Subduction et séismes en Alaska // Subduction and earthquakes in Alaska

Un puissant séisme de magnitude M7,3 a été enregistré sur la péninsule d’Alaska le 16 juillet 2025. Largement ressenti dans l’État, le séisme a déclenché une alerte tsunami et des évacuations d’urgence dans de nombreuses localités côtières.
La réaction humaine à ce séisme a été rapide et coordonnée. Quelques minutes après l’événement, le Centre d’alerte aux tsunamis a émis une alerte couvrant une zone de 1 100 kilomètres le long de la côte sud de l’Alaska. Les zones habitées entre Sand Point et Unalaska, ont rapidement activé les procédures d’évacuation et les habitants se sont dirigés vers des zones plus élevées par mesure de précaution.

 

Photos : C. Grandpey

Heureusement, ce séisme n’a entraîné que des variations infimes du niveau de l’eau et les dégâts signalés sont restés minimes. Le système d’alerte tsunami a fonctionné comme prévu : les autorités ont réduit l’alerte moins d’une heure après le séisme, avant de l’annuler quelques heures plus tard. Toutefois, les voyageurs et la population doivent s’attendre à une poursuite de l’activité sismique dans la région. L’USGS indique qu’au moins un séisme de magnitude M6,0 ou plus est possible au cours des prochains jours, ainsi que des séismes de moindre ampleur.

Ce séisme en Alaska rappelle la position de l’État dans l’une des régions les plus sismiques du monde. L’Alaska subit les effets de la subduction de la plaque Pacifique sous la plaque nord-américaine. Comme je l’ai écrit dans une note publiée le 26 janvier 2016, l’arc des Aléoutiennes en est la parfaite illustration. Il s’étend sur environ 3 000 km, depuis le golfe d’Alaska à l’est jusqu’à la péninsule du Kamtchatka à l’ouest. La subduction est responsable de la naissance des îles Aléoutiennes et, au large, de la fosse des Aléoutiennes dont la profondeur peut dépasser 7 800 mètres.

Vue de l’ensemble des volcans le long de la zone de subduction entre l’Alaska et le Kamchatka (Source : Alaska Volcano Observatory)

L’histoire sismique de l’Alaska est particulièrement riche. Le premier événement très puissant survenu le long de l’arc au 20ème siècle fut un séisme de magnitude M8,6 sur l’île Shumagin le 10 novembre 1938. Cet événement a été provoqué par la rupture d’une portion de l’arc d’environ 300 km et provoqué un petit tsunami enregistré jusqu’à Hawaï.
Le séisme de magnitude M8,6 sur l’île Unimak le 1er avril 1946, dans la partie centrale de l’arc des Aléoutiennes, s’est caractérisé par une rupture lente suivie d’un tsunami dévastateur à grande échelle dans le Pacifique, jusqu’aux côtes de l’Antarctique. Bien que les dégâts causés par les secousses sismiques aient été localement peu importants, la vague du tsunami est montée jusqu’à 42 mètres sur l’Ile Unimak et des vagues ont fait des victimes à Hilo (Hawaï). [Voir ma note du 1er avril 2015 à propos de cet événement]
Le puissant séisme suivant a eu lieu dans la partie centrale de l’arc des Aléoutiennes, près des Iles Andreanof le 9 mars 1957, avec une magnitude de M 8.6. La longueur de la rupture a été d’environ 1200 km, ce qui en fait la plus longue zone de répliques jamais observée le long de l’arc. D’importants dégâts ainsi que des tsunamis ont été observées sur les îles Adak et Unimak, avec des vagues d’environ 13 mètres de hauteur.
Le séisme le plus puissant a été enregistré le 27 mars 1964 dans le Prince William Sound avec une magnitude de M 9.2. C’est actuellement le deuxième plus puissant séisme enregistré dans le monde après celui de M 9,5 au Chili en mai 1960. Il a été généré par une rupture d’environ 700 km entre le Prince William Sound au nord-est et l’extrémité sud de l’île Kodiak au sud-ouest. La secousse principale a été ressentie dans une grande partie de l’Alaska, ainsi que dans certaines parties du Territoire du Yukon et de la Colombie Britannique au Canada. Des dégâts très importants ont été observés à Anchorage avec les glissements de terrain qui ont suivi. Le séisme a également déclenché un tsunami dévastateur qui a causé des dégâts le long du Golfe d’Alaska, de la côte Ouest des États-Unis, et à HawaÏ. Plus de 250 personnes ont été tuées.
Source : USGS.

Aujourd’hui, personne n’a oublié la catastrophe du Vendredi Saint 1964 (Photo : C. Grandpey)

————————————————-

A powerful M 7.3 earthquake struck offshore of Alaska’s Peninsula on July 16th, 2025 ; The quake was felt widely, prompting immediate tsunami warnings and evacuations across multiple coastal communities.

The human response was swift and coordinated. Within minutes of the earthquake, the National Tsunami Warning Center issued a tsunami warning covering a 1,100-kilometer stretch of Alaska’s southern coast. Communities from Sand Point to Unalaska quickly activated evacuation procedures, with residents moving to higher ground as a precautionary measure. Fortunately, this Alaska earthquake generated only minimal water level changes and damage reports remained minimal. The warning system worked as designed ; officials downgraded the tsunami warning to an advisory within an hour, and completely canceled all alerts a few hours later. Naturally, travelers and residents should prepare for continued seismic activity in the region. The USGS indicates that at least one magnitude 6 or greater earthquake is possible in the foreseeable future , as well as smaller earthquakes.

This Alaska earthquake serves as a reminder of the state’s position in one of the world’s most seismically active regions. Alaska undergoes the subduction of the Pacific plate beneath the North American plate. The Aleutian arc is the perfect evidence of this phenomenon. It extends approximately 3,000 km from the Gulf of Alaska in the east to the Kamchatka Peninsula in the west. The subduction is responsible for the generation of the Aleutian Islands and the offshore Aleutian Trench which can be more than 7800 metres deep.
The seismic story of Alaska is particularly rich. The first very powerful event along the arc during the 20th century was the November 10th 1938 M8.6 Shumagin Island earthquake. This event ruptured an approximately 300 km long stretch of the arc and generated a small tsunami that was recorded as far south as Hawaii.
The April 1st, 1946 M8.6 Unimak Island earthquake, located in the central Aleutian arc, was characterized by slow rupture followed by a devastating Pacific-wide tsunami that was observed as far south as the shores of Antarctica. Although damage from earthquake shaking was not severe locally, tsunami run-up heights were recorded as high as 42 metres on Unimak Island and tsunami waves in Hilo (Hawaii) also resulted in casualties. [See my note of April 1st 2015 about this event]
The next powerful earthquake occurred along the central portion of the Aleutian arc near the Andreanof Islands on March 9th 1957, with a magnitude of M8.6. The rupture length of this event was approximately 1200 km, making it the longest observed aftershock zone of all the historic Aleutian arc events. Significant damage and tsunamis were observed on the islands of Adak and Unimak with tsunami heights of approximately 13 metres.
The most powerful earthquake was the March 27th 1964 M9.2 Prince William Sound earthquake, currently the second largest recorded earthquake in the world. The event had a rupture length of roughly 700 km extending from Prince William Sound in the northeast to the southern end of Kodiak Island in the southwest. Significant shaking was felt over a large region of Alaska, as well as in parts of western Yukon Territory, and British Columbia in Canada. Property damage was the largest in Anchorage with the ensuing landslides. The earthquake also triggered a devastating tsunami that caused damage along the Gulf of Alaska, the West Coast of the United States, and in Hawaii. More than 250 people got killed.
Source : USGS.

Licenciements et réductions budgétaires aux États Unis : Trump joue avec le feu // U.S. layoffs and budget cuts : Trump is playing with fire

La presse américaine, CNN en tête, vient de tomber à bras raccourcis sur la politique de licenciements et de réduction des subventions allouées aux agences en charge de la surveillance des risques naturels aux États Unis par l’Administration Trump.

Les journalistes rappellent au public qu’un séisme majeur – le « Big One » – frappera probablement les États-Unis dans les prochaines décennies. Outre la faille de San Andreas, un danger menace les fonds marins au large de la côte nord-ouest du Pacifique. Après des siècles de frottement de deux plaques tectoniques l’une contre l’autre, la zone de subduction de Cascadia, qui s’étend du nord de la Californie à la Colombie-Britannique, pourrait bien se rompre de notre vivant. Le séisme provoqué par cet événement, de magnitude M9,0, pourrait être dévastateur, accompagné d’un tsunami pouvant atteindre 30 mètres de haut, qui submergerait les villes et villages côtiers. Les chiffres officiels estiment qu’environ 13 800 personnes pourraient mourir et plus de 100 000 autres être blessées. Il pourrait s’agir de la pire catastrophe naturelle que les États-Unis aient connue au cours de l’époque moderne. De nombreux scientifiques affirment que le pays n’est pas préparé à affronter une telle catastrophe. L’équipe scientifique qui a passé des décennies à surveiller la situation a été décimée par les réductions de personnel décidées par l’Administration Trump.

Source: USGS

La plupart des scientifiques interrogés par les médias ont refusé de commenter la situation par crainte de représailles. La National Oceanic and Atmospheric Administration (NOAA), qui supervise les tsunamis et les tempêtes solaires, n’a pas répondu aux questions de CNN.

°°°°°°°°°°

Les coupes budgétaires rendent difficile la maintenance des sismographes et des capteurs océaniques qui mesurent la vitesse de propagation des vagues de tsunami. Un scientifique a déclaré : « Être capable de détecter, de prévoir et d’alerter la population de l’arrivée d’un tsunami sauverait des centaines, voire des centaines de milliers de vies. On court un risque en réduisant les capacités de la NOAA à effectuer ce travail.» Des équipes de l’USGS se rendent sur le terrain chaque été pour réparer les instruments. Cela deviendra encore plus difficile car ces fonctionnaires fédéraux, et ceux d’autres agences, se sont vu interdire d’effectuer de nouvelles dépenses, ce qui rend cet tâche pourtant cruciale encore plus ardue.
À l’instar des sismographes disséminés le long de la côte, la NOAA maintient un réseau de capteurs en eaux profondes, conçus pour alerter les scientifiques en cas de déferlement d’une vague de tsunami. Les deux centres d’alerte aux tsunamis de l’agence et le programme du Service météorologique national, qui s’efforce de moderniser ses logiciels obsolètes, ont subi des licenciements. Ces centres de surveillance, fonctionnent 24h/24 et 7j/7 et étaient déjà en sous-effectif. Les nouvelles réductions sont donc extrêmement préoccupantes, notamment compte tenu de la menace d’un séisme et d’un tsunami majeurs dans le Pacifique Nord-Ouest. Tous les scientifiques s’accordent à dire que ces réductions de personnel et les coupes budgétaires accroissent le risque de tsunami et de séisme aux États-Unis ; en cas d’événement majeur, elles auront des conséquences dévastatrices pour les populations côtières et l’économie américaine.

Les capteurs océaniques permettent de suivre la progression des vagues de tsunami (Source: NOAA)

°°°°°°°°°°

Il existe deux principaux bureaux de l’USGS chargés de surveiller l’activité volcanique : l’un à Hawaï et l’autre en Alaska. Certains volcanologues de l’USGS ont bénéficié du programme de démission différée. Les observatoires volcanologiques sont surveillés 24h/24 et 7j/7, et en cas d’éruption volcanique majeure, tout le monde est sur le pont. Par conséquent, le manque de personnel se fera nettement sentir en cas de crise volcanique, car tous les scientifiques doivent être mobilisés pour assurer la charge de travail.

Le Kilauea à Hawaï est en éruption intermittente depuis 2024 et d’autres éruptions sont à venir. Les volcanologues surveillent également le Grand Sitkin, un volcan des Aléoutiennes qui émet lentement de la lave depuis le début de l’éruption en 2021. Un autre volcan à surveiller de près est le mont Spurr, en Alaska, où une activité sismique a été détectée récemment.

En Alaska, le Mont Spurr a montré des signes d’activité ces dernières semaines (Crédit photo: AVO)

°°°°°°°°°°

Si la plupart des dangers les plus importants nécessitant une surveillance constante se produisent sur Terre, d’autres dangers sommeillent dans le cosmos, notamment, ceux liés à l’activité du Soleil. Les tempêtes solaires se produisent lorsque le Soleil projette du plasma et d’autres particules chargées qui transportent le champ magnétique solaire vers la Terre. Les tempêtes qui en résultent peuvent créer de belles aurores boréales, mais elles peuvent aussi perturber nos réseaux électriques et nos systèmes radio. Ce type de tempêtes est d’autant plus fréquent que le Soleil est dans une phase particulièrement active.
Une douzaine d’experts travaillent au Space Weather Prediction Center de la NOAA à Boulder, dans le Colorado, avec généralement deux scientifiques par équipe de 24 heures. Trois employés ont récemment été licenciés.
Le lancement d’un nouveau satellite était prévu pour mieux mesurer et prévoir la météorologie spatiale, mais l’incertitude autour de la situation actuelle pourrait menacer l’avenir de ce programme certes modeste, mais important.

Source: NASA

Source : Médias d’information américains.

——————————————-

The U.S. News media,, led by CNN, have just attacked the Trump Administration’spolicy of layoffs and reductions in funding allocated to agencies in charge of the monitoring of natural risks in the United States.

The journalists remind the public that sometime between today and 200 years from now, scientists say a major earthquake – “the Big One” – will hit the United States. Aside from the San Andreas Fault, there is a danger lurking on the sea floor off the Pacific Northwest’s coast: After centuries of two tectonic plates pushing up against each other, the Cascadia subduction zone that runs from Northern California to British Columbia is due to rupture, possibly in our lifetimes. The resulting earthquake could be a devastating M9.0 event, and the subsequent tsunami could be 30 meters high, overwhelming coastal cities and towns. Official figures warn that around 13,800 people could die and more than 100,000 others could be injured. It could be the worst natural disaster the United States has seen in modern times. And many scientists say we are less prepared for it than ever before. The team of scientists that has spent decades keeping watch is being decimated by the Trump Administration’s staffing cuts.

Most scientsist interviewed by the media declined to comment the situation for fear of reprisals. The National Oceanic and Atmospheric Administration (NOAA), which oversees tsunamis and solar storms, did not return a request for comment from CNN.

°°°°°°°°°°

The budget cuts make it difficultto fix earthquake seismographs and deep ocean sensors that capture how fast tsunami waves are traveling. One scientist said : “Being able to detect forecast and alert people of an incoming tsunami will save hundreds, if not hundreds of thousands of lives. That is the risk we face by reducing the capability to do this work at NOAA.” Teams of scientists from the USGS typically go out every summer to fix broken instruments. This will become more difficult after federal workers there and at other agencies were told they could spend no more than $1 on any single expense, making that critical task increasingly difficult.

Similar to the seismographs scattered along the NOAA keeps a network of sensors deep in the ocean, designed to alert scientists when a tsunami wave rolls through. The agency’s two tsunami warning centers and the National Weather Service program working to modernize their outdated software systems have been hit with firings. The 24/7 monitoring centers were already thinly staffed, and the further reductions are deeply concerning, especially given the threat of an earthquake and tsunami in the Pacific Northwest. All scientists agree to say that these staff cuts and the potential budget cuts make the United States more at risk for a tsunami and earthquake ; they will have devastating impacts for coastal populations and the US economy.

°°°°°°°°°°

There are two main USGS offices monitoring volcano activity – one in Hawaii and the other in Alaska. Some USGS volcano scientists have taken the deferred resignation program. The volcano observatories are monitored 24/7, and if there is a big volcanic eruption, it turns into an all-hands-on-deck situation. As a consequence, the staffing shortages will be made much, much worse when there’s a volcanic crisis, because all staff needs to be brought on board to cover the workload.

The Kilauea volcano in Hawaii has been erupting on and off since last year and more eruptions are to come. Volcanologists are also closely watching Great Sitkin, a volcano in the Aleutians that has been slowly spewing lava since it began erupting in 2021. Another volcano to be closely monitored is Alaska’s Mt. Spurr, where recent seismic activity has been detected.

°°°°°°°°°°

While many of the biggest hazards that take constant monitoring happen on earth, there are others in the cosmos. Particularly, from the sun. Solar storms happen when the sun flings plasma and other charged particles carrying the sun’s magnetic field toward Earth. The resulting storms can create nice auroras, but they can also wreak havoc on our electric grids and radio systems. And these kinds of storms have been happening more because the sun is in a particularly active phase.

There are roughly a dozen experts who work at NOAA’s Space Weather Prediction Center in Boulder, Colorado, with generally two scientists on any given 24-hour shift. They have recently lost three employees.

The launch of a new satellite had been planned to better measure and predict space weather, but the current uncertainty could threaten the future of a small but important program.

Source : U.S. News media.

Prévision sismique et séisme au Myanmar // Seismic prediction and earthquake in Myanmar

Bien que des progrès certains aient été réalisés ces dernières décennies, notre capacité à prédire les éruptions volcaniques reste faible, et nous ne sommes pas capables, non plus, de prévoir les séismes. Nous savons où se trouvent les volcans les plus dangereux de la planète ; nous savons également où se trouvent les failles susceptibles de déclencher de puissants séismes, mais les prévisions volcaniques et sismiques n’ont guère progressé ces dernières années. Nous sommes en mesure d’analyser les éruptions et les tremblements de terre APRÈS qu’ils se soient produits, mais nous ne sommes pas capables de faire des prévisions susceptibles de protéger les populations menacées. Le nombre de morts qui suivent ces événements naturels est souvent très élevé. Le dernier séisme majeur qui a secoué le Myanmar ne fait que confirmer ce que je viens d’écrire.

Un puissant séisme de magnitude M7,7 a frappé le Myanmar le 28 mars 2025 à 12h50 heure locale (06h20 UTC). L’hypocentre du décrochement était très peu profond, à une dizaine de kilomètres, le long de la faille de Sagaing, ce qui explique le lourd bilan humain et les dégâts causés aux infrastructures. Il s’agit du séisme le plus puissant au Myanmar depuis 1912. Il a causé des dégâts considérables dans le centre du pays, mais aussi dans le nord de la Thaïlande, le sud de la Chine et certaines régions du Vietnam. Au total, le séisme a fait plus de 5 000 morts au Myanmar, 51 en Thaïlande et un au Vietnam, apparemment des suites d’un choc cardiaque. Au moins 11 400 personnes ont été blessées et des centaines sont toujours portées disparues, notamment des ouvriers bloqués lors de l’effondrement spectaculaire d’un chantier de construction à Bangkok.

Après le séisme – aucun signe de l’événement n’a été détecté auparavant –, les sismologues ont indiqué que la faille de Sagaing, une importante limite tectonique, s’est rompue sur 400 km à très grande vitesse, avec une propagation plus rapide que la vitesse du son après une phase initiale lente. Les secousses se sont étendues sur 100 km, avec des niveaux d’intensité dépassant VIII sur l’échelle de Mercalli Modifiée (MM) dans plusieurs régions.
Selon l’USGS, la faible profondeur du séisme a amplifié les secousses dans toute la région, contribuant à des dommages structurels à grande échelle. Une liquéfaction – quand le sol saturé perd temporairement sa résistance et se comporte comme un liquide – a été observée à plusieurs endroits, ce qui a intensifié les dégâts. Une réplique de magnitude M6,4 a eu lieu 12 minutes plus tard, et une activité sismique supérieure à la normale a continué d’être enregistrée les jours suivants.

Des chercheurs de l’Université Johns Hopkins et de l’USGS ont utilisé l’imagerie satellite pour cartographier la rupture de faille et évaluer les dommages structurels à Mandalay. Cette analyse géospatiale rapide a permis d’identifier les zones les plus gravement touchées et a démontré le rôle de plus en plus important des données satellitaires dans l’évaluation en temps réel des dégâts causés par les séismes.
Pour la première fois lors d’un séisme de forte magnitude, un réseau de câbles de télécommunication sous-marins, équipé de plus de 100 capteurs sismiques, a détecté des mouvements du sol en temps réel. Cela confirme les progrès mentionnés en introduction de cette note. Les scientifiques expliquent que le système a fourni des données sismiques en continu pendant l’événement, offrant des informations précieuses sur les mouvements du sol en mer. Cette intégration de la détection sismique aux infrastructures sous-marines représente une avancée dans le développement des capacités de surveillance des séismes dans le monde, en particulier dans les régions où l’instrumentation terrestre est limitée.
Lors de la réunion annuelle de la Société Sismologique Américaine à Baltimore, des chercheurs ont présenté des analyses préliminaires de la rupture de faille au Myanmar. Le séisme s’est produit sur une faille sismique inactive depuis 1839, entre les zones de rupture des séismes de Naypyidaw en 1929 et de Sagaing Sud en 1956. Cette situation met en évidence la complexité structurelle du système de failles de Sagaing.

Les études sur les mouvements du sol réalisées depuis 2014 permettent d’expliquer aujourd’hui l’amplification des secousses observées dans des régions éloignées comme Bangkok, où les couches sédimentaires peu profondes ont contribué à l’augmentation des mouvements du sol. En Thaïlande, le séisme a provoqué de fortes secousses, causant d’importants dégâts et des pertes humaines. Dans la province chinoise du Yunnan, le séisme a endommagé environ 847 habitations. Deux personnes ont été blessées dans la ville frontalière de Ruili. Au Vietnam, les séismes ont été ressentis à Hô-Chi-Minh-Ville, endommageant plus de 400 appartements. Une personne est décédée des suites d’un choc cardiaque lors des opérations d’évacuation.
La crise humanitaire actuelle au Myanmar touche plus de 20 millions de personnes et en a déplacé 3,5 millions. Elle complique les opérations d’urgence. Suite au séisme, le gouvernement militaire a déclaré le centre du Myanmar zone sinistrée et a officiellement demandé l’aide internationale.
Source : Seismological Society of America, The Watchers.

———————————————-

Although much progress has been made in the past decades, our ability to predict volcanic eruptions is still low and we are not yet able to predict earthquakes. We know where the most dangerous volcanoes are located ; we also know where the faults that may trigger powerful earthquakes are located, but volcanic and seismic predictions do not go much further. We are good at analysing eruptions and earthquakes AFTER they have happened, but we are not able to make predictions that might protect the populations at risk. The death tolls that follow these natural events are often very high. The latest disastrous earhquake that shook Myanmar can only confirm what I have just written.

A powerful M7.7 earthquake struck Myanmar, on March 28th, 2025, at 12:50 local time (06:20 UTC). The hypocenter of the strike-slip event was very shallow at about 10 km along the Sagaing Fault, which accounts for thr heavy death toll and the damage caused to infrastructure. It was the strongest earthquake in Myanmar since 1912. It caused widespread damage across central Myanmar, but also in northern Thailand, southern China, and parts of Vietnam.In all, the earthquake caused more than 5 000 fatalities in Myanmar, 51 in Thailand, and one in Vietnam, reportedly due to cardiac shock. At least 11 400 people were injured, and hundreds remain missing, including workers trapped during the dramatic collapse of a construction site in Bangkok.

After the earthquake – they did not detect signs of the event before – seismologists reported that the Sagaing fault, a major tectonic boundary, ruptured over 400 km at very high speed, traveling faster than the speed of sound following an initial slow phase. Ground shaking extended over 100 km, with Modified Mercalli Intensity levels exceeding VIII in multiple regions.

According to the USGS, the earthquake’s shallow depth amplified ground shaking across the region, contributing to widespread structural damage. Liquefaction—where saturated soil temporarily loses strength and behaves like a liquid—was observed in multiple locations, further intensifying damage. An M6.4 aftershock struck 12 minutes later, and seismic activity was still recorded in the following days.

Researchers from Johns Hopkins University and the USGS used satellite imagery to map the surface rupture and assess structural damage in Mandalay. This rapid geospatial analysis helped identify the most severely affected areas and demonstrated the increasing role of satellite data in real-time assessment of earthquake damage.

For the first time during a large-magnitude earthquake, a submarine telecommunication cable network equipped with more than 100 seismic sensors detected ground motion in real time. This confirms the progress I mentioned in the introduction to thid post. Scientists say that the system provided continuous seismic data during the event, offering valuable insights into offshore ground motion. This integration of seismic sensing into undersea infrastructure represents a step forward in expanding global earthquake monitoring capabilities, particularly in regions with limited land-based instrumentation.

At the Seismological Society of America’s Annual Meeting in Baltimore, researchers presented preliminary analyses of the rupture. The earthquake occurred within a seismic gap that had remained inactive since 1839, located between the rupture zones of the 1929 Naypyidaw and 1956 southern Sagaing earthquakes. This situation highlights the structural complexity of the Sagaing Fault system.

Ground motion studies performed since 2014 help explain today the amplified shaking observed in distant regions like Bangkok, where shallow sedimentary layers contributed to increased ground motion. In Thailand, the earthquake caused severe ground shaking, leading to substantial damage and casualties. In China’s Yunnan Province, the earthquake resulted in the damage of approximately 847 homes. Two people sustained injuries in the border city of Ruili. In Vietnam, the earthquakes were felt in Ho Chi Minh City, causing damage to over 400 apartments. One person died from shock during evacuation efforts.

Myanmar’s ongoing humanitarian crisis—affecting more than 20 million people and displacing 3.5 million—is complicating emergency response operations. Following the earthquake, the military government declared central Myanmar a disaster zone and formally requested international assistance.

Source : Seismological Society of America, The Watchers.

Mise au point sur les Champs Phlégréens // Clarification about the Phlegraean Fields

Il y a quelques jours, j’ai été vivement critiqué par certaines personnes pour avoir utilisé le mot « routine » à propos de l’activité sismique observée actuellement dans les Champs Phlégréens. Je voulais simplement dire que les essaims sismiques ne sont pas une nouveauté dans la région. Ils sont liés au bradyséisme – mouvements verticaux du sol – qui sont observés depuis des lustres. Les épisodes de soulèvement du sol les plus récents ont été ceux de 1969-72 et de 1982-84, périodes où beaucoup de ceux qui me critiquent n’étaient pas nés. À l’époque, de nombreux habitants, en particulier dans le centre historique de Pouzzoles, ont été contraints d’abandonner leurs maisons.

Photo: C. Grandpey

De 2005 à aujourd’hui, on assiste à une nouvelle phase de bradyséisme. En avril 2025, elle avait provoqué un soulèvement d’environ 144 centimètres, avec un nombre élevé de séismes et d’essaims sismiques souvent ressentis par la population. Certains de ces événements comptent parmi les plus significatifs des 40 dernières années, avec des magnitudes supérieures à M4.0. Les réseaux de surveillance de l’INGV indiquent des épisodes de soulèvement du sol principalement centrés juste au sud-est du Rione Terra à Pouzzoles, avec une vitesse maximale qui varie au fil des ans entre 10 ± 3 mm/mois et 30 ± 5 mm/mois. En raison de cette série de phénomènes naturels, le niveau d’alerte des Champs Phlégréens a été relevé à la couleur Jaune en 2012.

Photo: C. Grandpey

Depuis 2018, le phénomène de bradyséisme s’accompagne d’une augmentation progressive de l’activité sismique. En 2023, alors que la plupart des événements avaient de faibles magnitudes (environ 90 % inférieurs à M1,0), on a observé une nouvelle augmentation de la fréquence des séismes. La plupart des événements se sont produits entre Astroni, Solfatara-Pisciarelli-Agnano, Pouzzoleset le golfe de Pouzzoles, avec des profondeurs maximales d’environ 4 km, principalement concentrées dans les 2 premiers km. La même année, les événements les plus forts se sont produits les 27 septembre et 2 octobre, avec des magnitudes de M4,2 et M4,0. En 2024, l’événement le plus fort s’est produit le 20 mai avec une magnitude de M4,4 dans la Solfatara, tandis qu’en 2025, le séisme le plus puissant a été enregistré le 13 mars lors d’un essaim sismique, avec une magnitude de M4,6 (±0,3).

Photo: C. Grandpey

Si on fait une comparaison avec la crise bradysismique des années 1980, on constate que la situation actuelle est marquée par des soulèvements du sol et des séismes d’une magnitude comparable à ceux observés lors de la crise bradysismique de 1982-1984. Cependant, en termes d’impact sur les bâtiments et les infrastructures, la situation est très différente. La crise des années 1980 a causé d’importants dégâts aux bâtiments, notamment à Pouzzoles, entraînant l’évacuation de la population de ses habitations du centre historique. Aujourd’hui, la situation est similaire à celle observée lors de la crise bradysismique des années 1970, lorsque les habitants du Rione Terra ont dû être évacués. La crise bradysismique actuelle n’a pas causé de dégâts significatifs jusqu’à présent. Cela est dû à une différente vulnérabilité des bâtiments et à l’évolution différente du bradyséisme, en termes de fréquence des séismes et de vitesse de soulèvement du sol. La plupart des structures de la région sont aujourd’hui constituées de bâtiments ne dépassant pas trois étages qui ont fait l’objet d’interventions de réhabilitation parasismique depuis les années 1980.
Au cours des derniers mois de 2023, la Commission nationale des risques majeurs a été convoquée à plusieurs reprises pour donner son avis sur la situation actuelle. À l’issue de ces réunions, la Commission a constaté que les résultats scientifiques avec la présence de magma en profondeur comme cause principale de la crise bradysismique actuelle. Cependant, en l’absence de preuve de remontée de magma vers le surface, la Commission a conclu au maintien du niveau d’alerte Jaune pour le risque volcanique.
Source : INGV.

Certes, il est très désagréable pour les habitants de Pouzzoles de ressentir les essaims sismiques qui déclenchent, surtout la nuit, des vagues d’anxiété, mais il convient de souligner que ces séismes n’annoncent en rien une super-éruption des Champs Phlégréens. Il convient de préciser que la dernière éruption a eu lieu en 1538 au Monte Nuovo et n’était absolument pas une éruption majeure. Il n’y a donc pas lieu de paniquer. J’ai prévu un voyage en Campanie en septembre et je sais déjà que je dormirai à Pouzzoles…

Cratère du Monte Nuovo (Photo: C. Grandpey)

———————————————-

A few days ago, I was sharply criticized by some persons for having used the word « routine » about the current seismic activity in the Phlegeaean Fields. I just meant that earthquake swarms are nothing new in the Campi Flegrei. They are linked to the bradyseism – vertical movements of the ground – that have affected the region for centuries. The most recent episodes of upheaval were those of 1969-72 and 1982-84, periods when many of those who criticize mz were not born, and when many inhabitants of the area, especially those of the historic center of Pozzuoli, were forced to abandon their homes. From 2005 to today, a new phase of bradyseism has been underway which in April 2025 produced an uplift of about 144 centimeters, also causing a high number of earthquakes with seismic swarms often felt by the population and some of the highest energy earthquakes of the last 40 years wth magnitudes above M4.0. The INGV monitoring networks indicate a radial geometry of the uplift centered just south-east of Rione Terra in Pozzuoli, with a maximum speed that over the years has varied between 10±3 mm/month to 30±5 mm/month. Due to this series of natural phenomena, since 2012 the alert level of Campi Flegrei has been raised to Yellow.

Since 2018, the bradyseism phenomenon has been accompanied by a gradual increase in seismic activity, including the number of earthquakes and their magnitude. In 2023, while most events had low magnitudes (about 90% below M1.0), there was a new increase in the frequency of earthquakes. Most of the events occurred between Astroni, Solfatara-Pisciarelli-Agnano, Pozzuoli, and Gulf of Pozzuoli, with maximum depths of about 4 km, primarily concentrated in the first 2 km. In the same year, the strongest events occurred on September 27 and October 2, with magnitudes of M4.2 and M4.0. In 2024, the strongest event occurred on May 20 with a magnitude of M4.4 in the Solfatara, while in 2025, the strongest earthquake was recorded on March 13 during a seismic swarm, with a magnitude of M4.6 (±0.3).

Comparison with the bradyseismic crisis of the 1980’s. The current situation is marked by ground uplifts and earthquakes of a magnitude comparable to those experienced in the bradyseismic crisis of 1982-84, while in terms of impact on buildings and infrastructure, the picture is very different. The 1980s crisis caused extensive damage to buildings, particularly in the municipality of Pozzuoli, leading to the evacuation of the population from their homes in the historic center. This was similar to what happened during the bradyseismic crisis of the 1970s when the inhabitants of the Rione Terra had to be evacuated.
The current bradyseismic crisis has not caused significant damage so far. The reasons are to be found in the different vulnerabilities of the buildings and the different evolution of the phenomenon in the frequency of quakes and the rate of uplift. Most of the structures in the area today consist of buildings not exceeding three stories, mostly made of reinforced concrete or masonry, which have undergone seismic retrofitting interventions since the 1980’s.

In the last months of 2023, the National Major Risks Commission has been called several times to know its opinion on the current situation. As a result of these meetings, the Commission found that the scientific findings reinforce the evidence for the presence of deep-seated magma as the root cause of the current bradyseismic crisis. However, without evidence of rising magma, it was concluded to confirm « the yellow alert level for volcanic risk. »

Source : INGV.

Sure, it is very unpleaseant for the residents of Pozzuoli to feel the seismic swarms that trigger, above all at night, waves of anxiety, but it should be underlined that these earthquakes do not herald a super eruption of the Campi Flegrei. One should add that the last eruption occurred in 1538 at Monte Nuovo and was by no means a major eruption. I have planned a trip to Campania in September and I already know that I will sleep in Pozzuoli…