2025 : La glace de mer toujours trop réduite en Arctique et Antarctique // 2025 : Sea ice extent still too low in Arctic and Antarctic

L’étendue de la banquise (ou glace de mer) arctique semble avoir atteint son maximum annuel le 22 mars 2025. Il s’agit du maximum le plus faible enregistré en 47 ans de relevés satellitaires. Les précédents minimums ont été observés en 2017, 2018, 2016 et 2015.
Le 22 mars, la banquise arctique a atteint son étendue maximale avec 14,33 millions de kilomètres carrés. Cette étendue maximale est inférieure de 1,31 million de kilomètres carrés à la moyenne maximale de 15,64 millions de kilomètres carrés observée entre 1981 et 2010, et inférieure de 80 000 kilomètres carrés au précédent maximum le plus faible, enregistré le 7 mars 2017.
Le maximum de cette année a été atteint 10 jours plus tard que la date moyenne du 12 mars pour la période 1981-2010.
La faible étendue de banquise a persisté sur la majeure partie de l’Arctique durant l’hiver 2024-2025. Notamment, le golfe du Saint-Laurent est resté pratiquement libre de glace et la mer d’Okhotsk a connu une étendue de banquise nettement inférieure à la moyenne. Seule la mer du Groenland oriental a affiché une étendue proche de la moyenne durant l’hiver. L’étendue de la banquise dans la mer de Béring est restée faible pendant une grande partie de la saison ; toutefois, la croissance observée entre fin février et fin mars a permis de rapprocher la région des conditions moyennes et a été le principal facteur contribuant à l’augmentation de la banquise arctique en mars. La température a été de 1 à 2 degrés Celsius supérieure à la moyenne dans l’Arctique et les mers environnantes, ce qui a forcément ralenti le rythme de croissance de la glace.
Il convient également de noter que la banquise arctique a atteint son minimum annuel le 10 septembre 2025, se classant au 10ème rang des plus faibles étendues jamais enregistrées par satellite. Avec 1,6 million de km², le minimum de 2025 partage cette place avec ceux de 2008 et 2010. Le NSIDC souligne que les 19 plus faibles étendues de banquise jamais enregistrées se sont toutes produites au cours des 19 dernières années.
Source : National Snow and Ice Data Center (NSIDC).

 

Étendue de la banquise arctique le 22 mars 2025. La ligne orange représente l’étendue moyenne pour cette date entre 1981 et 2010. (Source : NSIDC)

++++++++++

Les données du National Snow and Ice Data Center (NSIDC) montrent que la banquise antarctique a atteint son maximum hivernal de 17,81 millions de kilomètres carrés le 17 septembre 2025. Cela représente 900 000 km² de moins que l’étendue maximale moyenne de la période 1981-2010. Cette période représente la référence historique par rapport à laquelle l’étendue de la banquise est généralement comparée. Le minimum du 17 septembre représente la troisième plus faible étendue jamais enregistrée par satellite et cela marque la troisième année consécutive de forte diminution de la banquise antarctique. 2025 rejoint 2023 et 2024 parmi les trois plus faibles étendues maximales jamais enregistrées. L’étendue de la glace est inférieure de 900 000 km² à la moyenne de 1981-2010. D’après un expert, « l’allongement progressif du minimum de la banquise antarctique suscite de vives inquiétudes quant à la stabilité et à la fonte de la calotte glaciaire ». En effet, on sait que la banquise antarctique sert de rempart aux glaciers de l’Ouest antarctique. Si elle venait à disparaître, des glaciers comme le Thwaites viendraient finir leur course dans l’océan dont ils feraient s’élever le niveau.
La carte ci-dessous illustre l’étendue maximale de la banquise antarctique le 17 septembre 2025, jour où elle a atteint son maximum annuel. La ligne jaune représente la moyenne de la période 1981-2010.
Source : National Snow and Ice Data Center (NSIDC).

Étendue de la banquise antarctique le 17 septembre. La limite moyenne de la banquise pour la période 1981-2010 est représentée en jaune. (Source : NSIDC)

**********

En février 2025, la combinaison d’une étendue de banquise arctique record pour la saison et d’une étendue antarctique bien inférieure à la moyenne à son minimum annuel a entraîné la plus faible couverture de glace de mer dans le monde pour un mois donné depuis le début des observations satellitaires à la fin des années 1970.

——————————————————-

Arctic sea ice extent appears to have reached its annual maximum on March 22, 2025. This is the lowest maximum in the 47-year satellite record, with previous low maximums occurring in 2017, 2018, 2016, and 2015.

On March 22, Arctic sea ice reached its maximum extent for the year, at 14.33 million square kilometers. This year’s maximum extent is 1.31 million square kilometers below the 1981 to 2010 average maximum of 15.64 million square kilometers and 80,000 square kilometers below the previous lowest maximum that occurred on March 7, 2017.

This year’s maximum occurred 10 days later than the 1981 to 2010 average date of March 12.

Low sea ice extent persisted around most of the Arctic during the 2024 to 2025 winter season. Notably, the Gulf of St. Lawrence remained virtually ice free and the Sea Okhotsk had substantially lower sea ice extent than average. Only the East Greenland Sea had near-average extent through the winter. The Bering Sea ice extent was low for much of the season, but growth from late February through late March brought the region closer to average conditions and was the primary contributor to the increase of total Arctic sea ice during March. Temperatures were 1 to 2 degrees Celsius above average in the Arctic and the surrounding seas, which likely slowed the rate of ice growth.

It should also be noted that Arctic sea ice reached its annual minimum on 10 September 2025, ranking as the joint-10th lowest in the satellite record. At 1.6 million km2, the 2025 minimum shares the spot with 2008 and 2010. The NSIDC notes that all 19 of the lowest sea ice extents in the record have occurred in the past 19 years.

Source : National Snow and Ice Data Center (NSIDC).

++++++++++

Data from the National Snow and Ice Data Center (NSIDC) shows that Antarctic sea ice reached a winter maximum of 17.81million square kilometres on 17 September 2025. This is 900,000 km2 below the 1981-2010 average maximum extent, the historical baseline against which more recent sea ice extent is typically compared. This is the 3rd lowest extent in the satellite record and marks the 3rd consecutive year of severely depleted Antarctic sea ice.  2025 joins 2023 and 2024 as the three lowest maximum extents ever recorded. The ice extent is 900,000 square kilometers below the 1981-2010 average. According to one expert, the “lengthening trend of lower Antarctic sea ice poses real concerns regarding stability and melting of the ice sheet”. Indeed, we know that the Antarctic sea ice acts as a barrier to the glaciers of West Antarctica. If it were to disappear, glaciers like the Thwaites would eventually flow into the ocean, causing sea levels to rise.

The map above shows Antarctic sea ice on the day of its maximum extent for the year on 17 September 2025, where the yellow line shows the 1981-2010 average.

Source : National Snow and Ice Data Center (NSIDC).

**********

In February 2025, the combination of record-low Arctic sea ice extent for the time of year and much-below-average Antarctic extent at its annual minimum resulted in the lowest global sea ice cover for any month since the beginning of satellite observations in the late 1970s.

L’impact de l’arrivée des orques dans l’Arctique // Impact of orcas’ arrival in the Arctic

Les orques – aussi appelés épaulards – ont officiellement élu domicile dans l’océan Arctique, ce qui était jusqu’à présent presque impossible. Historiquement, d’épaisses calottes glaciaires empêchaient les orques de s’aventurer dans cette région du globe, mais avec la hausse des températures et la fonte des glaces, de nouvelles voies se sont ouvertes.
Des chercheurs de l’Université du Manitoba ont récemment identifié deux petites populations d’orques génétiquement distinctes qui vivent désormais dans les eaux arctiques toute l’année. Cette découverte, publiée dans la revue Global Change Biology, a surpris les chercheurs, qui s’attendaient à trouver un groupe unique plutôt que deux populations distinctes.
Les scientifiques ont expliqué que suivre le comportement de ces animaux n’est pas une tâche facile. À l’aide de tests génétiques effectués sur des échantillons de peau et de graisse, l’équipe scientifique a confirmé que ces orques observés dans l’Arctique appartiennent à une espèce unique, ce qui signifie qu’elles ne se reconnaissent peut-être même pas comme partenaires potentiels.
L’arrivée des orques dans l’Arctique est plus qu’un simple changement écologique ; elle est susceptible de perturber un écosystème marin déjà fragile. Ces prédateurs au sommet de la chaîne alimentaire sont capables de chasser les baleines arctiques comme les bélugas, les narvals et les baleines boréales, qui étaient auparavant protégés par la glace de mer, mais qui deviendront désormais des proies potentielles pour les orques. Bien qu’il existe encore des centaines de milliers de baleines arctiques par rapport à quelques centaines d’épaulards, on est en droit de se poser des questions sur les impacts à long terme de ce changement dans la biodiversité de l’Arctique..
Au-delà des conséquences écologiques, ce changement est également une préoccupation pour les communautés autochtones qui dépendent des baleines arctiques pour leur alimentation, leur culture et leur économie. La présence permanente des orques pourrait avoir un impact sur les traditions de chasse durables qui existent depuis des générations.
Les chercheurs suivent les déplacements des populations d’épaulards arctiques à l’aide de balises satellites et d’analyses génétiques pour comprendre leur impact. Les agences gouvernementales, dont la NOAA aux États Unis et Pêches et Océans au Canada, évaluent les politiques visant à protéger les espèces arctiques vulnérables. Le Conseil de l’Arctique fait pression pour que soient mis en place des efforts de conservation plus stricts. Les communautés autochtones s’associent aux scientifiques pour intégrer les connaissances traditionnelles dans les stratégies de conservation. Ces efforts combinés pourraient aider à gérer le changement écologique et à protéger la vie marine arctique de nouvelles perturbations.
Source : Yahoo Actualités.

Orques en Alaska (Photo: C. Grandpey)

——————————————–

Killer whales, or orcas, have officially made the Arctic Ocean their home, something that was nearly impossible until now. Historically, thick ice sheets blocked the whales from venturing into this region, but as rising temperatures melt the ice, new pathways have opened up.

Researchers at the University of Manitoba recently identified two small, genetically distinct populations of orcas now living in Arctic waters year-round. The discovery, published in Global Change Biology, was a surprise to the researchers, who expected to find a single migrating group rather than two separate populations.

Researchers explained that tracking these animals is no easy task. Using genetic testing from skin and blubber samples, the scientific team confirmed that these Arctic orcas are unique, meaning they may not even recognize one another as potential mates.

The arrival of killer whales in the Arctic is more than just an interesting ecological shift ; it has the potential to disrupt an already fragile marine ecosystem. These apex predators are now able to hunt Arctic whales like belugas, narwhals, and bowhead whales, which were previously protected by sea ice, but will become vulnerable preys to orcas. While there are still hundreds of thousands of Arctic whales compared to a few hundred killer whales, the long-term impacts of this shift remain uncertain.

Beyond the ecological consequences, this change is also a concern for Indigenous communities who rely on Arctic whales for food, culture, and economy. The continued presence of killer whales could impact sustainable hunting traditions that have existed for generations.

Researchers are tracking Arctic killer whale populations using satellite tags and genetic analysis to understand their movements and impact. Government agencies, including the U.S. NOAA and Fisheries and Oceans Canada, are evaluating policies to protect vulnerable Arctic species. The Arctic Council is pushing for stricter conservation efforts. Indigenous communities are partnering with scientists to integrate traditional knowledge into conservation strategies. These combined efforts could help manage the ecological shift and protect Arctic marine life from further disruption.

Source : Yahoo News.

Poussière cosmique et réchauffement climatique dans l’Arctique // Cosmic dust and global warming in the Arctic

Selon la définition, la poussière cosmique – également appelée poussière extraterrestre ou interplanétaire, poussière spatiale ou poussière d’étoiles – est une poussière présente dans l’espace ou qui s’est déposée sur Terre. La plupart des particules de poussière cosmique mesurent entre quelques molécules et 0,1 mm (100 µm), comme les micrométéorites (< 30 µm) et les météoroïdes (> 30 µm). Des particules de poussière interstellaire ont été collectées par la sonde Stardust et des échantillons ont été rapportés sur Terre en 2006.
La poussière interplanétaire enrichie en hélium-3 qui s’est déposée sur les fonds marins a fourni aux climatologues un témoignage historique indispensable de l’évolution de la banquise. Grâce à cette poussière, les scientifiques espèrent pouvoir comprendre comment l’Arctique réagira à l’aggravation de la crise climatique.
La superficie de la banquise (aussi appelée glace de mer) de l’océan Arctique a diminué de plus de 42 % en raison de la hausse des températures depuis le début des observations satellitaires en 1979, et l’Arctique continue de se réchauffer plus rapidement qu’ailleurs sur Terre. D’ici quelques décennies, il se pourrait que l’océan Arctique soit libre de glace tout l’été. Outre la montée du niveau de la mer qui en résulterait, les scientifiques veulent mieux comprendre comment cette évolution de la banquise affecte l’habitabilité de l’Arctique et du reste du monde.

Photo: C. Grandpey

Les résultats de leurs travaux ont été publiés le 8 novembre 2025 dans la revue Science. On peut y lire : « Si nous parvenons à prévoir le calendrier et la répartition spatiale du recul de la banquise, cela nous aidera à comprendre le réchauffement climatique, à anticiper les changements des chaînes alimentaires et de la pêche, et à nous préparer aux bouleversements géopolitiques.»
Jusqu’à présent, il était difficile d’établir des prévisions précises concernant la banquise arctique, notamment en raison de l’absence de données historiques. La poussière cosmique pourrait combler ce vide. Lorsque l’océan Arctique est recouvert de glace, cette poussière ne peut atteindre le fond marin. Par contre, lorsque l’océan est dépourvu de glace, une plus grande quantité de poussière cosmique peut se déposer sous forme de sédiments. Les auteurs de l’étude ont recherché cette poussière dans des carottes sédimentaires prélevées à trois endroits de l’océan Arctique : près du pôle Nord où la glace est présente toute l’année ; près de la limite de la banquise en septembre, lorsque la couverture de glace est à son minimum annuel ; et sur un site qui était recouvert de glace en 1980, mais qui ne l’est plus.

Photo: C. Grandpey

Les scientifiques recherchaient en particulier des couches sédimentaires contenant les isotopes hélium-3 et thorium-230. Chacun a une origine différente. L’hélium-3 est présent dans la poussière cosmique, ayant été capturé par les grains de poussière du vent solaire, tandis que le thorium est un produit de désintégration de l’uranium naturel dissous dans l’océan. Lorsque la glace recouvre l’océan en grande quantité, le rapport thorium-230/hélium-3 devrait être plus élevé que lorsque la glace est moins épaisse et que davantage de poussière cosmique peut atteindre le fond marin.

Les carottes sédimentaires ont fourni un enregistrement historique retraçant les périodes où des quantités plus ou moins importantes de poussières cosmiques ont atteint le fond de l’océan, ce qui correspond à des variations de la couverture de glace de mer. Cette dernière a connu des fluctuations au fil des millénaires, et les carottes indiquent qu’au début de la dernière période glaciaire, il y a environ 20 000 ans, la quantité de poussières cosmiques sur les fonds marins a diminué car la glace recouvrait alors la totalité de l’Arctique durant toute l’année.

Lorsque la glace a commencé à fondre et à se retirer, marquant la fin de la dernière période glaciaire il y a 15 000 ans, les carottes sédimentaires révèlent une augmentation de la quantité de poussières cosmiques dans les sédiments du fond marin.
Le plus intéressant réside dans les informations que ces carottes nous fournissent sur les facteurs qui déterminent l’étendue de la banquise et sur la manière dont sa présence, ou son absence, influence l’équilibre des nutriments et, par conséquent, la biosphère océanique.

Photo: C. Grandpey

On pensait jusqu’alors que la fonte des glaces de l’océan Arctique était liée à la température de l’océan, mais les résultats de cette étude indiquent qu’elle est davantage influencée par les températures atmosphériques. Cette information est cruciale car l’océan réagit plus lentement aux changements climatiques que l’atmosphère. Si cela se confirme, la fonte des glaces de l’océan Arctique pourrait s’accélérer plus rapidement que prévu.
Les chercheurs ont également constaté une corrélation entre la couverture de glace et la vitesse à laquelle les nutriments océaniques sont consommés par les processus biologiques. Des coquilles minuscules, autrefois usées par des micro-organismes – les foraminifères – ont été retrouvées dans les carottes de sédiments. Une analyse chimique a révélé la part des nutriments disponibles consommée par ces micro-organismes à différentes périodes de leur vie. Les scientifiques ont établi une corrélation entre l’augmentation de la consommation de nutriments et la diminution de la banquise.
L’étude laisse encore certaines questions en suspens, notamment celle de savoir pourquoi la disponibilité des nutriments varie en fonction de la quantité de glace de mer. Une explication possible est que la diminution de la glace libère de l’espace à la surface de l’océan, favorisant ainsi le développement d’algues photosynthétiques qui produisent davantage de nutriments.
Source : space.com.

———————————————–

As the definition goes, cosmic dust – also called extraterrestrial or interplanetary dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids (<30 μm) and meteoroids (>30 μm). Interstellar dust particles were collected by the Stardust spacecraft and samples were returned to Earth in 2006.

Interplanetary dust laced with helium-3 that has settled on the sea floor has provided climate scientists with an urgently needed historical record of sea ice. These scientists are battling with understanding how the Arctic will respond to the worsening climate crisis.

The amount of ice on the Arctic Ocean has depleted by more than 42% in response to rising temperatures since regular satellite monitoring began in 1979, and the Arctic continues to warm faster than anywhere else on Earth. In a few decades time we could see the Arctic Ocean free of ice all summer long. Besides the resultant rising sea levels, scientists want to learn more about how this change in sea ice affects the habitability of the Arctic and the wider world.

The results of their work were published on November 8 2025 in the journal Science. One can read : « If we can project the timing and spatial patterns of ice coverage decline in the future, it will help understand warming, predict changes to food webs and fishing, and prepare for geopolitical shifts. »

Until now, it has been difficult to make accurate predictions about the Arctic sea ice in part because there have been no historical records to base predictions on. I

The cosmic dust can fill this void. When the Arctic Ocean is covered in ice, the dust is prevented from reaching the sea floor. So when the ocean is largely absent of ice, more of the cosmic dust is able to settle as sediment.

The authors of the study went searching for this dust in sedimentary cores taken from three locations in the Arctic Ocean: one near the North Pole where there is ice present all year, one near the edge of the ice in September when ice coverage is at its annual lowest, and another at a site that was covered in ice in 1980, but no longer is. In particular, the researchers were looking for sedimentary layers of the isotopes helium-3 and thorium-230. Each has a different origin. Helium-3 is present in cosmic dust, having been captured by dust grains from the sun’s solar wind, whereas thorium is a decay product of naturally occurring uranium that has become dissolved in the ocean. At times of high ice abundance on the ocean, the ratio of thorium-230 to helium-3 should be higher than at times when there is less ice and more cosmic dust can reach the seabed.

The cores provided a historical record chronicling periods when greater and smaller amounts of cosmic dust have reached the bottom of the ocean, corresponding to differing amounts of sea ice. The ice has waxed and waned over millennia, and the cores indicate that the dawn of the most recent ice age, beginning about 20,000 years ago, saw a decrease in the amount of cosmic dust on the seabed as ice covered the entirety of the Arctic all year round.

When the ice began to melt and retreat as the ice age started to come to an end 15,000 years ago, the cores show that the amount of cosmic dust in the sediment on the sea floor began to increase.

What is most interesting is what the cores tell us about what governs the amount of sea ice and how its presence, or lack thereof, can influence the balance of nutrients and hence the biosphere of the ocean.

The assumption had been that the loss of ice from the Arctic Ocean was governed by the temperature of the ocean, but the results of the study indicate that it has more to do with atmospheric temperatures instead. This is a crucial piece of information because the ocean takes longer to respond to climate change than the atmosphere. If true, then we may lose sea ice in the Arctic Ocean more quickly than we expected.

The researchers also found that sea-ice coverage is correlated with how quickly nutrients in the ocean are consumed by biological processes. Tiny shells that were once worn by microbes called foraminifera were present in the cores, and a chemical analysis revealed how much of the total available nutrients they consumed when the microbes were alive at different points in the historical record. The scientists found a correlation between increased consumption of nutrients and a lack of sea ice.

The study still leaves some questions unanswered for now, such as why nutrient availability changes with the amount of sea ice present. One possible explanation is that with less ice, there is more room on the surface of the ocean for photosynthesizing algae that produce more nutrients.

Source : space.com.

La banquise antarctique fond encore beaucoup trop vite // Antarctic sea ice is still melting far too quickly

Au cours de l’hiver austral 2024-2025, la banquise (ou glace de mer) de l’Antarctique a atteint son troisième niveau le plus bas depuis près d’un demi-siècle de surveillance par satellite. Cela confirme l’influence de plus en plus significative du réchauffement climatique sur le Continent blanc.
Chaque année, pendant l’hiver austral, l’océan autour de l’Antarctique gèle à des centaines de kilomètres au-delà du continent. Le maximum est généralement observé en septembre ou octobre, avant le début du cycle de dégel.
Selon le National Snow and Ice Data Center (NSIDC) de l’Université du Colorado à Boulder aux États Unis, en 2025, la banquise a atteint son pic le 17 septembre, avec une superficie de 17,81 millions de kilomètres carrés.
Le maximum de 2025 se classe au troisième rang des plus bas niveaux enregistrés depuis 47 ans, derrière le plus bas niveau historique de 2023 et le deuxième plus bas de 2024. Malgré tout, le niveau de 2025 reste bien en deçà de la normale historique.
Jusqu’en 2016, les mesures de la banquise antarctique avaient montré une légère augmentation – quoique irrégulière – au fil du temps. Aujourd’hui, il semble que la chaleur de l’océan se mélange aux eaux les plus proches de l’Antarctique. Cela signifie que le réchauffement climatique a fini par jeter son emprise sur les mers gelées du continent austral.
Dans la mesure où elle flotte, la banquise ne fait pas monter le niveau de la mer lorsqu’elle fond. C’est comme un glaçon dans un verre d’eau. Cependant, sa perte de surface fait disparaître les surfaces blanches qui réfléchissent la lumière du Soleil vers l’espace et les remplace par de l’eau d’un bleu profond qui absorbe cette même quantité de lumière.
De plus, la banquise agit également comme un tampon stabilisateur qui empêche la calotte glaciaire antarctique de pénétrer dans l’océan – et donc d’amplifier l’élévation du niveau de la mer – en réduisant l’impact des vagues avant qu’elles atteignent la côte et en atténuant l’effet des vents sur l’océan.
Les scientifiques ont observé davantage de chutes de neige en Antarctique car l’air humide au-dessus de l’océan atteint plus facilement la côte avec moins de banquise. Les tempêtes qui arrivent au-dessus de la calotte glaciaire transportent plus d’humidité et produisent donc plus de chutes de neige sur le continent, ce qui compense l’élévation du niveau de la mer. Cependant, si l’augmentation des chutes de neige peut compenser les effets déstabilisateurs pendant des décennies, les données historiques montrent qu’à plus long terme, lorsque le climat reste plus chaud, la calotte glaciaire rétrécit.
La calotte glaciaire de l’Antarctique contient suffisamment de glace pour faire s’élever le niveau des mers de plusieurs mètres et inonder les côtes basses dans le monde entier, même si un tel impact catastrophique se répartirait probablement sur plusieurs siècles.
Il ne faudrait pas oublier que 90 % de la chaleur générée par le réchauffement climatique d’origine humaine est absorbée par les océans.
Source : NSIDC.

Source : NSIDC

——————————————————

Antarctica’s winter sea ice has hit its third-lowest level in nearly half a century of satellite monitoring, highlighting the growing influence of global warming on the planet’s southern pole.

Each year during the Southern Hemisphere’s winter, the ocean around Antarctica freezes hundreds of kilometers beyond the continent, with the maximum reach usually observed in September or October, before the thawing cycle begins.

According to the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder, in 2025 the ice appeared to peak on September 17 at 17.81 million square kilometers.

The 2025 maximum ranks as the third lowest in the 47-year record, behind the all-time low in 2023 and the second-lowest in 2024, but still well below the historic normal.

Until 2016, measurements of Antarctic sea ice had shown an irregular but slight increase over time. Today,what seems to be happening is that warmth from the global ocean is now mixing into the water that is closest to Antarctica, which means that global warming finally caught up with the southern continent’s frozen seas.

Floating sea ice does not add to sea level when it melts. It’s like an ice cube in a glass of water. However, its retreat replaces white surfaces that reflect the Sun’s energy back into space with deep blue water which absorbs the same amount instead.

The sea ice also acts as a stabilizing buffer protecting the Antarctic Ice Sheet from entering the ocean and amplifying sea level rise by reducing the impact of waves before they reach the coast and lessening the effect of winds over the ocean.

Scientists have observed more snowfall in Antarctica, because the humid air over the ocean gets closer to the coast with less sea ice. Storms that arrive over the ice sheet carry more moisture and therefore produce more snowfall over the continent, which offsets sea level rise. However, while increased snowfall could offset destabilization effects for decades, over longer timescales past records show that when the climate stays warmer, the ice sheet shrinks.

The Antarctic Ice Sheet holds enough land ice to raise seas high enough to inundate low-lying coastlines around the world, though such a catastrophic impact would likely unfold over centuries.

Ninety percent of the heat generated by human-caused global warming is soaked up by the oceans.

Source : NSIDC.