Expédition antarctique en kite-ski au service de la science polaire

Aucune région du monde n’est épargnée par le réchauffement climatique, pas plus l’Arctique que l’Antarctique. Le continent blanc inquiète particulièrement les glaciologues. Si rien n’est fait par nos gouvernements pour freiner la hausse des températures, la fonte des glaces polaires nous conduira inévitablement à la catastrophe. En particulier, la fonte des glaciers antarctiques fera s’élever de plusieurs mètres le niveau des océans avec un impact désastreux sur les zones littorale, souvent densément peuplées.

Source: British Antarctic Survey (BAS)

C’est dans ce contexte que l’explorateur Matthieu Tordeur et la glaciologue Heidi Sevestre s’apprêtent à partir pour une expédition en Antarctique pour sensibiliser à la fonte des glaces. Baptisée Under Antarctica – Sous l’Antarctique – et à quelques jours de l’ouverture de la COP30 au Brésil, l’expédition a pour but de rappeler aux gouvernements l’urgence de limiter nos émissions de gaz à effet de serre. Elle se tient sous le haut patronage du Président de la République et sous l’égide de l’Unesco alors que les Nations Unies ont fait de 2025 l’année de la préservation des glaciers.

Pour se déplacer sur plus de 3 600 km, les deux explorateurs utiliseront un mode de déplacement innovant et respectueux de l’environnement : le kite-ski.

L’expédition sera menée pendant l’été austral, d’octobre 2025 à janvier 2026, soit pendant environ 80 jours. Un documentaire sur cette aventure et ses résultats sera diffusé en 2026. Pendant trois mois, huit cahiers pédagogiques seront partagés gratuitement aux inscrits. Ils proposeront aux élèves à partir de 8 ans un suivi de l’expédition en direct. Ces cahiers numériques, disponibles en français et en anglais, livrent des connaissances sur le climat, l’histoire, la géographie, les sciences et la vie des aventuriers, et sont ponctués de visioconférences, images, sons et vidéos.

Pendant trois mois, Tordeur et Sevestre vont traverser d’Est en Ouest l’Antarctique pour sonder la calotte polaire à l’aide de deux radars à pénétration de sol pour retrouver la trace d’une glace datant de 130 000 ans, époque où les températures sur Terre étaient comparables à celles que nous connaîtrons en 2100. La glaciologue explique qu' »il y a 130 000 ans il faisait plus trois degrés sur terre. C’est ce qu’on risque d’avoir si les gouvernements ne mettent pas vraiment en place leurs objectifs ambitieux de réduction de leurs émissions de gaz à effet de serre » Ces radars permettront aussi de révéler les lacs et les rivières sous-glaciaires, la topographie du socle rocheux, ainsi que l’accumulation de neige à la surface de la calotte polaire. L’objectif est de mieux comprendre le rôle de la fonte de l’Antarctique dans la montée du niveau des mers.

Avant même le départ de cette expédition, on sait déjà que si la glace de l’Antarctique de l’Ouest fondait dans sa totalité, le volume de glace qu’il contient pourrait faire monter le niveau des mers de plusieurs mètres, bouleversant ainsi la biodiversité et nos littoraux, où vivent 700 millions de personnes. Avec la hausse des températures, les plates-formes littorales de l’Ouest Antarctique vont disparaître. Elles ne serviront plus de remparts aux énormes glaciers situés derrière elles. Si l’un de ces glaciers, le Thwaites, par exemple, termine sa course dans l’océan Austral, les autres suivront car les systèmes glaciaires de cette région antarctique sont interconnectés.

Source: BAS

Vous trouverez les informations sur l’expédition Under Antarctica en cliquant sue ce lien :

https://www.underantarctica.com/

Découverte de 19 000 nouveaux volcans sous-marins // Discovery of 19,000 new seamounts

Comme je l’ai écrit à plusieurs reprises sur ce blog, nous connaissons la surface de Mars, la Lune ou Venus, et même les lunes de Jupiter, mieux que le fond de nos océans. En conséquence, avec la cartographie de seulement un quart du plancher océanique à l’aide du sonar, nous sommes incapables de savoir combien de volcans sous-marins existent sur notre propre planète ! C’est par ailleurs un vrai problème car la plupart des séismes les plus dévastateurs se déclenchent dans les zones de subduction, en particulier les fosses océaniques. L’envoi d’instruments au plus profond des abysses pourrait permettre d’observer, comprendre – sans parler de prévoir – ce qui s’y passe.
Peut-être allons nous bientôt en savoir plus. Une équipe d’océanographes de la Scripps Institution of Oceanography, en collaboration avec des chercheurs de l’Université nationale de Chungnam et de l’Université d’Hawaii, a réussi à cartographier 19 000 volcans sous-marins jusqu’alors inconnus, grâce aux données satellitaires radar. Armée de données provenant de satellites radar à haute résolution, dont le CryoSat-2 de l’Agence Spatiale Européenne et le SARAL des agences spatiales indienne et française, l’équipe scientifique a pu détecter ces nouveaux édifices sous-marins.Les résultats de ces observations ont été publiés dans la revue Earth and Space Science. Même si elles n’apportent pas un nouvel éclairage sur l’activité sismique dans les profondeurs des océans, ces découvertes sont essentielles pour améliorer notre compréhension des fonds marins, améliorer la modélisation des courants océaniques et permettre une navigation sous-marine plus sûre.
Les chercheurs ont utilisé les données satellitaires radar pour mesurer l’altitude de la surface de la mer qui change en raison des variations de l’attraction gravitationnelle liée à la topographie des fonds marins. Cela a permis de détecter et de cartographier 19 325 volcans sous-marins jusque-là inconnus. Leurs découvertes ont étoffé le catalogue précédemment publié qui comportait 24 643 édifices. Il en présente désormais 43 454.
Dans leur étude, les scientifiques expliquent que les volcans sous-marins sont extrêmement importants pour créer des modèles océaniques et étudier les courants océaniques dans le monde. Comme indiqué plus haut, jusqu’à présent seul un quart du plancher océanique avait été cartographié, ce qui représentait une lacune importante dans notre connaissance de l’emplacement et du nombre de volcans sous-marins. Ce manque d’informations a provoqué des accidents, comme ceux impliquant des sous-marins américains. En 2005, l’USS San Francisco à propulsion nucléaire est entré en collision à grande vitesse avec un volcan sous-marin, tuant un membre d’équipage et blessant la plupart des militaires à bord. Un accident semblable s’est produit en 2021 lorsque l’USS Connecticut a heurté un volcan sous-marin dans la Mer de Chine méridionale, endommageant son réseau de sonars.
En plus de la création de modèles de courants océaniques plus précis, la cartographie des fonds marins contribue aux efforts d’exploitation minière à grande profondeur et fournit des données précieuses aux géologues qui étudient les plaques tectoniques et le champ géomagnétique terrestre. De plus, les volcans sous-marins servent d’habitats à une importante vie marine.
Source : The Watchers, Science.

———————————————

As I have put it several times on this blog, we know the surface of Mars, the Moon or Venus, and even the moons of Jupiter, better than the bottom of our oceans. As a consequance, with only one-quarter of the sea floor mapped with sonar, it is impossible to know how many seamounts exist. This is also a real problem beacuse most of the most devastating earthquakes are triggered in subduction zones including ocean trenches. Sending instruments deep into the abysses could help understand , let alone predict, what is happening down there.

A team of oceanographers at the Scripps Institution of Oceanography, collaborating with researchers from Chungnam National University and the University of Hawaii, have successfully mapped 19 000 previously unknown undersea volcanoes, or seamounts, using radar satellite data. Now, armed with data from high-resolution radar satellites, including the European Space Agency’s CryoSat-2 and SARAL from the Indian and French space agencies, the team could detect the new seamounts Their findings have been published in the journal Earth and Space Science. Even if it does not bring a new light on seismic activity in the depths of the oceans, this breakthrough is crucial in enhancing our understanding of the ocean floor, improving ocean current modeling, and ensuring safer submarine navigation.

The researchers utilized radar satellite data to measure the altitude of the sea surface, which changes due to variations in gravitational pull related to seafloor topography. This method allowed scientists to detect and map the 19 325 previously unknown seamounts. The discovery expanded a previously published catalog having 24 643 seamounts to a total of 43 454.

In their paper, the team noted that seamounts are crucial in creating ocean models and studying the flow of ocean water around the world. Previously, only one-fourth of the ocean floor had been mapped, leaving a significant gap in our knowledge of the location and number of seamounts. This lack of information has caused accidents, such as the two incidents involving U.S. submarines colliding with seamounts. In 2005, the nuclear-powered USS San Francisco collided with an underwater volcano, or seamount, at top speed, killing a crew member and injuring most aboard. It happened again in 2021 when the USS Connecticut struck a seamount in the South China Sea, damaging its sonar array.

Apart from helping to create more accurate ocean current models, mapping the ocean floor also assists in sea-floor mining efforts and provides valuable data for geologists studying the planet’s tectonic plates and geomagnetic field. Additionally, seamounts serve as habitats for a diverse range of marine life.

Source : The Watchers, Science.

Image bathymétrique de la Patton Seamount Chain dans le Golfe d’Alaska (Source : NOAA)

Kilauea (Hawaii): Radar et éruptions volcaniques // Radar and volcanic eruptions

Aucune activité de surface n’est observée sur le Kilauea depuis le 23 mai 2021. Si le HVO tient ses promesses, l’éruption ne sera plus en « pause » le 23 août ; elle sera bel et bien terminée ! Dans un nouvel article, les scientifiques de HVO expliquent comment ils utilisent le radar météorologique pour analyser les panaches émis par le Kilauea.

RADAR est l’acronyme de Radio Detection And Ranging, un outil largement utilisé depuis le début des années 1900. Aujourd’hui, le radar a de nombreuses applications : dans l’atmosphère pour suivre les systèmes météorologiques et l’activité aéronautique, dans l’espace pour imager la Terre et les corps extraterrestres à partir de satellites, et même dans le sol pour détecter des objets enfouis.
Pour fonctionner, le radar utilise une antenne qui concentre les impulsions d’énergie tout en balayant des directions et des angles spécifiques. Les impulsions se déplacent à la vitesse de la lumière et croisent des objets sur leur chemin, tels que des montagnes, des bâtiments, des avions, des oiseaux, des gouttes de pluie ou des cendres volcaniques. Lorsqu’une impulsion frappe un objet, une fraction de son énergie est réfléchie vers l’antenne. L’énergie réfléchie est ensuite mesurée et traitée pour fournir des valeurs de réflectivité. La réflectivité est plus sensible à la taille et à la forme d’un objet spécifique ; toutefois, dans la mesure où une impulsion peut interagir avec de nombreux objets simultanément, la concentration des objets est également importante.
Les antennes radar peuvent balayer à 360 degrés autour d’une station sur différents angles d’élévation et produire une couverture atmosphérique presque complète sur 150 kilomètres ou plus en quelques minutes seulement. C’est ainsi que les météorologues présentent une couverture presque continue des systèmes météorologiques dans le monde.
Le radar météorologique est également un outil extrêmement important pour étudier les éruptions volcaniques. Les systèmes radar utilisés pour mesurer la vitesse du vent peuvent également mesurer les structures de turbulence dans les panaches, ce qui permet aux scientifiques d’analyser comment ils absorbent l’air, grossissent et s’élèvent dans l’atmosphère. En utilisant des dizaines de scans par heure, ils peuvent mesurer l’évolution du panache et des éruptions dans le temps.
Le HVO explique comment les scientifiques ont utilisé les systèmes radar le 20 décembre 2020 lorsque le panache de vapeur émis par le lac d’eau dans le cratère Halema’uma’u s’est transformé en un panache volcanique. L’île d’Hawaï possède deux stations radar WSR-88D, à South Point (PHWA) et Kohala (PHKM). Le panache de l’éruption du 20 décembre 2020 était visible depuis les deux stations, de sorte que leurs données permettent de comprendre cette éruption.
Le lac d’eau au fond de l’ Halema’uma’u avait environ 50 mètres de profondeur et continuait de grandir lorsque le Kilauea est entré en éruption le 20 décembre. Une nouvelle fissure s’est ouverte au-dessus du lac sur la paroi du cratère à 21h30. (heure locale). Un grand volume de lave s’est déversé dans le lac. La lave a vaporisé l’eau et généré un volumineux panache.
Contrairement aux panaches de cendres émis par une bouche éruptive lors d’une éruption explosive, le panache du 20 décembre 2020 contenait peu de cendres. Il a commencé à s’élever immédiatement mais lentement pour atteindre jusqu’à 13 000 mètres d’altitude. À 23 heures, l’eau avait disparu, remplacée par un lac de lave.
Les mesures radar du panache ont été accessibles quelques minutes après son apparition et elles montrent clairement son développement, son élévation et son volume suite à l’ouverture de la nouvelle fissure. Le panache a ensuite décliné quand le lac s’est asséché. La visualisation 3D du panache montre comment sa hauteur et sa structure changent au fil du temps.
Les modèles radar peuvent être utilisés pour l’échantillonnage des dépôts du panache au sol et pour comparer les zones à haute réflectivité avec des phénomènes tels que la foudre afin de corréler les observations visuelles à la dynamique interne du panache. Les scientifiques peuvent aussi calculer la concentration dans le panache, son trajet, ainsi que le volume total de cendres transportées et déposées pendant l’éruption.
Un autre avantage du radar météorologique est son accessibilité. De nombreuses stations fournissent gratuitement des données en temps quasi réel. Elles sont accessibles via le logiciel Weather and Climate Toolkit de la NOAA. Toute personne intéressée par ces phénomènes peut analyser les données à partir de son ordinateur personnel. Le radar est de plus en plus utilisé en volcanologie et il sera de plus en plus utile au HVO dans les futurs scénarios d’éruption.
Source : USGS/HVO.

——————————————-

No surface activity has been observed at Kīlauea since May 23rd, 2021. If the Hawaiian Volcano Observatory (HVO) keeps its promise, the eruption will no longer living a pause on August 23rd, it will be over !

In a new article, HVO scientists explain how they use weather radar to investigate the plumes emitted by Kilauea volcano. RADAR is an acronym for Radio Detection And Ranging, a tool that has been broadly used since the early 1900s. Today, radar has many uses: in the atmosphere to track weather systems and aviation activity, in space to image the Earth and extraterrestrial bodies from satellites, and even in the ground to detect buried objects.

Radar operation uses an antenna that focuses pulses of energy as it scans specific directions and angles. The pulses travel at the speed of light and intersect objects in their path, such as mountains, buildings, airplanes, birds, raindrops, or volcanic ash. As a pulse hits an object, a fraction of its energy is reflected toward the antenna. The reflected energy is then measured and processed to give values of “reflectivity.” Reflectivity is most sensitive to an object’s size and shape, though since a pulse can interact with many objects simultaneously, the concentration of objects is also important.

Radar antennas can scan 360 degrees around a station at various elevation angles and produce nearly complete atmospheric coverage within 150 or more kilometres in just a few minutes. This is how meteorologists present nearly continuous coverage of weather systems worldwide.

Weather radar is also an extremely important tool for studying explosive eruptions. Radar systems used to measure wind speed can also measure turbulence structures in plumes, which allows scientists to track how they capture air, grow in size, and rise through the atmosphere. Using tens of scans per hour, they can measure plume and eruption evolution in time.

HVO explains how they used radar systems on December 20th, 2020 when the steam plume emitted by the water lake within Halema’uma’u crater turned into a volcanic plume.

The Island of Hawaii hosts two WSR-88D radar stations, at South Point (PHWA) and Kohala (PHKM). The December 20th, 2020, eruption plume was visible to both stations, so their data help understand this interesting eruption.

The water lake in Halema‘uma‘u was about 50 metres deep and growing when Kīlauea summit erupted on December 20t. A new fissure opened above the lake on the crater wall at 9:30 p.m. (local time). A large volume of lava spilled down into the lake, boiling the water, and producing a volcanic steam plume.

Unlike explosive ash plumes that erupt at high velocities directly from a vent, this plume originated from the boiling water, carried little ash, and began rising immediately but slowly, reaching 13,000 metres above sea level at its peak. By 11 p.m., the water had vanished, replaced by a growing lava lake.

Radar measurements of the plume were accessible minutes after the plume appeared and clearly show its development, increasing height and intensity with the opening of the new fissure, and detachment and decline after the water lake dried. The 3D visualization of the plume displays how plume height and structure through time.

The radar models can be used to locate areas of interest for sampling deposits from the plume on the ground, and to compare high reflectivity zones with phenomena like lightning to correlate visual observations to internal plume dynamics. Lastly, scientists can calculate concentration throughout the plume, the path of the plume, and the total ash volume transported and deposited during the eruption.

Another advantage of weather radar is accessibility. Many stations provide free publicly available near-real-time data, accessible through NOAA’s Weather and Climate Toolkit software. Anyone interested in radar and volcanoes can analyze data from their own computer. Radar is a vital and growing asset in volcanology that will be increasingly useful to HVO in future eruption scenarios.

Source : USGS / HVO.

 

Image du haut: Image radar 2D de la station PHWA (NOAA Weather and Climate Toolkit). Image du bas: Visualisation radar 3D (Google Earth). [Source: USGS]

Péninsule de Reykjanes (Islande) : Au cas où…// Reykjanes Peninsula (Iceland) : Just in case…

Comme je l’ai écrit précédemment, la sismicité est toujours relativement importante sur la Péninsule de Reykjanes. Les scientifiques locaux ont renforcé la surveillance, en particulier celle concernant l’inflation du Mont Þorbjörn qui pourrait être causée par une accumulation de magma. .
De nouveaux instruments ont été installés par l’Icelandic Met Office (IMO) qui a désormais accès aux données fournies par d’autres équipements de surveillance. L’IMO prévoit d’installer deux GPS, un sur le Mt Þorbjörn et un autre à l’ouest de la montagne. L’inflation dans la région a atteint environ 3 cm, après avoir progressé de 3-4 mm par jour depuis le 21 janvier 2020
L’Icelandic Met Office possède un sismomètre à l’ouest de Grindavík, un autre à l’extrémité nord de la Péninsule de Reykjanes ainsi qu’à Vogar et Krýsuvík. De plus, l’IMO aura accès aux données de trois ou quatre sismomètres supplémentaires qui sont utilisés pour un projet de recherche indépendant.
Des images satellites ainsi que la technologie InSAR sont également utilisées pour contrôler et évaluer l’inflation.
L’Icelandic Met Office dispose d’un réseau GPS dans toute la péninsule afin de pouvoir mesurer les mouvements à la surface de la terre. Par ailleurs, il pourra accéder aux données GPS de l’Institut des Sciences de la Terre.
L’accélération de la gravité sera mesurée par l’Islande GeoSurvey (Ísor) pour déterminer si le magma est toujours en train de s’accumuler.
Si une éruption devait se produire, une station radar, située sur le plateau de Miðnesheiði, fournirait des informations sur les panaches de cendre volcanique. Une autre station radar, actuellement implantée ailleurs sur l’île, sera installée à Reykjanes. Enfin, un LiDAR, utilisé pour mesurer les concentrations de cendre volcanique dans l’air, sera installé dans la zone. En cas d’éruption, il sera important de décider si les aéroports peuvent rester ouverts.
Source: Iceland Monitor.

———————————————

As I put it before, seismicity is still significant on the Reykjanes Peninsula, and local scientists want to better monitor the situation, including the inflation of Mt Þorbjörn which might be caused by magma accumulation. .

Additional monitoring equipment has been installed by the Icelandic Met Office (IMO)  and access to data from other monitoring equipment will be obtained. IMO expects to install two GPS devices – one on Þorbjörn volcano, and another one west of the mountain. Inflation in the area has reached about 3 cm, after amounting to 3-4 mm a day since January 21st, 2020

The Icelandic Met Office has one seismometer west of Grindavík, another one on the northernmost tip of Reykjanes as well as in Vogar and Krýsuvík. In addition, the Met Office will obtain access to data from three or four additional seismometers that have been used for a special research project.

Satellite pictures as well as InSAR technology are used as well to assess the inflation.

The Icelandic Met Office has a system of GPS devices throughout Reykjanes, measuring movements on the earth’s surface. The Met Office will obtain access to GPS data from the Institute of Earth Sciences.

In addition, gravity acceleration of the earth will be measured by Iceland GeoSurvey (Ísor) to help determine whether magma is accumulating.

In xase of an eruption, a radar station, located on Miðnesheiði plateau, would provide information about volcanic ash plumes. Another radar station, currently located elsewhere, will be installed in Reykjanes. Finally, a LiDAR, used to measure volcanic ash in the air, will be installed in the area. It would be important when determining whether airports can remain open.

Source : Iceland Monitor.

Vue de Grindavík et du volcan Þorbjörn (Crédit photo mbl.is / Kristinn Magnússon)