Nouveau projet géothermique dans l’Oregon // New geothermal project in Oregon

Le 12 octobre 2012, j’ai publié une note sur ce blog à propos d’un projet de développement de l’énergie géothermique dans la région du volcan Newberry (Oregon). Ce projet avait suscité de nombreuses protestations dans cette région potentiellement volcanique et sismiquement active, ce qui présentait des risques évidents.
Aujourd’hui, en 2025, nous apprenons que des ingénieurs construisent la centrale géothermique la plus chaude au monde. Elle exploitera l’énergie de ce qui est, selon l’USGS, « l’un des volcans actifs les plus dangereux des États-Unis ».

Vue du site exploité par Mazama Energy sur le Newberry

La société Mazama Energy a déjà atteint des températures de 331 °C, ce qui en fait l’un des sites géothermiques les plus chauds au monde. Elle commencera à vendre de l’électricité aux foyers et aux entreprises des environs dès 2026.
Mazama Energy souhaite maintenant atteindre une température de 389 °C et devenir la première à produire de l’électricité à partir de « roche surchauffée ». Certains affirment que l’on est à l’aube d’une nouvelle ère pour l’énergie géothermique. Aujourd’hui, la géothermie produit moins de 1 % de l’électricité dans le monde. Toutefois, l’exploitation de la chaleur extrême des roches, combinée à d’autres avancées technologiques, pourrait porter cette part à 8 % d’ici 2050 ; c’est ce que prétend l’Agence internationale de l’énergie (AIE). L’AIE explique qu’ en utilisant des températures extrêmement élevées la géothermie pourrait théoriquement produire 150 fois plus d’électricité que la consommation mondiale.

Le projet entrepris sur le volcan Newberry combine deux grandes tendances susceptibles de rendre l’énergie géothermique moins chère et plus accessible. Mazama Energy achemine sa propre eau jusqu’au volcan, grâce à une méthode baptisée « géothermie améliorée ». Au cours des dernières décennies, des projets pionniers ont commencé à produire de l’énergie à partir de roches chaudes et sèches en fracturant la pierre et en y injectant de l’eau pour produire de la vapeur, en s’inspirant des techniques de fracturation hydraulique développées par l’industrie pétrolière et gazière. Des projets pilotes ont été mis en place au Nevada et en Utah, et des chercheurs internationaux ont démontré l’efficacité de cette technologie en France, en Allemagne, en Suisse et au Japon. Injecter de l’eau dans des fractures rocheuses comporte des risques sismiques, tout comme l’injection d’eaux usées issues de la fracturation hydraulique. Une expérience de ‘géothermie améliorée’ en Suisse a été interrompue après avoir déclenché un séisme de magnitude 3,4 en 2006. Les capteurs du site de Newberry ont enregistré cinq secousses sismiques au cours des six derniers mois ; la plus importante a atteint une magnitude de 2,5 le 24 juillet 2025. Les scientifiques affirment que les séismes constitueront toujours un risque, mais qu’il peut être géré grâce à une surveillance et une ingénierie efficaces.

Le Département de l’Énergie indique que les risques de pollution de l’eau sont faibles car les centrales géothermiques recyclent l’eau dans des puits étanches, et cette eau passe par des réservoirs beaucoup plus profonds que la plupart des nappes phréatiques.
Le projet de Newberry exploite également une roche plus chaude que tous les projets précédents. Cependant, même les 331 degrés de Newberry restent inférieurs au seuil de surchauffe de 373 degrés ou plus. À cette température, et sous une pression très élevée, l’eau devient « supercritique » et se comporte comme un fluide à mi-chemin entre un liquide et un gaz. L’eau supercritique emmagasine une grande quantité de chaleur comme un liquide, tout en s’écoulant avec la fluidité d’un gaz.
Un puits géothermique à très haute température peut produire cinq à dix fois plus d’énergie qu’un puits à température classique, qui avoisine les 204 °C. De ce fait, les exploitants géothermiques n’ont plus besoin de forer autant de puits coûteux, ce qui permet de réduire les coûts.
À terme, l’énergie géothermique issue de roches à très haute température pourrait être aussi économique que le gaz naturel ou l’énergie solaire, sans la pollution des énergies fossiles ni la variabilité des énergies renouvelables.

Mazama Energy prévoit de forer de nouveaux puits l’an prochain afin d’atteindre des températures supérieures à 398 °C. À proximité d’un volcan actif, elle espère atteindre cette température à moins de 5 kilomètres de profondeur. Ailleurs, les exploitants géothermiques doivent souvent creuser jusqu’à 20 kilomètres.
Forer dans une roche à 398 °C représente un défi de taille. Les centrales géothermiques conventionnelles utilisent des équipements prévus pour l’industrie pétrolière et gazière, mais dans une roche surchauffée, les foreuses classiques deviennent inutilisables car leurs composants électroniques sont défaillants. Les ingénieurs de Mazama Energy ont refroidi leurs installations de forage en injectant un flux constant de dioxyde de carbone liquide. Cela leur a permis de forer à 3,2 km de profondeur sur le flanc du volcan et d’atteindre une roche à 331 °C en début d’année.
D’autres puits expérimentaux ont atteint des températures encore plus élevées, mais aucun n’a résisté longtemps. Des expériences de forage en Islande et à Hawaï ont été interrompues après avoir rencontré du magma de manière inattendue, ce qui a endommagé les trépans. Des puits forés au Japon et en Italie ont atteint des roches à plus de 482 °C, approchant la zone de la croûte terrestre où la roche rigide commence à se comporter comme de la pâte à modeler. Cependant, ces forages ont été abandonnés suite à des problèmes rencontrés avec le matériel de forage et les tubages en ciment.
Pour l’instant, Mazama Energy affirme que son puits est stable. Cependant, les scientifiques prévoient que les difficultés s’accumuleront à mesure que l’entreprise forera dans des roches plus chaudes et exploitera ses puits pendant des années. Les tubages en ciment et en acier seront alors exposés à des variations extrêmes de température et de pression.
Cependant, les avantages potentiels de cette nouvelle géothermie sont bien supérieurs aux défis qu’elle suppose. Mazama Energy prévoit de produire 15 mégawatts d’électricité sur le flanc ouest du volcan Newberry en 2026, avec une augmentation progressive de la production jusqu’à 200 mégawatts, soit suffisamment d’énergie pour alimenter un grand centre de données ou une petite ville.
Source : Médias américains.

Big Obsidian Flow dans le parc du Newberry (Photo: C. Grandpey)

————————————————-

On October 12, 2012 I released a post on this blog, about a geothermal energy development project in the Newberry volcano area (Oregon). Such a project had triggered numerous protests because the region is potentially volcanically and seismically active, and the project therefore presented obvious risks.

Today in 2025, we learn that engineers are building in the region the hottest geothermal power plant on Earth. The plant will tap into the energy of what is, according to the USGS, “one of the largest and most hazardous active volcanoes in the United States.”.

Newberry

Vue du site exploité par Mazama Energy sur le Newberry (Source : Mazama Energy)

The structure has already reached temperatures of 331 degrees Celsius, making it one of the hottest geothermal sites in the world, and next year it will start selling electricity to nearby homes and businesses.

But the start-up behind the project, Mazama Energy, wants to reach a temperature of 389°C and become the first to make electricity from “superhot rock.”

Enthusiasts say that could usher in a new era of geothermal power. Today, geothermal produces less than 1 percent of the world’s electricity. But tapping into superhot rock, along with other technological advances, could boost that share to 8 percent by 2050, according to the International Energy Agency (IEA) which explains that geothermal using superhot temperatures could theoretically generate 150 times more electricity than the world uses..

The Newberry Volcano project combines two big trends that could make geothermal energy cheaper and more widely available. First, Mazama Energy is bringing its own water to the volcano, using a method called “enhanced geothermal energy.” Over the past few decades, pioneering projects have started to make energy from hot dry rocks by cracking the stone and pumping in water to make steam, borrowing fracking techniques developed by the oil and gas industry. Pilot projects have been developed in Nevada and Utah, and international researchers have demonstrated the technology in France, Germany, Switzerland and Japan.

Pumping water into rock fractures risks causing earthquakes, much like injecting wastewater from fracking. A Swiss enhanced geothermal experiment was shut down after setting off an M 3.4 quake in 2006. Sensors at the Newberry site recorded five tremors in the past six months, with the biggest reaching M2.5 on July 24, 2025.

Scientists say earthquakes will always be a risk, but it can be managed with good monitoring and engineering. The Energy Department says water pollution risks are low because geothermal plants recirculate the same water in sealed wells, passing through reservoirs much deeper than most groundwater.

The Newberry project also taps into hotter rock than any previous enhanced geothermal project. But even Newberry’s 331 degrees fall short of the superhot threshold of 373 degrees or above. At that temperature, and under a lot of pressure, water becomes “supercritical” and starts acting like something between a liquid and a gas. Supercritical water holds lots of heat like a liquid, but it flows with the ease of a gas, combining the best of both worlds for generating electricity.

A superhot geothermal well can produce five to 10 times more energy than a well at typical temperatures, which hover around 204°C. That means geothermal operators don’t have to drill as many multimillion-dollar holes in the ground, bringing down costs.

Eventually, superhot rock geothermal energy could be about as cheap as natural gas or solar — without the pollution of fossil fuels or the variability of renewables.

The Mazama company will dig new wells to reach temperatures above 398°C next year. Alongside an active volcano, the company expects to hit that temperature less than 5 kilometers beneath the surface. But elsewhere, geothermal developers might have to dig as deep as 20 kilometers.

Drilling into 398°C rock presents some devilish challenges. Conventional geothermal plants can use gear developed by the oil and gas industry, which can stand up to lower temperatures. But in superhot rock, standard drills die as their electronic components fail. Mazama engineers cooled their drilling rigs by pumping in a constant stream of liquid carbon dioxide. That allowed them to burrow3.2 km into the flank of the volcano to find 331 degrees rock earlier this year.

Other experimental wells have hit even higher temperatures, but none has survived for long. Drilling experiments in Iceland and Hawaii were called off after they unexpectedly hit magma, which broke their drill bits. Wells in Japan and Italy reached rock hotter than 482°C approaching the region of Earth’s crust where rigid rock starts behaving more like putty, but were abandoned after facing problems with their drilling equipment and cement casings.

So far, Mazama says its well has remained stable. But experts say challenges will pile up as the company drills into hotter rock and operates its wells for years on end, exposing the cement and steel casings to punishing up-and-down cycles of temperature and pressure.

However, the potential rewards loom larger than the challenges. Mazama plans to generate 15 megawatts of electricity on the western flank of Newberry Volcano in 2026, eventually ramping up to 200 megawatts, enough to power a big data center or a small city.

Source : US news media.

Trump s’acharne contre l’énergie éolienne // Trump attacks wind power

Quelques jours après que toutes les agences climatiques ont déclaré que 2024 avait été l’année la plus chaude jamais enregistrée et que des mesures devaient être prises pour réduire les émissions de gaz à effet de serre, l’Administration Trump a publié, le 16 avril 2025, un décret ordonnant l’arrêt de la construction d’un important projet éolien offshore destiné à alimenter plus de 500 000 foyers new-yorkais. Ce décret s’inscrit dans une série de mesures visant les énergies renouvelables.
Le secrétaire américain à l’Intérieur a ordonné au Bureau of Ocean Energy Management d’interrompre la construction d’Empire Wind, un projet qui avait reçu le feu vert de l’Administration Biden, au sud-est de Long Island. Le secrétaire à l’Intérieur a déclaré que le projet nécessitait un examen plus approfondi et a reproché à l’Administration Biden d’avoir pris une décision trop hâtive. L’entreprise norvégienne Equinor a déjà entrepris la construction d’Empire Wind qui devait produire de l’électricité en 2026.
Trump s’est toujours montré hostile aux énergies renouvelables, en particulier à l’éolien offshore. Dès son entrée en fonction, il a signé un décret suspendant temporairement les baux éoliens offshore accordés dans les eaux fédérales et il a suspendu les permis pour tous les projets éoliens. Le mois dernier, l’Administration a annulé un projet éolien offshore au large des côtes du New Jersey. Heureusement, la construction de ce parc éolien n’avait pas encore commencé.
Alors que Trump se veut le chantre de l’abondance énergétique, l’American Clean Power Industry Association (association industrielle américaine de l’énergie propre) a déclaré que l’arrêt de la construction de projets énergétiques déjà validés était « littéralement à l’opposé » de la notion d’abondance énergétique et envoyait un « signal effrayant » à toutes les entreprises énergétiques. L’association a ajouté que New York avait besoin de l’éolien offshore et d’autres projets d’énergie propre pour faire face à la hausse des coûts de l’énergie et créer des emplois. Selon ses responsables, les États-Unis ne peuvent être indépendants énergétiquement sans l’éolien offshore.
L’Administration Biden a cherché à accélérer le développement de l’éolien offshore comme solution au réchauffement climatique, en approuvant près d’une douzaine de projets éoliens offshore à échelle commerciale. Le premier parc éolien offshore du pays a ouvert il y a un an. Il s’agit d’un parc de 12 éoliennes baptisé South Fork Wind, situé à 56 kilomètres à l’est de Montauk Point, dans l’État de New York.
Dans ce que je qualifierais personnellement de décision honteuse, Trump a commencé à inverser la politique énergétique du pays dès son premier jour de mandat. Il a promulgué une série de décrets visant à stimuler le pétrole, le gaz et le charbon. L’Administration examine actuellement tous les permis éoliens offshore existants et en attente. On peut craindre le pire.
Source : Médias américains.

Source: Equinor

———————————————-

A few days after all climate agencies around the world that 2024 was the hottest year ever and that measures should be taken to reduces greenhouse gas emissions, the Trump administration issued an order on April 16th, 2025 to stop construction on a major offshore wind project to power more than 500,000 New York homes, the latest in a series of moves targeting the renewable energies.

The U.S. Interior Secretary has directed the Bureau of Ocean Energy Management to halt construction on Empire Wind, a fully-permitted project located southeast of Long Island. He said it needs further review because it appears the Biden administration rushed the approval. The Norwegian company Equinor is building Empire Wind to start providing power in 2026.

Trump has been hostile to renewable energy, particularly offshore wind. His first day in office, Trump signed an executive order temporarily halting offshore wind lease sales in federal waters and pausing the permits for all wind projects. Last month, the Administration revoked the Clean Air Permit for an offshore wind project off the coast of New Jersey. Construction on that wind farm had not yet begun.

While Trump is focused on energy abundance, the American Clean Power industry association said halting construction of fully-permitted energy projects is the “literal opposite » of that agenda, and it sends a “chilling signal” to all energy companies. It added that New York needs offshore wind and other clean energy projects to help address rising energy costs and create jobs. The United States can’t be energy independent without offshore wind.

The Biden administration sought to ramp up offshore wind as a climate change solution, approving nearly a dozen commercial-scale offshore wind energy projects. The nation’s first commercial-scale offshore wind farm opened a year ago, a 12-turbine wind farm called South Fork Wind 56 kilometers east of Montauk Point, New York.

In what I would personally call a shameful decision, Trump began reversing the country’s energy policies his first day in office with a spate of executive orders aimed at boosting oil, gas and coal. The administration is reviewing all existing and pending offshore wind permits. We can fear the worst.

Source : US news media.

L’Islande réceptrice d’une centrale solaire spatiale ? // Iceland as a receiver of a space solar station ?

L’Islande bénéficiera-t-elle d’une station de réception de la première centrale solaire à être lancée dans l’espace ? Les laboratoires islandais Reykjavik Energy and Transition Labs d’une part et la société britannique Space Solar d’autre part ont signé un protocole d’accord tripartite pour une coopération dans le cadre de l’activation de l’énergie solaire dans l’espace et de la revente de l’énergie générée pendant la phase de recherche.
L’Islande pourrait donc avoir sur son sol une station de réception de la première centrale solaire à être lancée dans l’espace. L’annonce faite par les trois entreprises précise qu’il sera possible de produire de l’énergie verte de manière rentable avec des centrales solaires à bord d’orbiteurs autour de la Terre. Avec cette nouvelle technologie, la centrale électrique active les rayons du soleil et transmet l’énergie à la Terre avec des ondes radio courtes. Il est prévu que des stations terrestres reçoivent ensuite les ondes, les transforment en électricité et fournissent une énergie verte renouvelable au réseau électrique mondial.
Le protocole d’accord stipule que les parties travailleront ensemble sur divers aspects de la première phase du développement de Space Solar. On estime que la première centrale électrique expérimentale en orbite autour de la Terre fournira 30 MW d’électricité.
La technologie et la science à l’origine du fonctionnement de Space Solar sont bien connues, mais il reste encore un certain nombre de problèmes d’ingénierie à résoudre en ce qui concerne la production d’énergie solaire depuis l’espace. Le communiqué diffusé par les trois entreprises précise qu’il est difficile de choisir les emplacements des premières stations de réception de l’énergie au sol. Elles seront situées dans l’hémisphère nord. L’Islande, le Canada et la partie nord du Japon semblent les mieux adaptés à une telle réception.
Source : Médias d’information islandais.

Vue d’artiste de la réception d’énergie solaire spatiale (Source : Space Solar)

———————————————–

Will Iceland be the host for the first solar power plant to be launched into space ? Iceland’s Reykjavik Energy and Transition Labs on one side, and Britain’s Space Solar onthe other side, have signed a tripartite memorandum of understanding for cooperation in connection with the activation of solar energy in space and the resale of potential energy generated during the research phase.

Iceland could then be the host for the first solar power plant to be launched into space. The announcement by the three companies indicates that it will be possible to produce green energy with solar power plants on orbiters around the earth in a cost-effective way. The technology is based on the fact that the power plant will activate the sun’s rays and transmit the energy to the earth with short radio waves. It is planned that so-called ground stations will then receive the waves, transform them into electricity and deliver green renewable energy into the world’s energy system.

The memorandum of understanding stipulates that the parties will work together on various aspects of the first phase of Space Solar’s development. It is estimated that the first experimental power plant in an orbit around the Earth will deliver 30 MW to the Earth.

The technology and science behind Space Solar’s operation is well known, but there are still a number of engineering challenges to be solved regarding solar power generation from space.The announcement states that it is a challenge to choose locations for the first receiving stations of the energy on the ground. They would be in the northern hemisphere. Iceland, Canada and the northern part of Japan are being looked at, among others.

Source : Icelandic news media.

Islande : Des forages à grande profondeur contre le réchauffement climatique ? // Iceland : Deep drilling to combat global warming ?

Cela fait plusieurs années que les Islandais travaillent sur un projet visant à produire de l’électricité grâce à la chaleur du magma. Dans plusieurs articles rédigés sur ce blog en 2016 et 2017, j’expliquais qu’un forage étaie en cours à 5 kilomètres de profondeur dans d’anciennes coulées de lave de la péninsule de Reykjanes. Ce forage, qui avait commencé le 12 août 2017, faisait partie de l’Iceland Deep Drilling Project (IDDP). L’objectif final du projet était d’atteindre 5 km de profondeur, là où la roche en fusion se mélange à l’eau. Avec la chaleur et la pression extrêmes, l’eau se transforme en « vapeur supercritique » et est susceptible de produire une énorme quantité d’énergie. L’idée est que lorsque la vapeur sera transférée à la surface et convertie en électricité, elle produira jusqu’à 10 fois plus d’énergie que les forages géothermiques classiques.
Un article paru en novembre 2024 nous rappelle que le magma terrestre peut produire suffisamment de chaleur pour générer de l’énergie géothermique sans pollution atmosphérique susceptible de réchauffe la planète, si on parvient à l’exploiter avec succès. C’est pourquoi les scientifiques prévoient de procéder à un forage dans le sol islandais pour étudier les conditions qui y règnent. Environ 800 millions de personnes dans le monde vivent à une centaine de kilomètres d’un volcan actif. Si les scientifiques parvenaient à comprendre comment on peut utiliser cette ressource naturelle, cela pourrait changer la donne en matière d’approvisionnement énergétique à l’échelle de la planète. En théorie, le potentiel est illimité.
Le projet islandais consiste à commencer à faire des forages pour approcher les poches de magma à un température de 980 degrés Celsius. Après plusieurs tests au cours des dernières années, un nouveau forage devrait avoir lieu en 2027. Dans une première phase, les scientifiques placeront des capteurs dans le sous-sol pour mieux connaître les mouvements, la pression et la chimie du magma.
La chambre magmatique se trouve à plus de 2 040 mètres sous la surface. Une fois atteinte, un petit orifice sera percé pour pénétrer dans le magma en fusion. La chaleur extraite par cette technologie,peut être utilisée pour produire de l’électricité à la surface de la Terre à l’aide d’une turbine à vapeur dans un cycle continu.
Bien que ce procédé soit plus coûteux que la technologie géothermique classique, les puits de forage et le magma, beaucoup plus profonds, génèrent beaucoup plus de chaleur, ce qui nécessite moins de forages pour produire une énergie significative. Deux forages de magma pourraient remplacer les 18 forages géothermiques conventionnels qui fournissent de l’électricité à 30 000 foyers islandais.
Les innovations géothermiques progressent également à travers d’autres projets étonnants dans le monde. Par exemple, Quaise Energy, une société basée dans le Massachusetts aux États-Unis, a l’intention de forer 20 km dans la Terre pour exploiter ce qu’elle appelle une « source d’énergie d’un million d’années ». Le résultat pourrait être une énergie abondante avec beaucoup moins de répercussions sur le réchauffement de la planète.
À l’avenir, la côte californienne, le Japon et même la Méditerranée sont quelques-uns des sites envisagés pour produire de l’énergie à partir du magma. La première étape consistera à mieux comprendre comment fonctionnent les volcans sur Terre, ce qui est loin d’être le cas actuellement. Comme l’a dit un scientifique, « nous observons le ciel, nous dépensons des milliards et des milliards de dollars pour comprendre les planètes lointaines, mais nous ne dépensons pas autant pour comprendre la nôtre. »

Source : Inspiré d’un article paru dans Yahoo Actualités.

Principe du forage géothermique à grande profondeur (Source: BBC)

————————————————

Icelanders have been working for several years on a project to generate electricity with the heat of magma. In several posts written in 2016 and 2017, I explained that a rig was drilling 5 kilometres into the old lava flows in Iceland’s Reykjanes Peninsula. It was part of the Iceland Deep Drilling Project (IDDP). The drilling had begun on August 12th, 2017. The final goal of the project was to reach 5 km down because at this depth, molten rock mixes with water. With the extreme heat and pressure, the water becomes « supercritical vapour » and holds a huge amount of energy. The idea is that when the steam is brought back to the surface and converted into electricity, it will create up to 10 times as energy as conventional geothermal wells.

A recent article reminds us that Earth’s magma can produce enough heat to create geothermal power without planet-warming air pollution if it can be successfully tapped. That’s why experts are planning to drill into Iceland’s ground to study the conditions below. About 800 million people live within approximately 100 kilometers from an active volcano. If scientists can figure out how to utilize this natural resource, it could be game-changing for worldwide power supplies. Basically, the potential is limitless.

The plan in Iceland is to start boring holes into the ground to tap the 980-degree Celsius magma reserves. After several tests in the past years, the initial one is set to be drilled in 2027. In a first phase, the experts will put sensors in the subterranean magma, gaining knowledge of its movements, pressure, and chemistry.

The magma chamber is more than 2,040 meters below the surface. Once at the chamber, a smaller hole is used to enter the molten magma. Heat pulled from the environment can be used to generate electricity on the surface using a steam turbine in a continuous cycle.

While it’s a more expensive process than current geothermal technology, the much deeper wells and magma generate far greater heat, requiring fewer boreholes to make significant power. Two magma boreholes could replace 18 conventional geothermal ones in Iceland that supply electricity to 30,000 households.

Geothermal innovations are advancing in other amazing projects around the world, as well. For instance, Massachusetts-based Quaise Energy in the U.S. intends to drill 20 km into the Earth to tap what it calls a « million-year energy source. » The result could be abundant energy with far fewer planet-warming repercussions.

In the future, the California coast, Japan, and even locations in the Mediterranean are some of the places being eyed as magma-based energy sites. The first step is to better understand Earth’s powerful volcanoes. As one scientists put it, « we are looking into the sky, we are spending billions and billions of dollars to understand planets far away, but we do not spend nearly as much on understanding our own. »

Source : After an article published in Yahoo News.