Une éruption de l’Okmok (Alaska) a-t-elle contribué à l’avènement de l’Empire Romain? // Did an eruption of Okmok (Alaska) help the rise of the Roman Empire?

Plusieurs organes de presse internationaux nous apprennent que des chercheurs du Desert Research Institute de Reno (Nevada) ont identifié un volcan d’Alaska dont l’éruption a peut-être contribué à l’avènement de l’Empire Romain. Leur étude a été publiée le 22 juin 2020 dans les Proceedings of the National Academy of Sciences.
Dans les années qui ont suivi l’assassinat de Jules César en l’an 44 avant notre ère, les récits historiques décrivent un froid inhabituel, des pénuries alimentaires, des maladies et une période de famine qui auraient accompagné ce moment charnière de l’histoire occidentale.
Les historiens ont longtemps pensé que cette météo exécrable pouvait être liée à une éruption volcanique, mais ils n’en avaient pas la preuve et n’étaient pas en mesure de déterminer où et quand elle s’était produite, ni avec quelle ampleur.
Après avoir analysé les cendres piégées dans des carottes de glace prélevées au Groenland et en Russie, un groupe de scientifiques et d’historiens pense maintenant que le volcan Okmok (Alaska), qui est entré en éruption en l’an 43 avant notre ère, est le coupable de cette situation. La puissante éruption a creusé un cratère de 10 kilomètres de diamètre. Le volcan se trouve sur l’île d’Umnak dans la chaîne des Aléoutiennes: il est toujours en activité aujourd’hui. Il s’est manifesté pour la dernière fois en 2008.
L’assassinat de César par les sénateurs romains a déclenché une lutte pour le pouvoir qui a mis fin à la République romaine, avec le passage d’une gouvernance démocratique à la dictature de l’Empire Romain. Cet événement a également conduit à la chute du royaume ptolémaïque en Egypte qui s’est trouvée sous la domination romaine.
L’étude scientifique nous explique que les mauvaises récoltes, la famine et les maladies résultant de l’éruption ont probablement exacerbé l’agitation sociale et contribué aux chamboulements politiques. [Note personnelle : une influence semblable d’une éruption volcanique a été observée lors de celle du Laki (Islande) qui a peut-être contribué à déclencher la Révolution française de 1789.]
Dans le cas de l’avènement de l’Empire Romain, l’équipe scientifique a analysé des tephra bien conservés, piégés dans les carottes de glace de l’Arctique pour mettre en relation la période de mauvaises conditions climatiques en Méditerranée et la puissante éruption du volcan Okmok. Les chercheurs ont comparé l’empreinte chimique laissée par les tephra trouvés dans la glace à ceux projetés par d’autres volcans en éruption à cette époque. Il ne faisait aucun doute que la source des retombées de l’an 43 était le volcan Okmok. Les chercheurs ont également identifié une éruption de l’Etna (Sicile) en l’an 44 avant notre ère, mais elle était moins forte et plus limitée en retombées que celle de l’Okmok.
L’éruption d’Okmok a produit des retombées volcaniques qui ont duré deux ans et abaissé la température dans l’hémisphère nord de parfois 7°C. La chute de température est visible sur les cernes d’arbres en Scandinavie et en Autriche. Un pin bristlecone dans les White Mountains de Californie montre un anneau de gel qui révèle des températures inférieures à 0°C au début du mois de septembre 43 avant notre ère. De même, les données climatiques fournies par des grottes en Chine montrent une baisse de température au cours des trois années qui ont suivi l’éruption. Les modèles réalisés par les chercheurs montrent que le temps était probablement beaucoup plus humide que la normale au cours de l’été et de l’automne qui ont suivi l’éruption de l’Okmok. Dans la région méditerranéenne, ces conditions humides et extrêmement froides ont probablement réduit les rendements des cultures et entraîné des problèmes d’approvisionnement pendant les bouleversements politiques qui ont eu lieu au cours de cette période.
Les chercheurs ont déclaré que cette éruption d’Okmok pourrait permettre d’expliquer des phénomènes inhabituels décrits dans les semaines qui ont suivi la mort de César et qui ont été décrits par des auteurs comme Virgile: des halos solaires, le soleil s’assombrissant dans le ciel ou trois soleils apparaissant dans le ciel. A l’époque, ces phénomènes ont été interprétés comme des mauvais présages.
Source: KESQ-TV.

—————————

Several international news media inform us that researchers at the Desert Research Institute in Reno, Nevada, have identified an Alaskan volcano that may have helped the rise of the Roman Empire. Their study was published on June 22nd, 2020 in the Proceedings of the National Academy of Sciences.
In the years after the assassination of Julius Caesar in ancient Rome, historical accounts describe unusual cold, food shortages, disease and famine that accompanied a pivotal moment in Western history.
Historians had long suspected that this unexplained extreme weather could be linked to a volcanic eruption, but they had been unable to pinpoint where or when such an eruption had occurred or how severe it was.
After analyzing the ash trapped in ice cores taken from Greenland and Russia, an international group of scientists and historians now think that Okmok volcano in Alaska, which erupted more than 2,000 years ago, was the culprit. The massive explosion created a 10-kilometre-wide crater. The volcano is located on Umnak Island in the Aleutian Islands chain: it is still active today and last erupted in 2008.
Caesar’s stabbing by Rome’s senators triggered a power struggle that ultimately ended the Roman Republic, leading to a shift from a democratic governance to the dictatorship of the Roman Empire. It also ultimately led to Egypt coming under Roman rule.
The study explains that crop failures, famine and disease resulting from the eruption likely exacerbated social unrest and contributed to political realignments at this “critical juncture of Western civilization.” [Editor’s note : A similar influence of a volcanic eruption was observed when Laki erupted in Iceland and may have helped to trigger the French Revolution of 1789.]
The scientific team analyzed tephra that was trapped in Arctic ice cores to link the period of unexplained extreme climate in the Mediterranean with the massive eruption of Okmok volcano. The researchers compared the chemical fingerprint of the tephra found in the ice with tephra from volcanoes thought to have erupted about that time and it was very clear that the source of the 43 BCE fallout in the ice was the Okmok eruption. They also identified a smaller and more limited volcanic eruption in 44 BCE at Mount Etna (Italy).
The Okmok eruption produced volcanic fallout that lasted two years, lowering temperatures in the Northern Hemisphere by up to 7° C. The change in temperature can be seen in tree ring records in Scandinavia, Austria and California, with one bristlecone pine in California’s White Mountains showing a frost ring that suggested temperatures below freezing in early September 43 BCE. Similarly, climate records from caves in China also showed temperature drops in the three years after the eruption. The researchers’ models suggested it was probably much wetter than normal during the summer and autumn that followed the 43 BCE eruption of Okmok. In the Mediterranean region, these wet and extremely cold conditions during the spring through the autumn seasons probably reduced crop yields and led to supply problems during the ongoing political upheavals of the period.
The researchers said this eruption of Okmok could help explain unusual phenomena described around the immediate time of Caesar’s death by writers like Virgil : solar halos, the sun darkening in the sky or three suns appearing in the sky that at the time were interpreted as omens.
Source : KESQ-TV.

L’Okmok dans la Chaîne des Aléoutiennes (Source : AVO)

Emission de vapeur dans une zone hydrothermale sur la lèvre du Cône C de l’Okmok (Source : Alaska Volcano Observatory)

Une nouvelle technique pour essayer de prévoir les éruptions // A new technique to try to predict eruptions

Notre capacité à prévoir les éruptions est encore très faible aujourd’hui. Des progrès ont certes été réalisés au cours des dernières décennies avec de nouveaux instruments performants, mais les centaines de morts causées par les éruptions du Merapi (Indonésie) en 2010 et du Fuego (Guatemala) en 2018 montrent que nous sommes encore très loin de la prévision parfaite.
Une équipe de chercheurs de l’Illinois et du Michigan a testé une nouvelle technique qui, selon eux,  pourrait permettre de prévoir avec précision à quel moment une éruption volcanique se produira. La méthode utilise physique et statistique pour analyser la probabilité de modèles d’éruptions passées. Pour ce faire, les scientifiques ont étudié l’histoire éruptive du volcan Okmok en Alaska.
Un panache de cendre émis lors de l’éruption de l’Okmok en 2008 s’est étiré sur environ 1,6 km dans le ciel et a constitué un danger pour les moteurs d’avion. L’éruption fut une surprise. En effet, après une éruption en 1997, on avait observé des périodes de légère activité dans les années qui ont suivi, mais pratiquement pas de sismicité ou d’autres signes annonciateurs d’une éruption.
Selon les chercheurs, pour développer de meilleures prévisions, il est essentiel de comprendre les éruptions volcaniques qui s’écartent de la norme. Les éruptions sont généralement prévisibles au vu de la sismicité, de l’inflation de l’édifice volcanique et des émissions de gaz, ainsi que d’autres paramètres analysés au cours de la période précédant une éruption. Cependant, l’Okmok ne présentait aucun de ces paramètres.
L’équipe de chercheurs a utilisé le filtrage de Kalman – Ensemble Kalman Filter (EnKF) – une technique d’analyse de données statistiques qui a été améliorée après la Seconde Guerre mondiale. La version utilisée pour l’étude a été mise à jour en 1996 et a continué à être utilisée dans les prévisions météorologiques et climatiques, ainsi que dans l’océanographie physique. L’équipe de chercheurs a été la première à utiliser la méthode en volcanologie, en particulier pour l’étude de l’éruption de l’Okmok.
Les scientifiques ont constaté qu’il n’y avait pas eu d’augmentation de la sismicité avant l’éruption de l’Okmok en 2008. Cela pourrait s’expliquer par le fait que le réservoir magmatique sous le volcan avait conservé la même taille pendant qu’il se remplissait de gaz à haute température et de magma. Cela a entraîné une hausse de pression dans la chambre qui a provoqué le déplacement des roches environnantes, phénomène qui a fini par déclencher des séismes. Lors de l’éruption de 2008, il apparaît que la chambre magmatique s’est agrandie pour s’adapter à l’augmentation de pression, de sorte que l’activité sismique qui aurait dû normalement précéder l’éruption n’a pas eu lieu et n’a donc pas pu être détectée.
En regardant dans le passé grâce aux nouveaux modèles, les scientifiques ont pu constater que des contraintes s’étaient accumulées pendant des semaines dans les roches autour de la chambre magmatique et la croissance du système magmatique avait finalement entraîné sa rupture et l’éruption volcanique. La modélisation en amont et en aval a permis aux chercheurs d’observer l’évolution du système volcanique. Ils ont été en mesure de faire évoluer le nouveau modèle dans le temps et de prévoir le comportement éruptif de l’Okmok.
Cependant, l’équipe scientifique a ajouté que chaque volcan était différent et qu’un modèle spécifique devrait être élaboré  pour chacun d’eux.

Source: American Geophysical Union (AGU) – Geophysical Research Letters / The Watchers.

———————————————–

Our capacity to predict eruptions is still very low today. Progress has been made in the past decades with new effective instruments but the hundreds of deaths caused by the eruptions of Mt Merapi (Indonesia) in 2010 and Mt Fuego (Guatemala) in 2018 show that we are still very far from the perfect prediction.

A research team from Illinois and Michigan has tested a new technique that could possibly forecast how a volcanic eruption will happen accurately. The method combined physics and statistics to capture the probability of past eruption patterns. The scientists studied the history of the eruption of the Okmok Volcano in Alaska.

An ash plume from the eruption of Okmok in 2008 extended about 1.6 km into the sky and posed a hazard to aircraft engines. The eruption came a a surprise. Indeed, after an eruption in 1997, there were periods of slight unrest, but very little seismicity or other eruption precursors.

According to the researchers, in order to develop better forecasting, it is crucial to understand volcanic eruptions that deviate from the norm. Eruptions are commonly predicted by studying seismicity, inflation of the volcanic edifice and gas emissions, and other established parameters analused during the period that precedes an eruption. However, Okmok did not display any of the patterns.

The research team used a statistical data analysis technique called Ensemble Kalman Filter (EnKF) or Kalman filtering, which was improved after World War II. The version used for the study was updated in 1996 and has continued to be used in weather and climate forecasting, as well as physical oceanography. The research team was the first group to use the updated method in volcanology, especially for Okmok’s eruption study.

The researchers noticed there was a lack of increased seismicity before the eruption. A hypothesis explains that the reservoir under the volcano remained the same size as it filled with hot gases and magma. This resulted in pressure in the chamber that triggered surrounding rocks to move, eventually leading to earthquakes. In the 2008 eruption, it appears that the magma chamber grew larger to accommodate the increasing pressure, so that the precursor seismic activity could not be detected.

By looking back in time with the new models, the scientists could observe that stress had been building up in the rocks around the chamber for weeks, and the growth of the magma system ultimately led to its failure and eruption. The backward and forward modelling enabled researchers to observe the evolution of the volcanic system. They were also able to propagate the new model forward in time and predict Okmok’s eruptive behaviour afterward.

However, the scientific team added that since every volcano is different, a model must be specifically made for each of them.

Source: American Geophysical Union (AGU) – Geophysical Research Letters / The Watchers.

Vue du cratère de l’Okmok le 15 septembre 2008 (Crédit photo : Alaska Volcano Observatory)

L’AVO travaille sur le volcan Okmok (Ile Umnak / Aléoutiennes / Alaska) // AVO is working on Okmok volcano (Umnak Island / Aleutians / Alaska)

drapeau-francaisAujourd’hui, de nouvelles technologies sont utilisées pour mieux comprendre les volcans et, si possible, savoir ce que cachent leurs entrailles. La tomographie muonique a récemment été utilisée par les Japonais pour visualiser la structure interne de volcans comme le Mt Asama, le Mt Iwate ou encore le Mt Satsuma-Iojima. Les scientifiques français ont également utilisé la tomographie muonique dans le projet DIAPHANE sur le volcan de la Soufrière à la Guadeloupe. Des équipes du CNRS ont installé des capteurs de muons cosmiques sur les flancs du volcan. J’ai écrit sur ce blog plusieurs notes à ce sujet entre novembre 2015 et juillet 2016
Cet été, des scientifiques de l’Alaska Volcano Observatory (AVO) se sont rendus sur le volcan Okmok, sur l’île Umnak dans les Aléoutiennes, dans le but de réaliser une image de l’intérieur de ce volcan. Au cours de l’été 2015, l’équipe avait installé un ensemble de sismomètres sur et autour du volcan. Comme les sismomètres mesurent la vitesse à laquelle se déplacent les ondes sismiques à travers la terre, les scientifiques peuvent avoir une idée du type de matériaux à l’intérieur de l’Okmok. En effet, les ondes sismiques se propagent plus vite à travers les roches denses et plus lentement à travers des éléments liquides comme le magma et l’eau.
Des travaux antérieurs ont révélé qu’il y avait une chambre magmatique peu profonde sous l’Okmok. Les nouvelles données aideront à savoir s’il y a d’autres chambres plus profondes dans la croûte. Elles pourraient également aider les scientifiques à comprendre les éruptions futures.
En 2008, Okmok a connu un nouveau type éruptif, différent de ceux du passé, et les scientifiques ont été pris au dépourvu. Les dernières observations – avec une image de la structure profonde du volcan – pourraient apporter des explications sur cette éruption inhabituelle et donner plus d’informations sur les éruptions futures.
A côté de l’Okmok, les scientifiques de l’AVO étudient également le Cleveland, et concentrent leurs efforts sur l’activité tectonique à Unalaska.
Ces observations permettront une approche plus complète de l’environnement sismique dans les Aléoutiennes.
Source: Alaska Volcano Observatory.

—————————————–

drapeau-anglaisToday, new technologies are being used to better understand volcanoes and, if possible, know what their inner parts look like. Muon tomography has recently been used by the Japanese to visualize the internal structure of volcanoes like Mt Asama, Mt Iwate or Mt Satsuma-Iojima. French scientists have also used muon tomography in the DIAPHANE project on the Soufriere volcano in Guadeloupe. CNRS teams installed cosmic muon sensors on the flanks of the volcano. I have written several notes about this technology between November 2015 and July 2016

This summer, scientists from the Alaska Volcano Observatory (AVO) have visited Okmok volcano on Umnak Island in the Aleutians with the aim to create an image of the inside of this volcano. Last summer, the team set out an array of seismometers on and around the volcano. As the seismometers measure the speed at which seismic waves travel through the earth, scientists can get an idea of what kind of material might make up the inside of Okmok. Seismic waves travel faster through dense rock, and slower through liquids like magma and water.

Previous work revealed there was a shallow magma chamber. The new data will help to know if there are other chambers deeper in the crust. It could also help scientists understand future eruptions.

In 2008, Okmok erupted in an entirely new way, breaking a historical pattern and surprising scientists. The team’s latest observations – with an image of the deeper structure – might shed more light on that unusual eruption and give more information about future eruptions..

Beside Okmok, AVO is also studying Mount Cleveland, and measuring tectonic activity on Unalaska.

These observations will allow to create a more complete picture of the seismic environment in the Aleutians.

Source: Alaska Volcano Observatory.

Okmok

Vue du cratère de l’Okmok (Photo: USGS / Alaska Volcano Observatory)