Péninsule de Reykjanes (Islande) : Et maintenant ?

Quand j’écrivais le 3 avril 2025 que la prévision éruptive en Islande était devenue un jeu de devinettes, je n’avais pas forcément tort. Il ne se passe guère de semaine sans qu’une nouvelle hypothèse se fasse jour sur l’évolution de la situation dans les prochaines semaines, voire les prochains mois. Début avril, tous les volcanologues islandais s’accordaient à dire qu’il est impossible de prévoir ce qui se passera dans les prochains jours. Il faudra attendre au moins deux à trois semaines avant de pouvoir se rendre compte s’il y aura une reprise du soulèvement du sol. Malgré cela, les prévisions continuent à aller bon train.

Le dernier prévisionniste en date est Haraldur Sigurðsson, professeur émérite à l’Université d’Islande. Selon lui, une nouvelle phase d’activité volcanique a débuté le 1er avril 2025 sur le système volcanique de Sundhnúkur, avec un nouvel écoulement de magma sous la surface. Il se permet de critiquer l’approche de la situation par une de ses collègues, la jugeant trop superficielle car elle ne prend pas suffisamment en compte le comportement du magma dans les profondeurs de la Terre. Vous pourrez lire l’approche de Sigurðsson en cliquant sur ce lien :

https://icelandmonitor.mbl.is/news/news/2025/04/09/a_new_chapter_in_volcanic_activity_on_the_reykjanes/

Il y a quelques semaines, Þorvaldur Þórðarson, professeur de volcanologie et de pétrologie à l’Université d’Islande, affirmait, lui aussi, que la récente activité sismique sur la péninsule de Reykjanes, en particulier près de Reykjanestá et au nord-est de la chaîne de cratères de Sundhnúkur, est peut-être le signe d’un changement d’activité volcanique. Il pense que la sismicité actuelle est plus probablement causée par des tensions tectoniques que par des mouvements de magma

Páll Einarsson, professeur émérite de géophysique à l’Université d’Islande, rappelle que l’activité est restée soutenue sur la péninsule de Reykjanes au cours des dernières années, avec la réactivation de plusieurs systèmes volcaniques : Krýsuvík, Svartsengi et Fagradalsfjall. Selon lui, le système de Krýsuvík pourrait reprendre du service.

Au vu de ces approches souvent divergentes, le plus sage est de s’en tenir aux bulletins émis régulièrement par l’Icelandic Met Office qui s’appuie sur les observations et mesures effectuées sur le terrain. Le dernier bulletin est celui du 8 avril 2025 :

https://en.vedur.is/about-imo/news/new-magma-instrusion-on-sundhnukur-crater-row

Bien malin serait celui qui pourrait dire où et comment se déroulera la prochaine éruption en Islande (Image webcam d l’éruption du 1er avril).

Pourquoi un séisme en Birmanie ? (suite) // Why an earthquake in Myanmar ? (continued)

Un article publié dans la presse britannique donne plus d’informations sur les causes du puissant séisme de magnitude M7,7 qui a secoué le Myanmar le 28 mars 2025, causant plus de 1 600 morts et l’effondrement de nombreuses structures. Bien que l’épicentre soit situé au en Birmanie, la Thaïlande et la Chine voisines ont également été touchées.
Comme je l’ai indiqué précédemment, le séisme s’explique par la situation tectonique du Myanmar. Le pays est considéré comme l’une des zones géologiques les plus « actives » au monde car il se situe au point de convergence de quatre (et non trois, comme je l’ai écrit précédemment) plaques tectoniques : la plaque eurasienne, la plaque indienne, la plaque de la Sonde et la microplaque birmane. Une faille majeure, la faille de Sagaing, traverse le Myanmar du nord au sud et s’étend sur plus de 1 200 km de long.

Comme on peut le voir sur cette carte, la plaque indienne entre en collision avec la plaque eurasienne ; des tensions s’accumulent par frottement le long de la faille de Sagaing.Cette dernière glisse sur une section de 200 km, libérant une énergie qui s’évécue sous forme de séisme. (Source : USGS, Advancing Earth and Space Sciences)

Les premières données montrent que le mouvement à l’origine du séisme de magnitude M7,7 est un « décrochement » (strike-slip en anglais) , où deux blocs coulissent horizontalement l’un par rapport à l’autre. Ce phénomène est typique de la faille de Sagaing. Lorsque les plaques se déplacent l’une contre l’autre, elles peuvent se bloquer, ce qui crée une accumulation d’énergie qui va ensuite se libérer soudainement, provoquant un séisme.
Les séismes peuvent se produire à grande profondeur sous la surface de la Terre. L’événement du 28 mars s’est produit à seulement 10 km sous la surface, ce qui a augmenté l’intensité des secousses à la surface.
L’ampleur du séisme est également due à la morphologie de la faille de Sagaing. Sa nature rectiligne, parfaitement visible sur la carte ci-dessus, signifie que les séismes peuvent se produire sur de vastes zones, et plus la zone de glissement le long de la faille est grande, plus le séisme est puissant. Cette faille rectiligne permet également à une grande partie de l’énergie de circuler sur toute sa longueur – sur 1 200 km au sud – en direction de la Thaïlande, où le séisme a été très fortement ressenti.
Source : BBC News.

———————————————–

An article published in the British press gives more information about the causes of the powerful M7.7 earthquake that shook Myanmar on March 28th, 2025, causing more than 1,600 deaths and the collapse of numerous structures. Although the epicenter was in Myanmar, neighbouring Thailand and China were also affected by the quake.

As I put it before the earthquake can be explained by the tectonic situation of Myanmar. The country is considered to be one of the most geologically « active » areas in the world because it sits on top of the convergence of four tectonic plates : the Eurasian plate, the Indian plate, the Sunda plate and the Burma microplate. There is a major fault, the Sagaing fault, which cuts right through Myanmar north to south and is more than 1,200km long.

As can be seen on the map above, the Indian plate collides with the Eurasian plate ; friction builds up ,along the Sagaing fault. The fault slips along a 200-km section, which releases energy felt as an earthquake. (Source : USGS, Advancing Earth and Space Sciences)

Early data suggests that the movement that caused the M7.7 earthquake was a « strike-slip » where two blocks move horizontally along each other. This aligns with the movement typical of the Sagaing fault. As the plates move past each other, they can become stuck, building friction until it is suddenly released, causing an earthquake.

Earthquakes can happen very deep below Earth’s surface. The event of March 28th was just 10km from the surface, making it very shallow, which increases the amount of shaking at the surface.

The size of the earthquake was due to the type of the Sagaing fault. Its straight nature means that earthquakes can occur over large areas, and the larger the area of the fault that slips, the larger the earthquake. This straight fault also means a lot of the energy can be carried down its length,which extends over 1200km south towards Thailand which felt the earthquake very strongly.

Source : BBC News.

Pourquoi un séisme en Birmanie ? // Why an earthquake in Myanmar ?

La Birmanie – ou Myanmar – vient d’être secouée par un puissant séisme de magnitude de M7,7 sur l’échelle de Richter, dont l’hypocentre a été localisé à seulement 10 km de profondeur, ce qui explique la violence de l’événement. Comme d’habitude, les médias français s’attardent sur les morts et les dégâts, autrement dit tout ce qui est spectaculaire, mais n’informent pas sur la cause du séisme.

La Birmanie se trouve à cheval sur trois plaques tectoniques : 1) la plaque indienne à l’ouest, qui remonte vers l’Himalaya à la vitesse d’environ 6 centimètres par an. 2) Au nord et à l’est du pays, se situe la plaque eurasiatique qui se déplace vers le nord-ouest à une vitesse de 0,6 centimètres par an. 3) En Birmanie, s’étalant vers le sud, se trouve la plaque birmane, qui est en fait un prolongement de la plaque eurasiatique. Elle se déplace vers le nord à une vitesse de 4,6 centimètres par an. Le pays est également traversé par la faille de Sagaing, qui marque la limite entre les plaques indienne et eurasiatique.

Cette situation explique la fréquence des séismes dans cette région du monde. Certaines secousses particulièrement puissantes ont impacté le pays entre 1929 et 1932, avec des séismes de magnitude supérieure à M7.0 sur l’échelle de Richter. Le plus meurtrier a été celui de Bago, le 5 mai 1930. De magnitude 7,3, il a provoqué la mort d’environ 600 personnes,. À noter également le séisme de Sagaing du 16 juillet 1956 ; d’une magnitude de M7.0, il a détruit différentes structures dans plusieurs villes. Plus récemment, une quinzaine de séismes de faible magnitude ont frappé la Birmanie depuis le début de l’année 2018 et aujourd’hui, la Birmanie est secouée par un événement de M7,7.

Depuis la fin de la junte militaire, le pays tente de prévenir les séismes de manière plus efficace. La mise en place de nouvelles lois et organisations s’est accompagnée d’actions plus concrètes. Le respect des normes antisismiques est de plus en plus courant.

—————————————-

Burma – or Myanmar – has just been rocked by a powerful earthquake measuring M7.7 on the Richter scale , whose hypocenter was located at a depth of only 10 km, which explains the violence of the event. As usual, the French media focused on the deaths and damage, in other words, everything spectacular, but provided no information on the cause of the earthquake.
Burma straddles three tectonic plates: 1) the Indian plate to the west, which is moving toward the Himalayas at a rate of approximately 6 centimeters per year. 2) To the north and east of the country lies the Eurasian plate, which is moving northwest at a rate of 0.6 centimeters per year. 3) In Burma, extending southward, lies the Burmese plate, which is actually an extension of the Eurasian plate. It is moving northward at a rate of 4.6 centimeters per year. The country is also crossed by the Sagaing Fault, which marks the boundary between the Indian and Eurasian plates.
This situation accounts for the frequency of earthquakes in this region of the world. Some powerful tremors impacted the country between 1929 and 1932, with earthquakes greater than M7.0 on the Richter scale. The deadliest was the Bago earthquake on May 5, 1930. Measuring 7.3 on the Richter scale, it caused the deaths of about 600 people. Also notable was the Sagaing earthquake of July 16, 1956; measuring M7.0 on the Richter scale, it destroyed various structures in several cities. More recently, about fifteen low-magnitude earthquakes have struck Myanmar since the beginning of 2018, and today, Myanmar has been shaken by a M7.7 event. Since the end of the military junta, the country has been trying to prevent earthquakes more effectively. The implementation of new laws and organizations has been accompanied by more concrete actions. Compliance with earthquake-resistant standards is becoming increasingly common.

Hawaï s’enfonce // Hawaii is sinking

Aujourd’hui, avec la fonte des glaciers et des calottes glaciaires due au réchauffement climatique, on parle beaucoup du rebond isostatique dans certaines régions du monde. Le substrat rocheux se soulève lentement car la masse de glace qui le surmonte est moins lourde. Certains scientifiques pensent même que le rebond isostatique pourrait favoriser la remontée du magma et déclencher des éruptions plus fréquentes. Cependant, nous manquons de recul pour confirmer cette hypothèse.
Sur l’archipel hawaïen, il n’y a pas de glaciers, bien que le Mauna Loa et le Mauna Kea, sur la Grande Île, culminent à plus de 4 200 mètres d’altitude. Une nouvelle étude révèle qu’Hawaï non seulement ne s’élève pas, mais s’enfonce 40 fois plus vite que les scientifiques le pensaient.
L’histoire géologique d’Hawaï est celle d’une ascension. Il y a plus d’un million d’années, lorsque la plaque tectonique Pacifique s’est déplacée et est arrivée au-dessus d’un point chaud dans la croûte terrestre, des îles volcaniques ont formé ce qui est devenu le 50e État des États-Unis. La Smithsonian Institution explique que « les quatre îles de Maui, Moloka`i, Lana`i et Kaho`olawe étaient autrefois toutes reliées et formaient une vaste masse continentale connue sous le nom de Maui Nui, littéralement « grand Maui ». À mesure que la plaque Pacifique éloigne les volcans hawaïens du point chaud, ils entrent en éruption moins fréquemment, puis ne sont plus alimentés et meurent. L’île s’érode et la croûte sous-jacente se refroidit, se rétrécit et s’enfonce, avant d’être submergée. Dans des millions d’années, les îles hawaïennes disparaîtront lorsque la bordure de la plaque Pacifique qui les soutient glissera sous la plaque nord-américaine et retournera dans le manteau. »

Source: Smithsonian Institution

Une nouvelle étude de l’Université d’Hawaï à Manoa, publiée dans la revue Communications Earth & Environment, indique que, contrairement à d’autres régions du monde, l’archipel est en train de s’enfoncer . L’étude analyse l’affaissement de l’île d’O’ahu, où se trouve Honolulu, la capitale de l’État. Les auteurs ont constaté que dans certaines zones de l’île, situées à 300 km au nord-ouest de la Grande Île – qui se trouve au-dessus du point chaud – l’affaissement atteint environ 0,6 millimètre par an. Cependant, les scientifiques ont également constaté que certaines zones s’enfoncent à un rythme environ 40 fois supérieur, soit environ 25 millimètres par an.
L’étude souligne que l’affaissement est un facteur majeur, mais souvent négligé, dans le cadre de l’exposition future aux inondations. Dans les zones à affaissement rapide, les effets de l’élévation du niveau de la mer se feront sentir beaucoup plus tôt que prévu, ce qui signifie que les autorités devront se préparer aux inondations dans un délai plus court. Cette situation s’explique en partie par le fait que les zones industrielles comme celle de Mapunapuna sont construites sur des sédiments et des remblais artificiels, ce qui, selon les chercheurs, entraîne un tassement plus rapide que dans d’autres zones d’O’ahu. Cette vitesse d’affaissement dépasse largement celle de l’élévation du niveau de la mer sur le long terme (environ 1,54 millimètre), et pourrait, à court terme, engendrer des problèmes pour le littoral de la région. Dans des secteurs comme la zone industrielle de Mapunapuna, l’affaissement pourrait agrandir la zone inondable de plus de 50 % d’ici 2050.
Certains organismes à O’ahu, comme Climate Ready O’ahu, une organisation scientifique et communautaire, s’attendent à devoir faire face à une élévation de plus en plus rapide du niveau de la mer et à une érosion de plus en plus importante des sols, ainsi qu’à d’autres phénomènes liés au réchauffement climatique, tels que les incendies de végétation et les crues soudaines. Si la conservation des zones humides et des écosystèmes dunaires contribuera à stabiliser les rivages, les chercheurs soulignent que la prise en compte de cette vitesse d’affaissement préoccupante sera essentielle pour mettre en place un véritable véritable calendrier nécessaire à la mise en œuvre des stratégies d’adaptation au réchauffement climatique.
Source : Popular Mechanics via Yahoo News.

—————————————————

Today, with the melting of glaciers and icecaps because of global warming, there is a lot of talk aboud the isostatic rebound in some regions of the world. The bedrock is slowly rising because of the lighter mass of the ice above. Some scientists even say that the isostatic rebound might favour the ascent of magma and trigger more frequent eruptions. However, we don’t have enough perspective to confirm this hypothesis.

On the Hawaiian archipelago, there are no glaciers, although Mauna Loa and Mauna Kea on the Big Island are rising more than 4,200 meters above sea level. A new study reveals that  .Hawaii Is sinking 40 times faster than scientists thought it was.

The geologic story of Hawaii has historically been one of ascension. More than a million years ago, when the Pacific Island Plate moved above a volcanic hotspot, volcanic islands formed what eventually became the U.S.’s 50th State. The Smithsonian Institution explains that « the four islands of Maui, Moloka`i, Lana`i, and Kaho`olawe were once all connected as a vast landmass known as Maui Nui, literally “big Maui.” As the Pacific plate moves Hawaii’s volcanoes farther from the hotspot, they erupt less frequently, then no longer tap into the upwelling of molten rock and die. The island erodes and the crust beneath it cools, shrinks and sinks, and the island is again submerged. Millions of years from now, the Hawaiian Islands will disappear when the edge of the Pacific plate that supports them slides under the North American plate and returns to the mantle. »

Now, a new study from the University of Hawai’i at Manoa, published in the journal Communications Earth & Environment, reports that the island chain may be reversing course. The study analyzes subsidence on the island of O’ahu, home of the state capital, Honolulu. The authors found that in some areas of the island, located 300 km northwest of the Big Island which rests on top of the hotspot, the subsidence rate was at around 0.6 millimeters per year. However, they also recorded areas that are sinking about 40 times that rate, at roughly 25 millimeters per year.

The suty highlights that that subsidence is a major, yet often overlooked, factor in assessments of future flood exposure. In rapidly subsiding areas, sea level rise impacts will be felt much sooner than previously estimated, which means that authorities should prepare for flooding on a shorter timeline.

Part of the reason for this discrepancy is that industrial areas such as the Mapunapuna area are built on sediment and artificial fill, which, according to the researchers, leads to increased compaction compared to other areas of O’ahu. This subsidence rate far outpaces the long-term rate of sea level rise, which is around 1.54 millimeters, and could cause problems for the region’s shoreline on a shorter timetable. In places like the Mapunapuna industrial region, subsidence could increase flood exposure area by over 50% by 2050.

Some institutions on O’ahu, such as the science-based, community-driven Climate Ready O’ahu, are preparing for increased sea level rise and increased soil erosion along with other climate change-induced events, such as wildfires and flash flooding. While the conservation of wetlands and dune ecosystems will help stabilize shorelines, the researchers note that taking into account this concerning rate of subsidence will be vital for understanding the true timeline required to implement climate adaptation strategies

Source : Popular Mechanics via Yahoo News.