Kilauea (Hawaï) : vidéo de l’Épisode 17

L’épisode 17 de l’éruption du Kilauea dans le cratère de l’Halema’uma’u s’est terminé le 9 avril 2025 à 9h45 (heure locale), lorsque les fontaines de lave ont cessé de jaillir de la bouche éruptive sud, avec des hauteurs de 15 à 60 mètres, bien inférieures à celles des épisodes précédents. L’épisode 17 a duré 35 heures et demie. Les deux bouches éruptives se contentent de dégazer en ce moment? Seule la bouche sud montre de l’incandescence pendant la nuit. Si l’activité éruptive reprend comme avant l’Épisode 17, l’épisode 18 devrait commencer dans les prochains jours.
L’USGS a mis en ligne une bonne vidéo de l’Épisode 17, filmée depuis un hélicoptère. On remarquera la vitesse à laquelle la lave fluide et très chaude émerge de la bouche sud avant de se répandre sur le plancher du cratère de l’Halema’uma’u qu’elle a recouvert sur 40 à 50 %.
https://usgs-ocapsv2-public-input-media.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/video/multimediaFile-4363.mp4

Capture d’écran de l’Épisode 17

Les images des webcams montrent que l’Épisode 18 ne devrait pas tarder…

—————————————————

  Episode 17 of the Kilauea eruption in Halemaʻumaʻu Crater ended at 9:45 a.m. (local time) on April 9th, 2025 when low fountaining at the south vent stopped. They sustained heights of 15-60 meters and were much lower than during the past episodes. Overall, episode 17 lasted 35.5 hours. Both vents in the crater are now degassing but only the south vent is glowing at night. If the eruptive activity reverts to pre-episode 17 behaviour, HVO data indicate that episode 18 is likely to begin in the next few days.

USGS has released a good video of Episode 17 shot from a helicopter. One can notice how fast the fluid and so very hot lava is emerging drom tha south vent and sptreading across the Halema‘uma‘u crater floor. The lava flows covered over 40-50% of the floor.

https://usgs-ocapsv2-public-input-media.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/media/video/multimediaFile-4363.mp4

The current webcam images show that Episode 18 is in the making…

La cartographie géologique : une science et un art // Geological mapping: a science and an art

L’un des derniers épisodes de la série « Volcano Watch » publié par l’Observatoire Volcanologique d’Hawaï (HVO) est consacré à la cartographie géologique, qui est à la fois une science et un art.

La cartographie géologique était l’une des principales fonctions dévolues à l’U.S. Geological Survey (USGS) lors de sa création par le Congrès américain en 1879. L’agence était tenue d’ « établir une classifications des terres publiques et d’examiner la structure géologique, les ressources minérales et les produits à l’intérieur et à l’extérieur du domaine national ».
Les premières cartes géologiques étaient de taille uniforme ; elles contenaient toutes les informations disponibles sur la topographie et la géologie d’un site, avec un texte d’accompagnement décrivant la géologie cartographiée.
Les cartes modernes ont tendance à être plus polyvalentes et plus faciles à interpréter ; elles affichent les gisements géologiques et les caractéristiques présentant un intérêt particulier pour un projet ou une étude.
Dans le cas de la cartographie géologique du HVO sur l’île d’Hawaï, les principales caractéristiques intéressantes concernent le relief volcanique avec les fissures et les cônes de scories, ainsi que les coulées de lave et les dépôts de téphra associés ; ils sont répertoriés en fonction de l’âge.
Il est facile de faire apparaître ces caractéristiques pour les dernières éruptions. Les éruptions des dernières années sont cartographiées quelques heures ou quelques jours après le début de l’activité à l’aide d’un logiciel d’information géographique. Les techniques de télédétection utilisant l’imagerie aérienne et satellitaire rendent également cette opération beaucoup plus rapide.
Si certaines coulées de lave plus anciennes peuvent être cartographiées à l’aide de la télédétection, d’autres qui ont été exposées aux éléments pendant des centaines ou des milliers d’années sont parfois plus difficiles à distinguer. C’est pourquoi des critères de diagnostic sur le terrain ou en laboratoire sont généralement nécessaires pour déterminer leur étendue géographique.
Les géologues se rendent sur le terrain pour documenter les minéraux présents dans les coulées de lave et ils collectent des échantillons pour analyser la chimie, les âges radiométriques et le paléomagnétisme. En général, une combinaison de ces éléments est nécessaire pour faire apparaitre une image complète sur une carte.
Il existe un ensemble normalisé de symboles, de motifs et de couleurs pour les cartes géologiques publiées par l’USGS : c’est le schéma de carte géologique, ou GeMS.
Alors que les symboles et les lignes ont tendance à être objectifs sur une carte géologique, les couleurs utilisées peuvent être plus subjectives. Les cartes géologiques représentent souvent des terrains volcaniques avec de jeunes coulées de lave et des téphras en utilisant des couleurs «chaudes» telles que le rouge et l’orange, et ces couleurs deviennent progressivement plus «froides», passant au vert, au bleu et au violet, à mesure que les éléments représentés vieillissent.
Il est ainsi facile d’observer une carte géologique et d’avoir une idée rapide de l’âge relatif de l’activité volcanique.
Ces cartes géologiques de l’USGS sont généralement sur papier, mais toutes sont désormais également publiées sous forme numérique et disponibles gratuitement en téléchargement.
Source : USGS / HVO.

Cette carte géologique a été créée par le HVO le 17 septembre 2024, quelques heures après la télédétection (survol en hélicoptère) de l’éruption qui a eu lieu du 15 au 20 septembre dans la Middle East Rift Zone du Kilauea. Les différents âges des coulées de lave sont indiqués par des changements de couleur ; celles qui ont été émises entre 1790 et 2018 sont en violet (les coulées de lave plus anciennes sont grises) ; celles qui ont été émises le 15 septembre sont en rose et celles qui ont été émises les 16 et 17 septembre sont en rouge. La fissure active apparaît sous le forme d’une ligne jaune. Cette carte montre également les routes et la limite du Parc national des volcans d’Hawaï. (Source : HVO)

———————————————-

One of the last « Volcano Watch » episodes by the Hawaiian Volcano Observatory (HVO) was dedicated to geological mapping which is both a science and an art.

Geological mapping has been one of the most fundamental mandates of the U.S. Geological Survey since its establishment by Congress in 1879. The aim of the agency was to “classify the public lands and examine the geological structure, mineral resources and products within and outside the national domain.”

The first geological maps were uniform in size and contained all available information on topography and geology, with accompanying text describing mapped geology.

Modern maps tend to be more versatile, displaying geologic deposits and features of special interest for a project or investigation.

In the case of Hawaiian Volcano Observatory geological mapping on the Island of Hawaii, the primary features of interest are volcanic vents, such as fissures and scoria cones, and their associated lava flows and tephra deposits divided by age.

It is easy to make these determinations for young eruptions that have been witnessed, with eruptions during the past few years being mapped within hours or days of activity starting using geographic information systems software.

Remote sensing techniques using aerial and satellite imagery have also made this much quicker.

While some older lava flows can be mapped using remote sensing, others exposed to the elements for hundreds or thousands of years can be harder to tell apart. Therefore, diagnostic criteria from the field or lab is usually required to distinguish their geographic extents.

Geologists make field excursions to document minerals present in the lava flows and their abundances, and collect samples to analyze chemistry, radiometric ages and paleomagnetism. Usually, a combination of these is needed to put together a full picture on a map sheet.

There is a standardized set of symbols, patterns and colors that are used for geologic maps published by the USGS : the Geologic Map Schema, or GeMS for short.

Whereas symbols and lines tend to be objective on a geologic map, colors used for geological map units can be more subjective. It is common for geological maps that portray volcanic terrains with young lava flows and tephras to have the “hottest” colors, such as reds and oranges, and those colors gradually get “cooler,” shifting to greens, blues and purples, as the map units get older.

This makes it easy to glance at a geological map and get a quick sense of the relative age of volcanic activity.

These USGS geological maps are generally printed, but all are now also published as geographic information systems digital databases and freely available to be downloaded.

Source : USGS / HVO.

Le HVO et les autres observatoires volcanologiques de l’USGS // HVO and the other USGS volcano observatories

Le dernier article « Volcano Watch » était consacré à l’Observatoire des volcans d’Hawaii (HVO) et aux autres observatoires volcanologiques gérés par l’U.S. Geological Survey (USGS), L’Institut d’études géologiques des États-Unis

Le Hawaiian Volcano Observatory (HVO) a été fondé en 1912. Aujourd’hui, plus de 111 ans plus tard, c’est l’un des cinq observatoires volcanologiques gérés par l’USGS.
D’un seul géologue, Thomas A. Jaggar, en 1912, l’Observatoire est passé à plus de 30 employés aujourd’hui. Cette équipe comprend des géologues, des géophysiciens, des géochimistes, etc. Des volcanophiles (j’en ai fait partie), des étudiants et d’autres scientifiques ont également apporté une aide précieuse au HVO au fil des ans.
Les méthodes d’observation et d’analyse du HVO sur le terrain ont radicalement changé depuis l’époque de Thomas Jaggar. Actuellement, le réseau de surveillance de l’Observatoire comprend plus de 200 instruments, avec des sismomètres, des systèmes GPS, des inclinomètres, des infrasons, des détecteurs de gaz et des caméras thermiques. Ces instruments transmettent des données au HVO 24 heures sur 24 afin de suivre l’activité des volcans. Malgré tous ces instruments, la prévision éruptive est encore loin d’être parfaite. Dans son dernier bulletin, le HVO nous informe que le Kilauea n’est pas en éruption ; les webcams ne montrent aucun signe d’activité dans le cratère de l’Halema’uma’u, et personne ne sait où et quand la lave réapparaîtra sur le volcan.
Lorsque le HVO a été fondé en 1912, Hawaii n’était pas encore un État. Un lac de lave s’agitait au fond de l’Halema’uma’u,semblable à celui observé au cours des trois dernières années. Le HVO était à l’origine exploité avec le soutien du Massachusetts Institute of Technology (MIT) et de la Hawaiian Volcano Research Association. Il a ensuite été géré par une série d’agences fédérales, dont le U.S. Weather Bureau, le National Park Service et maintenant l’USGS qui est devenu l’administrateur permanent du HVO en 1947.
Suite à la réussite du HVO, l’USGS a établi de nouveaux observatoires pour surveiller et étudier 161 volcans actifs à travers les États-Unis et les territoires qui en dépendent.

L’Observatoire des volcans d’Hawaii (HVO) se concentre sur les volcans actifs de la Grande Ile d’Hawaï : Kilauea, Mauna Loa et Hualālai, sans oublier le Lo’ihi.. Le HVO surveille également les volcans actifs des Samoa américaines.

L’Observaroire volcanologique de la Chaîne des Cascades (CVO) a été mis sur pied en 1980 à la suite de l’éruption du mont St. Helens et officiellement inauguré en 1982. Le CVO se concentre sur les volcans des Etats de Washington, de l’Oregon et de l’Idaho.

L’Observatoire volcanologique de l’Alaska (AVO) a été fondé en 1988 suite à l’éruption de l’Augustine en 1986. L’AVO, un partenariat entre l’USGS, l’Université d’Alaska à Fairbanks et l’État de l’Alaska, se concentre sur les volcans de l’Alaska et du Commonwealth des îles Mariannes du Nord.

L’Observatoire volcanologique de Yellowstone (YVO) a été fondé en 2001. Il se concentre sur l’activité volcanique dans la région du Plateau de Yellowstone et dans les États de l’ouest des États-Unis.

L’Observatoire des volcans de Californie (CalVO) a été créé en 2012. Le CalVO, avec une extension au-delà de l’Observatoire de Long Valley (LVO) a été créé en 1982. il se concentre sur les volcans de Californie et du Nevada.

Les connaissances, compétences et expériences rassemblées par ces cinq observatoires sont vastes et complémentaires. Leur personnel communique et se déplace entre les différents observatoires et effectue un véritable travail d’équipe.
Source : USGS/HVO.

————————————————-

The latest « Volcano Watch » article was dedicated to the Hawaiian Volcano Observatory (HVO) and the other volcanological observatoried mananed by the U.S. Geological Survey (USGS).

The Hawaiian Volcano Observatory (HVO) was founded in 1912. Today, more than 111 years later, it is one of five volcano observatories supported by the USGS.

HVO staff has grown from one geologist, Thomas A. Jaggar, in 1912 to more than 30 people today. This team includes scientists and specialists in geology, geophysics, geochemistry, and more. Hundreds of volunteers (I was one of them), students and visiting scientists have also provided valuable assistance to HVO through the years.

HVO methods of observing and analyzing data from instruments and field studies have changed dramatically since Jaggar’s time. Presently, the Observatory’s monitoring network consists of more than 200 sensors, including seismometers, global positioning systems (GPS), tiltmeters, infrasound, gas detectors and thermal/visual cameras. These sensors transmit data to HVO 24 hours a day in order to track activity and support research into how volcanoes work. However, despite all these instruments, eruptive prediction is still far from perfect. In its latest update, HVO informs us that Kilauea is not erupting ; webcams show no signs of active lava in Halemaʻumaʻu crater, but nobody knws whther and when lava will reappear at the volcano.

When HVO was founded, Hawaiʻi was not yet a state. A lake of molten lava was on the floor of Halemaʻumaʻu crater, similar to what has been observed throughout the past three years. HVO was originally operated with support from the Massachusetts Institute of Technology (MIT) and the Hawaiian Volcano Research Association. It was later managed by a series of federal agencies including the U.S. Weather Bureau, the National Park Service and now the USGS which became the permanent administrator of HVO in 1947.

Based on HVO’s success, the USGS went on to establish additional observatories to monitor and study 161 active volcanoes throughout the United States and U.S. Territories.

HVO focuses on the active volcanoes in Hawaii : Kīlauea, Mauna Loa and Hualālai, all of which are on the Big Island, without forgetting Lo’ihi.. HVO also monitors active volcanoes in American Samoa.

Cascades Volcano Observatory (CVO) was authorized in 1980 following the eruption of Mount St. Helens and formally dedicated in 1982. CVO focuses on volcanoes in Washington, Oregon and Idaho.

Alaska Volcano Observatory (AVO) was founded in 1988 following the 1986 eruption of Augustine. AVO, a collaboration between the USGS, the University of Alaska Fairbanks and the state of Alaska, focuses on volcanoes in Alaska and the Commonwealth of Northern Mariana Islands.

Yellowstone Volcano Observatory (YVO) was founded in 2001. It focuses on volcanic activity in the Yellowstone Plateau region and intermountain western U.S. states.

California Volcano Observatory (CalVO) was formed in 2012. CalVO, with expanded scope beyond the Long Valley Observatory (LVO) established in 1982, focuses on volcanoes in California and Nevada.

The collective knowledge, skills and experience of people at these five observatories is extensive and complementary. Staff communicate and travel between observatories in true team fashion.

Source : USGS / HVO.

L’éruption du Mauna Loa vue par le HVO // The Mauna Loa eruption as seen by HVO

Alors que l’éruption du Mauna Loa semble toucher à sa fin, l’Observatoire des Volcans d’Hawaii – Hawaiian Volcano Observatory (HVO) – a écrit un article expliquant comment les scientifiques ont surveillé et géré l’événement.
Au cours des premières heures de l’éruption du Mauna Loa, les volcanologues ont attentivement observé les données fournies par les instruments pour suivre l’évolution de l’événement et essayer de comprendre comment l’éruption allait évoluer. Cette surveillance est cruciale pour diffuser des messages d’alerte aux localités qui pourraient être sous la menace de la lave.
Pendant les mois qui ont précédé l’éruption, les instruments avaient indiqué que le Mauna Loa allait entrer en éruption à court terme. En effet, Le volcan gonflait depuis des années et les derniers mois avaient vu une augmentation de la sismicité. Début octobre, le HVO a commencé à diffuser des mises à jour quotidiennes, au lieu d’hebdomadaires, concernant l’activité volcanique. L’Observatoire a également commencé à organiser des réunions publiques dans les zones de l’île susceptibles d’être impactées par une éruption du Mauna Loa.
L’éruption a commencé dans la caldeira sommitale Mokuʻāweoweo du Mauna Loa vers 23h30. (heure locale) le 27 novembre 2022. Les quelques scientifiques qui ont réagi aux premiers signaux d’alerte environ 45 minutes avant l’éruption ont rapidement été rejoints en ligne par une vingtaine de leurs collègues spécialistes en sismologie, déformation du sol, géologie et imagerie satellite. De plus, la Protection Civile a été immédiatement informée du comportement du volcan en participant à la réunion en ligne et avec la visite d’un volcanologue au QG de la Protection Civile à Hilo. Des scientifiques des observatoires volcanologiques de l’USGS en Alaska, en Californie et dans l’Etat de Washington se sont également joints à la réunion pour apporter leur aide. La principale préoccupation était que l’éruption migre vers la zone de rift sud-ouest et atteigne des zones habitées en quelques heures.
Quelques heures après le début de l’éruption, des images ont commencé à apparaître sur les réseaux sociaux, avec des coulées de lave visibles depuis Kona. Dans l’obscurité de la nuit, ces coulées semblaient menaçantes et il était évident que le public craignait que l’éruption ait pénétré dans la zone du Rift sud-ouest. La fracture qui est d’abord apparue dans la caldeira Moku’aweoweo a continué à s’ouvrir vers le sud, à l’extérieur de la caldeira mais toujours à l’intérieur de la zone sommitale du Mauna Loa. Cela a produit la coulée de lave sur le côté sud-ouest du sommet qui était visible depuis Kona, mais il ne s’agissait pas d’une éruption sur le rift sud-ouest. Ces coulées n’ont menacé aucune zone habitée et ont finalement été actives très peu de temps. Les données de surveillance montraient que l’éruption était concentrée au sommet du volcan.
Vers 6 heures du matin (heure locale) le 28 novembre, des rapports d’observateurs au sol, ainsi que des images thermiques fournies par les satellites, ont indiqué que l’éruption avait migré vers la zone de rift nord-est. Quelques minutes plus tard, cela a été confirmé par les infrasons (ondes sonores à basse fréquence) et la sismicité. De plus, les caméras montraient que l’éruption dans la zone sommitale s’était arrêtée. Les volcanologues se sont rapidement rendus sur le site de l’éruption pour recueillir des données et effectuer des observations supplémentaires. Ils ont été soulagés de voir que la lave avait choisi de sortir dans la zone de rift nord-est. L’histoire du Mauna Loa montre qu’une fois qu’une éruption débute dans une zone de rift, elle y reste.
Ces premières heures pleines de tension au sein de la communauté scientifique ont permis de tester la capacité du HVO à travailler avec la Protection Civile et les volcanologues appartenant à d’autres agences de l’USGS pour analyser rapidement l’activité volcanique. Ensemble, ces agences continuent de surveiller l’éruption du Mauna Loa dans la zone de rift nord-est et tiennent le public informé de l’activité.
Le 8 décembre 2022, le front principal de coulée de lave qui s’approchait de la Saddle Road s’est arrêté à environ 2,8 km de la route. La lave continuait de sortir de la Fracture n°3 mais les coulées ne s’éloignaient guère de la bouche éruptive. La route n’était plus sous la menace de la lave
De nouvelles éruptions du Mauna Loa sont inévitables, que ce soit dans la caldeira sommitale, dans une zone de rift, soit à partir de bouches sur les flancs du volcan. Il est toutefois impossible de prévoir avec précision à quel moment ces éruptions se produiront. Les réseaux de surveillance du HVO font de leur mieux pour gérer les risques liés à de telles éruptions.

En complément de ce qui est écrit ci-dessus, le HVO indique dans sa dernière mise à jour du 12 décembre 2022 que le seul souvenir laissé par l’éruption du Mauna Loa est l’incandescence au niveau du cône qui s’est formé Sur la Fracture n°3. Il n’y a aucun autre signe d’activité ailleurs sur le champ de lave.
Par ailleurs, on peut lire dans le bulletin du HVO que « l’inflation observée sur le volcan alors que le champ d’écoulement de la lave est inactif n’a pas encore trouvé d’explication ; il est fréquent que les éruptions montrent des fluctuations ou s’arrêtent complètement, mais aucune des huit éruptions connues du Mauna sur la zone de rift nord-est n’a montré de reprise significative après que l’activité ait considérablement diminué. »

Source : USGS/HVO.

Vous trouverez une description détaillée de l’éruption du Mauna Loa en lisant les différentes notes que j’ai publiées sur ce blog depuis le début de l’événement.

——————————————

As the Mauna Loa eruption seems to be coming to an end, the Hawaiian Volcano Observatory (HVO) has written an article explaining how scientists monitored ansd managed the event.

The first few hours of Mauna Loa’s eruption were dynamic, and volcanologists intently watched monitoring data to track changing conditions and understand how the eruption was developing. This monitoring is crucial to issuing hazards notifications to communities that may be at risk.

For months, monitoring data had indicated that Mauna Loa was inching closer to an eruption. The volcano had been inflating for years, and the past few months had seen an increase in seismicity. By early October, daily, instead of weekly, activity updates were initiated. HVO also began holding community meetings in areas of the island that might be impacted by a Mauna Loa eruption.

The eruption started in Mokuʻāweoweo, Mauna Loa’s summit caldera, at about 11:30 p.m. (local time) on November 27th, 2022. The handful of scientists that responded to alarms about 45 minutes before the eruption quickly turned into an online meeting of 15–20 experts in seismology, deformation, geology, and satellite imagery. Additionally, Civil Defense was immediately appraised of the volcano’s behavior, both via the online meeting and with the addition of a volcanologist who quickly went to the Civil Defense Operations Center in Hilo. Scientists from USGS volcano observatories in Alaska, California, and Washington also joined to assist. The primary concern was that the eruption might shift toward the Southwest Rift Zone and reach populated areas within hours.

A few hours after the eruption started, images began to appear on social media, with lava flows visible from Kona. In the dark, these flows looked menacing, and the public had clear concerns that the eruption had made its way into the Southwest Rift Zone. Indeed, the fissure that first opened in Moku’aweoweo continued opening towards the south, outside the topographic caldera, but still inside Mauna Loa’s summit region. This produced the lava flow on the southwest side of the summit that was visible from the Kona coast. These flows did not threaten any populated areas and were ultimately short-lived. Monitoring data continued to show that the eruption was focused at the summit.

By about 6 a.m. (local time) on November 28th, reports from observers on the ground, as well as thermal satellite data, indicated that the eruption had moved into the Northeast Rift Zone. A few minutes later, this was confirmed by infrasound (low-frequency sound waves) and seismicity, and cameras showed that the summit-area eruption had stopped. Volcanologists rapidly flew to the eruption site to gather additional data and observations and were relieved to see that lava had chosen to erupt in the North-East Rift Zone. History suggests that once a Mauna Loa eruption moves into one rift zone, it stays there.

Those tense first several hours served as a good test of how HVO is able to work with Civil Defense officials and volcanologists from other USGS offices to rapidly respond to volcanic activity. Together, these agencies continue to monitor the Northeast Rift Zone eruption of Mauna Loa and keep the public informed on the activity.

As of December 8th, 2022, the main lava flow front that was approaching the Saddle Road stalled about 2.8 km away. Lava continues to erupt from fissure 3 but these flows are now closer to the vent. The road is no longer under the threat of lava

Future Mauna Loa eruptions, from the summit, either rift zone, or radial vents, are inevitable, but it is impossible to forecast precisely when those might happen. HVO’s monitoring networks do their best to provide mitigation for hazards from any such eruption.

As a complement to what is written above, HVO indites in its latest update of December 12th, 2022 that the only sign left by the Mauna Loa eruption is incandescence restricted to the cone that formed around fissure 3. There is no observable activity anywhere on the rest of the flow field.

Moreover, one can read in the HVO bulletin that  » the significance of the continuing inflation while the flow field is inactive is not yet clear; it is common for eruptions to wax and wane or pause completely, but none of the eight recorded eruptions from Mauna Loa’s Northeast Rift Zone returned to high eruption rates after those rates decreased significantly. »

Source: USGS / HVO.

You will find a detailed description of the Mauna Loa eruption by reading the numerous posts I have released on this blog since the start of the event.

Dernier sursaut de la Fracture n°3 avant le rapide déclin de l’éruption (capture écran webcam)

Image webcam montrant la très faible activité au niveau de la Fracture n°3

Incandescence au fond du cône de la Fracture n°3 (Crédit photo: USGS)

Image thermique de la lave en cours de refroidissement dans la caldeira sommitale du Mauna Loa (Source: HVO)