Prévision volcanique et principe de précaution

Heureusement qu’il y a le principe de précaution. Côté prévision éruptive, ça patauge un peu depuis quelque temps.

Sur l’Ile de la Réunion, on nous annonçait une éruption « imminente » du Piton de la Fournaise depuis le mois de décembre 2019. Tous les ingrédients étaient présents pour que le volcan se manifeste à nouveau, mais son humeur n’était pas éruptive à ce moment-là. Il a fallu attendre le 10 février 2020 pour que la lave montre le bout de son nez, avant de disparaître quelques jours plus tard..

Comme je l’expliquais précédemment, la prévision éruptive n’a qu’une importance relative à la Réunion dans la mesure où les éruptions se déroulent en général dans l’Enclos Fouqué qui est une zone désertique.

Le seul principe de précaution consiste, pour la Préfecture, à interdire l’accès de l’Enclos aux randonneurs. La mesure est facile à appliquer étant donné que l’entrée dans le site se fait par un portail qu’il suffit de cadenasser.

Le Piton de la Fournaise constitue surtout un excellent laboratoire pour étudier le comportement (fantasque !) d’un volcan.

++++++++++

En Islande, l’activité sismique sur la Péninsule de Reykjanes a décontenancé les scientifiques de l’Icelandic Met Office (IMO). Ces derniers sont habitués à voir des essaims sismiques faire frissonner la péninsule de temps à autre. Le phénomène est prévisible et facile à comprendre étant donné le contexte tectonique dans lequel se situe l’Islande.

Le problème, c’est que depuis quelques semaines on enregistrait une inflation de plusieurs centimètres dans un secteur de la péninsule. Annonçait-elle une prochaine éruption ? L’IMO faisait état d’une possible intrusion magmatique, démentie quelques jours plus tard. Autrement dit, personne ne savait ce qui allait se passer.

Contrairement à l’Enclos Fouqué à la Réunion, le Péninsule de Reykjanes est habitée, même si la densité de population n’est pas énorme. De plus, en cas d’éruption, l’aéroport international de Keflavik, situé à quelques encablures de la péninsule, pourrait être impacté par des nuages de cendre.

La prévision sismique ou éruptive étant impossible, les autorités islandaises ont mis en place le principe de précaution et demandé aux habitants de se tenir prêts à une évacuation en cas d’éruption. Il leur a été vivement conseillé d’être attentifs aux messages d’alerte susceptibles d’être envoyés sur leurs smartphones.

A ce jour, aucune éruption ne s’est produite sur la Péninsule de Reykjanes.

++++++++++

Aux Philippines, le volcan Taal a montré, lui aussi, les difficultés de la prévision éruptive. Le PHIVOLCS n’a pas prévu l’éruption qui a débuté le 12 janvier 2020 avec des panaches de vapeur et de cendre qui sont montés à 10-15 km de hauteur. L’Institut a immédiatement relevé le niveau d’alerte à 4 (éruption dangereuse éruption imminente), sur une échelle de 5 échelons. Aux Philippines, tous les ingrédients étaient présents pour que se produise une puissante éruption (sismicité, gonflement de l’édifice volcanique, intensification des émissions gazeuses), mais l’événement majeur attendu ne s’est (heureusement) jamais produit.

Le PHIVOLCS a constamment conseillé aux autorités d’évacuer sur une vaste zone les populations menacées par le Taal. Le principe de précaution a bien fonctionné et le 19 janvier 2020, 96 000 personnes avaient quitté leurs domiciles.

A la mi-février 2020, le niveau d’alerte pour le Taal est redescendu à 2, ce qui a permis à un grand nombre de personnes de quitter les structures d’hébergement provisoires.

++++++++++

Le 9 décembre 2019, le cratère de White Island (Nouvelle Zélande) explosait, projetant des nuages de cendre, d’eau et de vapeur acides à haute température. Une quarantaine de touristes se trouvaient dans le cratère au moment de l’éruption et 21 personnes ont péri, soit immédiatement, soit des suites de leurs très graves brûlures.

Au moment de l’événement ; le niveau d’alerte était à 2 sur une échelle de 5 : « Moderate to heightened volcanic unrest [Activité volcanique modérée à élevée] .» Selon les volcanologues néo-zélandais, on avait affaire à une “activité volcanique pouvant conduire à un danger éruptif,” le type même de mise en garde vague que l’on rencontre sur tous les volcans actifs de la planète. Aucune éruption ou explosion majeure n’était prévue le 9 décembre 2019, même si le volcan présentait des signes d’activité.

C’est une fois la catastrophe passée que l’on se demande ce qu’il aurait fallu faire, comment on aurait prévenir un tel événement éruptif. La mesure la plus radicale était, bien sûr, d’interdire totalement l’accès à un volcan potentiellement dangereux. La poussée de plus en plus forte du tourisme de masse rend la mise en place d’une telle mesure extrêmement difficile. On aurait pu, aussi, limiter l’accès du cratère à des petits groupes, et éviter ainsi qu’une quarantaine de personnes se fasse surprendre.

Pour le moment, l’accès à White Island est interdit et il risque fort de le rester pendant longtemps. Le traumatisme subi par les Néo-Zélandais sera long à évacuer.

Panache éruptif du Taal (Source: Disaster Risk Reduction Management Council)

Le cratère de White Island après l’explosion (Source: Helicopter Rescue Trust)

 

Volcan Taal (Philippines) : Prévision éruptive…ou pilotage à vue ?

Au cours de ma conférence « Volcans et risques volcaniques », j’explique que, malgré les outils technologiques ultra modernes (systèmes GPS, observations satellitaires, etc) dont disposent les scientifiques, la prévision volcanique reste très aléatoire, pour ne pas dire inexistante, surtout sur les volcans gris, les plus explosifs, donc les plus dangereux. Les terres étant très fertiles, des centaines de milliers de personnes vivent sur leurs pentes ou à proximité.

Lorsqu’un événement majeur se produit, les autorités mettent en général d’emblée en place le principe de précaution. On a tiré les leçons des éruptions meurtrières du passé et on n’attend plus de savoir si le volcan va se mettre vraiment en colère pour évacuer les populations menacées. La dernière éruption du Taal aux Philippines vient confirmer cette stratégie. Il suffit d’observer le déroulement des événements pour s’en rendre compte. Examinons les bulletins d’information émis par le PHIVOLCS (Philippine Institute of Volcanology and Seismomogy) pendant les jours qui ont précédé le réveil du volcan.

Dans un bulletin émis le 8 janvier 2020 à 8 heures du matin, le PHIVOLCS indiquait que le réseau sismique du Taal avait enregistré 29 séismes d’origine volcanique au cours des dernières 24 heures. Les dernières mesures effectuée début janvier révélaient une légère baisse de la température du lac dans le Main Crater (cratère principal), de 31.6°C à 31.5°C. On observait aussi une baisse du niveau de l’eau de 0.34 mètre, contre 0.27 mètre précédemment. L’acidité de l’eau avait augmenté et était passée d’un pH de 2.81 à un pH de 2.75. Le réseau GPS montrait aussi une inflation du volcan, mais sans changement significatif par rapport aux mesures précédentes sur le long terme. Au vu de ces paramètres, le PHIVOLCS avait mis en place le niveau d’alerte à 1, sur une échelle de 5. Cela signifiait qu’ « une éruption dangereuse n’était pas imminente. »

Le bulletin émis le 9 janvier à 8 heures était en grande partie identique à celui de la veille.

Même son de cloche le 10 janvier au matin où le PHIVOLCS signalait toutefois deux séismes susceptibles d’avoir été ressentis par la population.

Bis repetita les 11 et 12 janvier à 8 heures. Les bulletins émis par le PHIVOLCS étaient en tout point identique à ceux des jours précédents. Le niveau d’alerte volcanique était maintenu à 1.

Changement de décor dans le bulletin du 12 janvier à 14h30 ! Le PHIVOLCS signalait des émissions de vapeur dans le Main Crater, probablement générés par une activité phréatique. Rien de vraiment significatif dans l’activité sismique et la déformation du volcan. L’Institut signalait une augmentation régulière de la teneur en CO2 de l’eau du lac de cratère depuis février 2019. Par précaution, le niveau d’alerte volcanique passait de 1 à 2 (probable intrusion magmatique pouvant conduire à une éruption).  Il était demandé à la population de ne pas s’approcher du Main Crater.

Ce même jour à 16 heures, le PHIVOLCS faisait passer le niveau d’alerte de 2 à 3 car l’activité éruptive s’intensifiait avec un panache de 1 km de hauteur et une hausse de la sismicité. L’Institut expliquait qu’il se produisait probablement une intrusion magmatique et conseillait l’évacuation des barangays (unités administratives) d’Agoncillo et Laurel dans la province de Batangas à cause du risque de coulées pyroclastiques et de tsunami.

Une heure trente plus tard, à 17h30, le niveau d’alerte passait de 3 à 4 (dangereuse éruption imminente). L’éruption s’était intensifiée depuis le précédent bulletin, avec un panache de 10 à 15 km de hauteur et des retombées de cendre vers le nord du volcan. Le PHIVOLCS notait la présence de tremor et une hausse de l’activité sismique. Des fissures s’étaient ouvertes et d’autres s’étaient agrandies. Le PHIVOLCS s’attendait à une éruption majeure « dans les prochaines heures ou les prochains jours.» En conséquence, l’Institut conseillait fortement l’évacuation totale de Volcano Island et de la population dans un rayon de 14 km du Main Crater.

L’activité éruptive s’est poursuivie les jours suivants, sans que l’on assiste toutefois à l’éruption cataclysmale annoncée par le PHIVOLCS. Le niveau d’alerte était maintenu à 4 sur 5.

Le 25 janvier 2020, sismicité, déformation de l’édifice volcanique et émissions de SO2 poursuivant leur décrue, le PHIVOLCS a décidé de ramener le niveau d’alerte à 3, sans exclure une baisse à 2 les jours suivant si la baisse d’activité se confirme. Les personnes évacuées ont été en grande partie autorisées à rentrer chez elle. Les écoles primaires et secondaires de la province de Batangas restent toutefois fermées car elles hébergent les habitants de Agoncillo et Laurel, localités qui n’ont pas été jugées suffisamment sures par l’Institut.

°°°°°°°°°°

Les événements que je viens de mentionner montrent que la sismicité est restée intense pendant plusieurs jours avant de décliner progressivement. La cendre a envahi Volcano Island qui, selon les autorités, est en passe de devenir un no man’s land où toute implantation de population devrait être officiellement interdite, mais on sait d’avance qu’une telle mesure sera difficile à mettre en place.

Une évacuation à grande échelle a été décrétée sur une zone d’un rayon de 14 km par rapport au Main Crater. La carte à risque du Taal montre qu’environ 460 000 personnes habitent dans cette zone. Le 21 janvier, 148 987 personnes séjournaient dans 493 centres d’évacuation, en sachant que des milliers d’autres s’étaient réfugiées chez des parents et amis ailleurs dans le pays. La population et l’armée empêchaient les habitants évacués de revenir chez eux.

Ces événements confirment que la gestion de l’éruption s’est faite au jour le jour, au vu des paramètres du moment, surtout en fonction de l’intensité du panache éruptif et des retombées de cendre. L’éruption majeure envisagée par le PHIVOLCS n’a jamais eu lieu. Le principe de précaution a toutefois permis de mettre des dizaines de milliers de personnes à l’abri d’une possible éruption de grande ampleur. Les autorités philippines avaient sûrement en tête l’éruption du Pinatubo en 1991. L’événement avait alors tué quelque 800 personnes, un bilan relativement modéré au vu de la puissance de l’éruption.

Etant donné notre incapacité à réellement prévoir l’évolution d’une éruption sur un volcan explosif de la Ceinture de Feu du Pacifique, l’adoption du principe de précaution est à mes yeux une sage décision. Les autorités philippines ont par ailleurs eu la bonne idée de décréter une évacuation à grande échelle dès le début de l’activité éruptive. En 2010, j’avais critiqué l’évacuation pas à pas décidée par les autorités indonésiennes lors de l’éruption du Mérapi et ses quelque 340 morts. Dans le cas du Taal, aucune victime n’est à déplorer à ce jour. Il est vrai que le volcan a eu la bonne idée de ne pas envoyer de coulées pyroclastiques, ce qui est une différence majeure avec l’éruption du Merapi.

Source: Disaster Risk Reduction Management Council

Une nouvelle technique pour essayer de prévoir les éruptions // A new technique to try to predict eruptions

Notre capacité à prévoir les éruptions est encore très faible aujourd’hui. Des progrès ont certes été réalisés au cours des dernières décennies avec de nouveaux instruments performants, mais les centaines de morts causées par les éruptions du Merapi (Indonésie) en 2010 et du Fuego (Guatemala) en 2018 montrent que nous sommes encore très loin de la prévision parfaite.
Une équipe de chercheurs de l’Illinois et du Michigan a testé une nouvelle technique qui, selon eux,  pourrait permettre de prévoir avec précision à quel moment une éruption volcanique se produira. La méthode utilise physique et statistique pour analyser la probabilité de modèles d’éruptions passées. Pour ce faire, les scientifiques ont étudié l’histoire éruptive du volcan Okmok en Alaska.
Un panache de cendre émis lors de l’éruption de l’Okmok en 2008 s’est étiré sur environ 1,6 km dans le ciel et a constitué un danger pour les moteurs d’avion. L’éruption fut une surprise. En effet, après une éruption en 1997, on avait observé des périodes de légère activité dans les années qui ont suivi, mais pratiquement pas de sismicité ou d’autres signes annonciateurs d’une éruption.
Selon les chercheurs, pour développer de meilleures prévisions, il est essentiel de comprendre les éruptions volcaniques qui s’écartent de la norme. Les éruptions sont généralement prévisibles au vu de la sismicité, de l’inflation de l’édifice volcanique et des émissions de gaz, ainsi que d’autres paramètres analysés au cours de la période précédant une éruption. Cependant, l’Okmok ne présentait aucun de ces paramètres.
L’équipe de chercheurs a utilisé le filtrage de Kalman – Ensemble Kalman Filter (EnKF) – une technique d’analyse de données statistiques qui a été améliorée après la Seconde Guerre mondiale. La version utilisée pour l’étude a été mise à jour en 1996 et a continué à être utilisée dans les prévisions météorologiques et climatiques, ainsi que dans l’océanographie physique. L’équipe de chercheurs a été la première à utiliser la méthode en volcanologie, en particulier pour l’étude de l’éruption de l’Okmok.
Les scientifiques ont constaté qu’il n’y avait pas eu d’augmentation de la sismicité avant l’éruption de l’Okmok en 2008. Cela pourrait s’expliquer par le fait que le réservoir magmatique sous le volcan avait conservé la même taille pendant qu’il se remplissait de gaz à haute température et de magma. Cela a entraîné une hausse de pression dans la chambre qui a provoqué le déplacement des roches environnantes, phénomène qui a fini par déclencher des séismes. Lors de l’éruption de 2008, il apparaît que la chambre magmatique s’est agrandie pour s’adapter à l’augmentation de pression, de sorte que l’activité sismique qui aurait dû normalement précéder l’éruption n’a pas eu lieu et n’a donc pas pu être détectée.
En regardant dans le passé grâce aux nouveaux modèles, les scientifiques ont pu constater que des contraintes s’étaient accumulées pendant des semaines dans les roches autour de la chambre magmatique et la croissance du système magmatique avait finalement entraîné sa rupture et l’éruption volcanique. La modélisation en amont et en aval a permis aux chercheurs d’observer l’évolution du système volcanique. Ils ont été en mesure de faire évoluer le nouveau modèle dans le temps et de prévoir le comportement éruptif de l’Okmok.
Cependant, l’équipe scientifique a ajouté que chaque volcan était différent et qu’un modèle spécifique devrait être élaboré  pour chacun d’eux.

Source: American Geophysical Union (AGU) – Geophysical Research Letters / The Watchers.

———————————————–

Our capacity to predict eruptions is still very low today. Progress has been made in the past decades with new effective instruments but the hundreds of deaths caused by the eruptions of Mt Merapi (Indonesia) in 2010 and Mt Fuego (Guatemala) in 2018 show that we are still very far from the perfect prediction.

A research team from Illinois and Michigan has tested a new technique that could possibly forecast how a volcanic eruption will happen accurately. The method combined physics and statistics to capture the probability of past eruption patterns. The scientists studied the history of the eruption of the Okmok Volcano in Alaska.

An ash plume from the eruption of Okmok in 2008 extended about 1.6 km into the sky and posed a hazard to aircraft engines. The eruption came a a surprise. Indeed, after an eruption in 1997, there were periods of slight unrest, but very little seismicity or other eruption precursors.

According to the researchers, in order to develop better forecasting, it is crucial to understand volcanic eruptions that deviate from the norm. Eruptions are commonly predicted by studying seismicity, inflation of the volcanic edifice and gas emissions, and other established parameters analused during the period that precedes an eruption. However, Okmok did not display any of the patterns.

The research team used a statistical data analysis technique called Ensemble Kalman Filter (EnKF) or Kalman filtering, which was improved after World War II. The version used for the study was updated in 1996 and has continued to be used in weather and climate forecasting, as well as physical oceanography. The research team was the first group to use the updated method in volcanology, especially for Okmok’s eruption study.

The researchers noticed there was a lack of increased seismicity before the eruption. A hypothesis explains that the reservoir under the volcano remained the same size as it filled with hot gases and magma. This resulted in pressure in the chamber that triggered surrounding rocks to move, eventually leading to earthquakes. In the 2008 eruption, it appears that the magma chamber grew larger to accommodate the increasing pressure, so that the precursor seismic activity could not be detected.

By looking back in time with the new models, the scientists could observe that stress had been building up in the rocks around the chamber for weeks, and the growth of the magma system ultimately led to its failure and eruption. The backward and forward modelling enabled researchers to observe the evolution of the volcanic system. They were also able to propagate the new model forward in time and predict Okmok’s eruptive behaviour afterward.

However, the scientific team added that since every volcano is different, a model must be specifically made for each of them.

Source: American Geophysical Union (AGU) – Geophysical Research Letters / The Watchers.

Vue du cratère de l’Okmok le 15 septembre 2008 (Crédit photo : Alaska Volcano Observatory)

Piton de la Fournaise (Ile de la Réunion) : Et maintenant ? // What now ?

Le Piton de la Fournaise a le don de jouer avec les nerfs des scientifiques en poste à l’Observatoire. Trois éruptions en 3 mois, ce n’est pas mal, même si on n’a pas assisté à des événements majeurs. En effet, la lave n’a fait que des apparitions de courte durée. On notera par ailleurs que le magma a percé la surface à des altitudes de plus en plus basses (près du sommet, Chapelle de Rosemont, partie haute des Grandes Pentes. Chaque fois, la lave n’a pas parcouru de longues distances. Les trois éruptions ont été précédées de longs épisodes de sismicité et d’une inflation lente de l’édifice. Il semblerait donc que le magma ait de plus en plus de difficultés à atteindre la surface.

La question qui se pose maintenant est la suivante : Y aura-t-il une nouvelle séquence éruptive ? Bien malin serait celui qui pourrait apporter une réponse ! Dans son dernier bulletin émis le 16 août 2019, l’OVPF fait état de la persistance d’une certaine sismicité sous la zone sommitale. Reste à savoir si elle est causée par des fracturations dues à une nouvelle montée du magma ou à des réajustements au sein de l’édifice volcanique suite aux éruptions précédentes. L’Observatoire n’est pas très bavard à ce sujet.

Les déformations enregistrées par les appareils au sol ne montrent pas de signaux perceptibles depuis la fin de l’éruption. A noter que le champ de déformation associé à l’éruption de la mi août 2019 ne s’est pas étendu à l’extérieur de l’Enclos Fouqué et qu’il n’y a donc pas eu de propagation du dyke dans cette zone.

Le Piton de la Fournaise est truffé d’instruments de mesure. Malgré cela, les scientifiques ne sont pas capables à l’heure actuelle de faire une prévision sur la suite de l’éruption. On touche du doigt les limites de la prévision sur un volcan de point chaud. Une telle prévision est encore plus hasardeuse sur les volcans de subduction.

———————————————

Piton de la Fournaise has the gift of playing with the nerves of scientists stationed at the Observatory. Three eruptions in 3 months, this is not bad, even if they were not major events. Indeed, lava only made short appearances. It should also be noted that magma pierced the surface at increasingly lower altitudes (near the summit, Rosemont Chapel, upper part of the Grandes Pentes, and each time lava did not travel long distances. The eruptions were preceded by long episodes of seismicity and a slow inflation of the edifice, so it seems that magma finds it more and more difficult to reach the surface.
The question now is: Will there be a new eruptive sequence? Very clever would be the one that could provide an answer! In its last bulletin issued on August 16th, 2019, OVPF reported the persistence of a certain seismicity under the summit zone. It remains to be seen if it is caused by fractures due to a new magma ascent, or readjustments within the volcanic edifice following previous eruptions. The Observatory does not say much about this.
The deformations recorded by the ground devices has not shown any noticeable signals since the end of the eruption. It should be noted that the deformation field associated with the eruption of mid-August 2019 did not extend outside the Enclos Fouqué and that there was therefore no spreading of the dyke in this zone. .
Piton de la Fournaise is riddled with measuring instruments. In spite of that, d

Scientists are not able at the moment to make a forecast on the continuation of the eruption. One can clearly see the limits of orediction on a hotspot  volcano. Such a prediction is even more hazardous on subduction volcanoes.

Crédit photo: Christian Holveck