anglaisPhreatic eruptions are among the most dangerous and have claimed lots of victims. One just needs to remember the eruption of Mt Ontake (Japan) in September 2014 that surprised trekkers and killed about 50 of them. Indeed, phreatic eruptions are extremely difficult to forecast, often occurring with little or no precursors.

Recently, Central American researchers measured gas emissions from the crater lake at Poás volcano in Costa Rica, in an attempt to determine some of the precursors to major volcanic eruptions. The Poás crater is visited by thousands of tourists every year. Phreatic explosions frequently occur from the lake, ranging from minor gas bursts to highly explosive jets ejecting rocks, sediments, vapour and lake water to more than 400 metres above the lake surface.

The initial goal of the study was to quantify gas fluxes (CO2, SO2, H2S) from the volcano and to monitor changes in gas compositions. Before this study, phreatic eruptions were primarily thought to be generated by changes in hydrothermal systems, and to occur with no appreciable precursors. The new study shows that there are clear short-term changes in gas compositions prior to phreatic eruptions at Poás, and that they are generated by short-period changes in high temperature volcanic gas input from  the deep magmatic system.

The Central American researchers measured gas emissions from the crater lake in situ using a fixed multiple gas analyzer station (Multi-GAS) during a two month period of phreatic activity in 2014. (The lake was the site of intense phreatic eruptive behavior between 2006 and 2014.)

Both accuracy and precision are important in the Multi-GAS measurements. The Multi-GAS instrument measures gas ratios, such as SO2/ CO2 and H2S / SO2. Diagnostic tests proved that the occurrence of eruptions and high SO2/ CO2 are statistically correlated, and that the occurrence of quiescence and low SO2/ CO2 are also correlated. The gas composition data show significant variations in the ratio between SO2 and CO2, which are statistically correlated with both the occurrence and the size of phreatic eruptions. The scientists found that the composition of gas emitted directly from the lake approaches that of magmatic gas days before large phreatic eruptions. Gas flux measurements conducted using mini-DOAS (differential optical absorption spectroscopy) show that high emission rates of SO2 from the lake occur during eruptive activity and are also associated with high SO2/CO2. Importantly, the results suggest that short-period pulses of magmatic gas and heat are directly responsible for generating individual phreatic eruptions.

These results show that high-frequency gas monitoring may provide an effective means of forecasting phreatic eruptions. The biggest challenge to this monitoring approach is maintaining the Multi-GAS instrument in extremely harsh conditions. Peripheral components of the station were destroyed by a large eruption in June 2014, which spelled the end of the lake gas emission experiment. However, the instrument survived and is currently monitoring changes in fumarole gas composition.

There are still many things scientists do not know about the interactions between magmatic gases and hydrothermal systems. This study shows in particular that kinetics are very important in these systems. Most geochemical models that are used to understand volcanic degassing assume equilibrium conditions. Once it is accepted that kinetic factors are often more influential than equilibrium conditions, a closer to understanding of volcanic degassing processes will probably be reached.

Source: University of New Mexico: http://www.unm.edu/

Poas-blog

Cratère et lac du Poás (Crédit photo: Wikipedia)

 

Publicités

2 réflexions au sujet de « Etude des éruptions phréatiques du Poás (Costa Rica) // Study of phreatic eruptions at Poás volcano (Costa Rica) »

  1. Bonjour Claude,
    Concernant les éruptions phréatiques, elles relèvent à mon sens de deux phénomènes distincts mais pouvant cependant êtres associés. Le plus connu et observé est le piégeage de l’eau dans le sol, que le magma en ascension vient surchauffer au point de rendre instable la molécule d’eau qui hésite entre l’état liquide et l’état gazeux, pour finalement opté pour le second et produire par détensions ces violentes explosions.
    Le second, qui reste pour moi à l’état de suspicion, est le craquage de la molécule d’eau (possible entre 800 à 900°C), qui produit alors de l’hydrogène et « jappe » en se recombinant à l’oxygène de l’air pour finir en vapeur d’eau, produisant une formidable explosion.
    Pour ce qui est du Poas, et compte tenu des analyses gazeuses dont vous parlez, il semblerait qu’ici on soit vraiment plus proche d’éruption phréato-magmatique que phréatique stricto sensu. En effet, parler de magma implique que l’on associe matière en liquéfaction et gaz éruptifs dissous. Ainsi, entre gaz et matière dense, même si leur présence peut être alternée, c’est bien du magma dont il s’agit beaucoup plus que de l’eau.
    Que pensez-vous de cette réflexion, savez-vous si une telle théorie existe dans le monde scientifique ? Est-elle à votre avis farfelue, ou bien plutôt réaliste, voir même « craquante » ?
    Bonne journée
    Amitiés
    Pierre Chabat

    J'aime

    1. Bonjour Pierre,
      Vous avez raison de faire le distinguo entre éruptions phréatiques et phréato-magmatiques même si, au final, le phénomène débouche dans les deux cas sur l’explosion d’une poche de vapeur en surpression. Dans les deux cas la forte chaleur est provoquée par la présence d’une poche de magma. A mon avis, peu importe qu’elle soit en contact direct avec une nappe d’eau phréatique, ou que ce soit la seule chaleur émise qui vaporise cette eau et, au final, provoque l’explosion. Dans les deux cas, nous sommes incapables de prévoir une telle éruption et je ne suis pas certain que les scientifiques du Costa Rica feront beaucoup avancer le problème. L’exemple récent du Mont Ontake montre bien notre incapacité à prévoir de telles éruptions. Si les appareils de mesures détectent des signes avant-coureurs, il est malgré tout beaucoup trop tard pour prévenir des personnes à risque.
      Amitiés.
      Claude Grandpey

      J'aime

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s