Pourquoi un séisme en Birmanie ? // Why an earthquake in Myanmar ?

La Birmanie – ou Myanmar – vient d’être secouée par un puissant séisme de magnitude de M7,7 sur l’échelle de Richter, dont l’hypocentre a été localisé à seulement 10 km de profondeur, ce qui explique la violence de l’événement. Comme d’habitude, les médias français s’attardent sur les morts et les dégâts, autrement dit tout ce qui est spectaculaire, mais n’informent pas sur la cause du séisme.

La Birmanie se trouve à cheval sur trois plaques tectoniques : 1) la plaque indienne à l’ouest, qui remonte vers l’Himalaya à la vitesse d’environ 6 centimètres par an. 2) Au nord et à l’est du pays, se situe la plaque eurasiatique qui se déplace vers le nord-ouest à une vitesse de 0,6 centimètres par an. 3) En Birmanie, s’étalant vers le sud, se trouve la plaque birmane, qui est en fait un prolongement de la plaque eurasiatique. Elle se déplace vers le nord à une vitesse de 4,6 centimètres par an. Le pays est également traversé par la faille de Sagaing, qui marque la limite entre les plaques indienne et eurasiatique.

Cette situation explique la fréquence des séismes dans cette région du monde. Certaines secousses particulièrement puissantes ont impacté le pays entre 1929 et 1932, avec des séismes de magnitude supérieure à M7.0 sur l’échelle de Richter. Le plus meurtrier a été celui de Bago, le 5 mai 1930. De magnitude 7,3, il a provoqué la mort d’environ 600 personnes,. À noter également le séisme de Sagaing du 16 juillet 1956 ; d’une magnitude de M7.0, il a détruit différentes structures dans plusieurs villes. Plus récemment, une quinzaine de séismes de faible magnitude ont frappé la Birmanie depuis le début de l’année 2018 et aujourd’hui, la Birmanie est secouée par un événement de M7,7.

Depuis la fin de la junte militaire, le pays tente de prévenir les séismes de manière plus efficace. La mise en place de nouvelles lois et organisations s’est accompagnée d’actions plus concrètes. Le respect des normes antisismiques est de plus en plus courant.

—————————————-

Burma – or Myanmar – has just been rocked by a powerful earthquake measuring M7.7 on the Richter scale , whose hypocenter was located at a depth of only 10 km, which explains the violence of the event. As usual, the French media focused on the deaths and damage, in other words, everything spectacular, but provided no information on the cause of the earthquake.
Burma straddles three tectonic plates: 1) the Indian plate to the west, which is moving toward the Himalayas at a rate of approximately 6 centimeters per year. 2) To the north and east of the country lies the Eurasian plate, which is moving northwest at a rate of 0.6 centimeters per year. 3) In Burma, extending southward, lies the Burmese plate, which is actually an extension of the Eurasian plate. It is moving northward at a rate of 4.6 centimeters per year. The country is also crossed by the Sagaing Fault, which marks the boundary between the Indian and Eurasian plates.
This situation accounts for the frequency of earthquakes in this region of the world. Some powerful tremors impacted the country between 1929 and 1932, with earthquakes greater than M7.0 on the Richter scale. The deadliest was the Bago earthquake on May 5, 1930. Measuring 7.3 on the Richter scale, it caused the deaths of about 600 people. Also notable was the Sagaing earthquake of July 16, 1956; measuring M7.0 on the Richter scale, it destroyed various structures in several cities. More recently, about fifteen low-magnitude earthquakes have struck Myanmar since the beginning of 2018, and today, Myanmar has been shaken by a M7.7 event. Since the end of the military junta, the country has been trying to prevent earthquakes more effectively. The implementation of new laws and organizations has been accompanied by more concrete actions. Compliance with earthquake-resistant standards is becoming increasingly common.

Hawaï s’enfonce // Hawaii is sinking

Aujourd’hui, avec la fonte des glaciers et des calottes glaciaires due au réchauffement climatique, on parle beaucoup du rebond isostatique dans certaines régions du monde. Le substrat rocheux se soulève lentement car la masse de glace qui le surmonte est moins lourde. Certains scientifiques pensent même que le rebond isostatique pourrait favoriser la remontée du magma et déclencher des éruptions plus fréquentes. Cependant, nous manquons de recul pour confirmer cette hypothèse.
Sur l’archipel hawaïen, il n’y a pas de glaciers, bien que le Mauna Loa et le Mauna Kea, sur la Grande Île, culminent à plus de 4 200 mètres d’altitude. Une nouvelle étude révèle qu’Hawaï non seulement ne s’élève pas, mais s’enfonce 40 fois plus vite que les scientifiques le pensaient.
L’histoire géologique d’Hawaï est celle d’une ascension. Il y a plus d’un million d’années, lorsque la plaque tectonique Pacifique s’est déplacée et est arrivée au-dessus d’un point chaud dans la croûte terrestre, des îles volcaniques ont formé ce qui est devenu le 50e État des États-Unis. La Smithsonian Institution explique que « les quatre îles de Maui, Moloka`i, Lana`i et Kaho`olawe étaient autrefois toutes reliées et formaient une vaste masse continentale connue sous le nom de Maui Nui, littéralement « grand Maui ». À mesure que la plaque Pacifique éloigne les volcans hawaïens du point chaud, ils entrent en éruption moins fréquemment, puis ne sont plus alimentés et meurent. L’île s’érode et la croûte sous-jacente se refroidit, se rétrécit et s’enfonce, avant d’être submergée. Dans des millions d’années, les îles hawaïennes disparaîtront lorsque la bordure de la plaque Pacifique qui les soutient glissera sous la plaque nord-américaine et retournera dans le manteau. »

Source: Smithsonian Institution

Une nouvelle étude de l’Université d’Hawaï à Manoa, publiée dans la revue Communications Earth & Environment, indique que, contrairement à d’autres régions du monde, l’archipel est en train de s’enfoncer . L’étude analyse l’affaissement de l’île d’O’ahu, où se trouve Honolulu, la capitale de l’État. Les auteurs ont constaté que dans certaines zones de l’île, situées à 300 km au nord-ouest de la Grande Île – qui se trouve au-dessus du point chaud – l’affaissement atteint environ 0,6 millimètre par an. Cependant, les scientifiques ont également constaté que certaines zones s’enfoncent à un rythme environ 40 fois supérieur, soit environ 25 millimètres par an.
L’étude souligne que l’affaissement est un facteur majeur, mais souvent négligé, dans le cadre de l’exposition future aux inondations. Dans les zones à affaissement rapide, les effets de l’élévation du niveau de la mer se feront sentir beaucoup plus tôt que prévu, ce qui signifie que les autorités devront se préparer aux inondations dans un délai plus court. Cette situation s’explique en partie par le fait que les zones industrielles comme celle de Mapunapuna sont construites sur des sédiments et des remblais artificiels, ce qui, selon les chercheurs, entraîne un tassement plus rapide que dans d’autres zones d’O’ahu. Cette vitesse d’affaissement dépasse largement celle de l’élévation du niveau de la mer sur le long terme (environ 1,54 millimètre), et pourrait, à court terme, engendrer des problèmes pour le littoral de la région. Dans des secteurs comme la zone industrielle de Mapunapuna, l’affaissement pourrait agrandir la zone inondable de plus de 50 % d’ici 2050.
Certains organismes à O’ahu, comme Climate Ready O’ahu, une organisation scientifique et communautaire, s’attendent à devoir faire face à une élévation de plus en plus rapide du niveau de la mer et à une érosion de plus en plus importante des sols, ainsi qu’à d’autres phénomènes liés au réchauffement climatique, tels que les incendies de végétation et les crues soudaines. Si la conservation des zones humides et des écosystèmes dunaires contribuera à stabiliser les rivages, les chercheurs soulignent que la prise en compte de cette vitesse d’affaissement préoccupante sera essentielle pour mettre en place un véritable véritable calendrier nécessaire à la mise en œuvre des stratégies d’adaptation au réchauffement climatique.
Source : Popular Mechanics via Yahoo News.

—————————————————

Today, with the melting of glaciers and icecaps because of global warming, there is a lot of talk aboud the isostatic rebound in some regions of the world. The bedrock is slowly rising because of the lighter mass of the ice above. Some scientists even say that the isostatic rebound might favour the ascent of magma and trigger more frequent eruptions. However, we don’t have enough perspective to confirm this hypothesis.

On the Hawaiian archipelago, there are no glaciers, although Mauna Loa and Mauna Kea on the Big Island are rising more than 4,200 meters above sea level. A new study reveals that  .Hawaii Is sinking 40 times faster than scientists thought it was.

The geologic story of Hawaii has historically been one of ascension. More than a million years ago, when the Pacific Island Plate moved above a volcanic hotspot, volcanic islands formed what eventually became the U.S.’s 50th State. The Smithsonian Institution explains that « the four islands of Maui, Moloka`i, Lana`i, and Kaho`olawe were once all connected as a vast landmass known as Maui Nui, literally “big Maui.” As the Pacific plate moves Hawaii’s volcanoes farther from the hotspot, they erupt less frequently, then no longer tap into the upwelling of molten rock and die. The island erodes and the crust beneath it cools, shrinks and sinks, and the island is again submerged. Millions of years from now, the Hawaiian Islands will disappear when the edge of the Pacific plate that supports them slides under the North American plate and returns to the mantle. »

Now, a new study from the University of Hawai’i at Manoa, published in the journal Communications Earth & Environment, reports that the island chain may be reversing course. The study analyzes subsidence on the island of O’ahu, home of the state capital, Honolulu. The authors found that in some areas of the island, located 300 km northwest of the Big Island which rests on top of the hotspot, the subsidence rate was at around 0.6 millimeters per year. However, they also recorded areas that are sinking about 40 times that rate, at roughly 25 millimeters per year.

The suty highlights that that subsidence is a major, yet often overlooked, factor in assessments of future flood exposure. In rapidly subsiding areas, sea level rise impacts will be felt much sooner than previously estimated, which means that authorities should prepare for flooding on a shorter timeline.

Part of the reason for this discrepancy is that industrial areas such as the Mapunapuna area are built on sediment and artificial fill, which, according to the researchers, leads to increased compaction compared to other areas of O’ahu. This subsidence rate far outpaces the long-term rate of sea level rise, which is around 1.54 millimeters, and could cause problems for the region’s shoreline on a shorter timetable. In places like the Mapunapuna industrial region, subsidence could increase flood exposure area by over 50% by 2050.

Some institutions on O’ahu, such as the science-based, community-driven Climate Ready O’ahu, are preparing for increased sea level rise and increased soil erosion along with other climate change-induced events, such as wildfires and flash flooding. While the conservation of wetlands and dune ecosystems will help stabilize shorelines, the researchers note that taking into account this concerning rate of subsidence will be vital for understanding the true timeline required to implement climate adaptation strategies

Source : Popular Mechanics via Yahoo News.

Persistance de la sismicité dans l’Afar (Éthiopie) // Continuing seismicity if the Afar region (Ethiopia)

Une sismicité relativement importante continue d’être enregistrée dans la région du volcan Dofen en Éthiopie depuis le 22 décembre 2024. Cette crise a été marquée par une série de séismes modérés à forts, l’ouverture d’importantes fissures dans le sol et l’apparition d’une bouche volcanique dans la région de l’Afar.
Un nouveau séisme de forte intensité et peu profond, enregistré par l’USGS avec une magnitude de M5,5, a frappé la région de l’Afar le 16 mars 2025. L’hypocentre se situait à 10 km de profondeur. L’épicentre se trouvait à 46 km au sud d’Awash et à 55 km à l’est du volcan Dofen. Le risque de victimes et de dégâts est faible. Une réplique modérée de magnitude M4,3 a également été enregistrée le 16 mars à 10 km de profondeur.
L’évacuation de 60 000 habitants a été ordonnée après le séisme de magnitude M5,7 du 4 janvier 2025, qui a provoqué l’apparition de larges fissures.
Le 3 janvier, une nouvelle bouche est apparue près du mont Dofen ; elle émettait de puissants jets de vapeur, de gaz, de roches et de boue, suscitant des inquiétudes quant à une éventuelle éruption.
L’activité sismique a par ailleurs suscité des inquiétudes quant à la stabilité structurelle du barrage de Kesem/Sabure, qui retient un volume d’eau important. Le barrage est censé résister à des séismes de magnitude M5,6. Cependant, l’activité sismique dans la région dépassant ce seuil, les scientifiques ont averti que toute défaillance structurelle pourrait entraîner des inondations catastrophiques, mettant en danger la vie de centaines de milliers d’habitants.
La région se situe dans le rift éthiopien qui fait partie du Système de rift est-africain (EARS), l’une des zones tectoniques les plus actives au monde. Cette région est sujette à de fréquents séismes, éruptions volcaniques et déformations du sol, principalement dues à l’accrétion des plaques tectoniques et à l’intrusion de magma sous la surface. Le rift africain se situe à la limite entre des plaques tectoniques divergentes, là où la plaque africaine est en train de se scinder en deux et donne naissance à la plaque somalienne et la plaque nubienne. La partie orientale de l’Afrique, autrement dit la plaque somalienne, s’éloigne du reste du continent, qui comprend la plaque nubienne. Les plaques nubienne et somalienne se séparent également de la plaque arabique au nord, créant ainsi un système de rift en « Y ». Ces plaques se croisent dans la région de l’Afar, en Éthiopie, en formant une « triple jonction ».
Source : The Watchers, USGS.

Source: USGS

———————————————

A significant seismicity has been recorded in Ethiopia’s Dofen volcano region since December 22nd, 2024. The crisis has been marked by a series of moderate to strong earthquakes, large ground fissures, and the opening of a powerful volcanic vent in the Afar region.

Another strong and shallow earthquake registered by the USGS as M5.5 hit the Afar region on March 16th, 2025. The hypocenter was located at a depth of 10 km. The epicenter was located 46 km south of Awash, and 55 km east of Dofen volcano. There is a low likelihood of casualties and damage. A moderate M4.3 aftershock was also recorded on March 16th at a depth of 10 km.

The evacuation of 60,000 residents was ordered after an M5.7 earthquake on January 4th, 2025, led to the appearance of large cracks.

On January 3rd, a new vent formed near Mount Dofen, releasing powerful jets of steam, gas, rocks, and mud, raising concerns about a potential eruption.

The seismic actuivity raised concerns about he structural stability of the Kesem/Sabure Dam which holds a substantial volume of water. The dam is supposed to withstand earthquakes up to M5.6. However, with seismic activity in the region exceeding that threshold, experts warned that any structural failure could lead to catastrophic flooding, endangering hundreds of thousands of lives.

The region lies within the Main Ethiopian Rift, part of the East African Rift System (EARS), one of the most tectonically active zones in the world. This region is prone to frequent earthquakes, volcanic eruptions, and ground deformation, mainly from ongoing tectonic plate divergence and magma intrusion beneath the surface. The rift lies on a developing divergent tectonic plate boundary where the African plate is in the process of splitting into two tectonic plates, the Somali plate and the Nubian plate. The eastern portion of Africa, the Somalian plate, is pulling away from the rest of the continent, that comprises the  Nubian plate. The Nubian and Somalian plates are also separating  from the Arabian plate in the north, thus creating a ‘Y’ shaped rifting system. These plates intersect in the Afar region of Ethiopia at what is known as a ‘triple junction’.

Source : The Watchers, USGS.

Changement de forme du noyau interne de la Terre // Earth’s inner core is changing shape

Une nouvelle étude conduite par des sismologues de l’Université de Californie du Sud montre que le noyau interne de la Terre n’est pas une sphère statique et uniforme, mais une structure dynamique qui subit des changements de forme, avec des zones qui s’élèvent et s’abaissent jusqu’à 1 km sur de courtes échelles de temps géologiques.

L’étude a utilisé des données provenant de capteurs de la base aérienne d’Eielson en Alaska et du réseau sismologique de Yellowknife dans les Territoires du Nord-Ouest du Canada. L’analyse des ondes sismiques générées par des séismes survenus entre 1991 et 2023 a révélé des variations surprenantes dans le comportement des ondes ; elles laissent supposer que la couche la plus externe du noyau interne subit des déformations localisées en raison de la redistribution de la matière. Les ondes sismiques fournissent des informations essentielles sur le noyau interne, qui se trouve à environ 5 000 km sous la surface de la Terre. Elles révèlent des informations sur sa composition et sur tout changement en cours. Les observations les plus importantes de l’étude montrent que si les ondes sismiques plus profondes restent constantes, celles qui se propagent le long des couches externes du noyau interne présentent des anomalies. Ces déformations montrent que la surface du noyau interne est en constante évolution.

 Source: University of Saskatchewan

La topographie changeante du noyau interne peut être due à de multiples facteurs liés aux conditions extrêmes de température et de pression dans les profondeurs de la planète. Il se peut que les fluctuations de température à la frontière entre le noyau interne et le noyau externe provoquent une fusion et une solidification continues du fer, ce qui remodèlerait la surface du noyau au fil du temps. Une autre théorie explique que le fer pourrait s’échapper du noyau interne en rafales semblables à la remontée du magma dans le manteau terrestre, mais en étant soumis à des pressions extrêmes. Les changements rapides détectés entre 2004 et 2008 révèlent que ces déformations se produisent plus rapidement qu’on ne le pensait auparavant, ce qui soulève des questions sur leurs implications plus larges pour le système géodynamique de la Terre.

Il est important de comprendre si ces déformations influencent les courants convectifs du fer en fusion dans le noyau externe. Les chercheurs étudient également si les déformations du noyau interne sont liées aux variations de rotation. Les déplacements asymétriques du noyau peuvent provoquer des fluctuations mineures dans la rotation de la Terre, affectant les processus planétaires tels que la durée du jour et les variations du moment angulaire. Les changements dans la forme et le mouvement du noyau interne pourraient affecter le transfert de chaleur entre les couches du noyau, influençant potentiellement la stabilité du champ magnétique terrestre et contribuant à des fluctuations telles que les inversions géomagnétiques.

Les recherches futures se concentreront sur la collecte de davantage de données sismiques, l’amélioration des simulations informatiques et l’affinement des modèles théoriques des interactions noyau-manteau. Les scientifiques souhaitent examiner comment ces changements structurels influencent des processus géodynamiques plus larges, notamment la convection dans le manteau et la tectonique des plaques.

 

Vision moderne de la convection mantellique (Kevin C. A. Burke) 

Source : The Watchers.

——————————————————

New research by seismologists at the University of Southern California shows that Earth’s inner core is not a static, uniform sphere but a dynamic structure experiencing shape changes, with regions rising and falling by up to 1 km over short geological timescales.

The study utilized data from sensors at the Eielson Air Force Base in Alaska and the Yellowknife Seismological Array in Canada’s Northwest Territories. Analysis of seismic waves from earthquakes between 1991 and 2023 revealed unexpected variations in wave behavior, suggesting that the outermost layer of the inner core undergoes localized deformations due to the redistribution of material. Seismic waves provide critical insights into the inner core, which lies approximately 5 000 km beneath the Earth’s surface. Waves passing through the core reveal information about its composition and any ongoing changes. Key observations from the study showed that while deeper seismic waves remained consistent, those traveling along the outer layers of the inner core exhibited anomalies. This suggested localized deformations indicating that the inner core’s surface is in constant flux.

The shifting topography of the inner core may result from multiple factors related to extreme temperature and pressure conditions deep within the planet. One possibility is that temperature fluctuations at the boundary between the inner and outer core cause continuous melting and solidification of iron, reshaping the core’s surface over time. Another theory suggests that iron may be bubbling out of the inner core in localized bursts, similar to magma upwelling in Earth’s mantle, albeit under extreme pressures. The rapid changes detected between 2004 and 2008 suggest that these deformations occur faster than previously believed, raising questions about their broader implications for Earth’s geodynamic system.

A key concern is whether these deformations influence the convective currents of molten iron in the outer core. Researchers are also investigating whether inner core deformations are linked to rotational variations. Asymmetric shifts in the core may cause minor fluctuations in Earth’s rotation, affecting planetary processes such as day length and angular momentum variations. Changes in the inner core’s shape and movement could affect heat transfer between core layers, potentially influencing the stability of Earth’s magnetic field and contributing to fluctuations such as geomagnetic reversals.

Future research will focus on gathering more seismic data, enhancing computational simulations, and refining theoretical models of core-mantle interactions. Scientists aim to examine how these structural changes influence broader geodynamic processes, including mantle convection and plate tectonics.

Source : The Watchers.