De nouveaux détecteurs de cendre volcanique pour le VAAC de Toulouse // New ash detectors for the Toulouse VAAC

drapeau francaisMétéo France vient d’acquérir six nouveaux « radars » chargés de détecter avec précision les nuages de cendre en cas de nouvelles éruptions volcaniques. Tout le monde a encore en mémoire l’éruption de l’Eyjafjallajökull d’avril 2010, avec la paralysie des trois quarts de l’espace aérien européen et 1,2 milliard d’euros de pertes économiques. Le principe de précaution avait alors prévalu mais les conséquences auraient certainement pu être moins lourdes si les autorités aériennes avaient eu une connaissance plus fine du déplacement des nuages de cendre islandais.

L’un des principaux centres mondiaux de contrôle des cendres volcaniques se trouve à Toulouse. Ce VAAC (Volcanic Ash Advisory Center) est régi par Météo France. Il fonctionne 24 heures sur 24 et surveille l’Europe, l’Afrique et le Proche-Orient. Pour traquer les nuages de cendre volcanique, il utilise son propre modèle de dispersion mais aussi des données satellitaires qui manquent de précision en termes d’épaisseur des nuages.

Pour pallier cette incertitude, le VAAC vient de dévoiler sa dernière acquisition, unique en Europe : Il s’agit de six « renifleurs » de cendre, et d’aérosols en général, de très haute technologie. Ces six LIDAR (acronyme de l’expression en langue anglaise « light detection and ranging » sont des boîtiers bardés d’informatique ; ils sont dotés de lasers qui émettent un faisceau de lumière verte (uniquement visible en cas de brume) jusqu’à 15 kilomètres d’altitude.

En fonction de la façon dont les particules réfractent la lumière, le VAAC peut déterminer s’il s’agit d’un nuage de pluie, de pollution ou donc de cendre volcanique, ainsi que son altitude exacte. Cinq de ces LIDAR vont être déployés sur le territoire français, dont le premier à Lille. Le sixième, mobile, restera à Toulouse pour les cas d’urgence.

Selon un responsable de la direction de la sécurité de l’Aviation civile sud,  « Météo France va désormais nous fournir des informations précises et précieuses qui nous permettront de maintenir une partie de l’espace aérien ou des aéroports ouverts. »

Source : 20 Minutes.

Il est fort probable que ce nouvel équipement sera testé en grandeur nature un jour ou l’autre. En effet, si les volcans d’Auvergne sont inoffensifs pour le moment, il n’en va pas de même de leurs homologues islandais, voire de l’Etna. Les « renifleurs » de Météo France permettront de gérer la situation plus efficacement qu’en 2010, mais la décision finale de faire voler ou de maintenir au sol les avions dépendra toujours des compagnies aériennes. Même si l’arrêt des vols a un coût non négligeable, ce sera toujours le principe de précaution qui prévaudra. Il s’agit avant tout de ne pas mettre en danger les centaines de passagers qui ont pris place à bord d’un aéronef.

————————————-

drapeau anglaisMeteo France has just acquired six new « radars » destined to accurately detect ash clouds in case of new volcanic eruptions. Everyone still remembers the eruption of Eyjafjallajökull in April 2010, with the paralysis of three quarters of the European airspace and 1.2 billion euros in economic losses. The precautionary principle had prevailed but the consequences certainly could have been less severe if the aviation authorities had had a more detailed knowledge of the movement of the Icelandic ash clouds.
One of the main world centers of volcanic ash control is located in Toulouse. This VAAC (Volcanic Ash Advisory Center) is managed by Météo France. It works round the clock and monitors Europe, Africa and the Middle East. To track the clouds of volcanic ash, it uses its own model of dispersion but also satellite data that lack precision in thickness of the clouds.
To overcome this uncertainty, the VAAC has unveiled its latest acquisition, unique in Europe: Six high tech « sniffers » of ash and aerosols in general. These LIDAR (acronym of « light detection and ranging » are cases teeming with computer technology; they are equipped with lasers that emit a beam of green light (only visible in fog) up to 15 km a.s.l.
Depending on how the particles refract light, the VAAC may determine whether there is a rain cloud, pollution or a cloud of volcanic ash, as well as its exact altitude. Five of the LIDAR will be deployed on the French territory: the first device will be set up in Lille. The sixth, a mobile one, will remain in Toulouse for emergencies.
According to an official of the Directorate of Security of the Southern Civil Aviation, « Meteo France will now provide accurate and valuable information that will allow us to maintain part of the airspace or airports open.  »
Source: 20 Minutes.

It is likely that this new equipment will be tested in full-scale one day or another. While the volcanoes of Auvergne are safe for the moment, it is very different for their Icelandic counterparts, or even Mount Etna. The Météo France « sniffers » will manage the situation more effectively than in 2010, but the final decision to fly or ground planes will always depend on the airlines. Although stopping the flights has a significant cost, the precautionary principle will always prevail. Companies will never want to jeopardize the lives of hundreds of passengers who boarded the aircraft.

Eyjafjallajokull-blog

Eruption de l’Eyjafjallajökull en 2010

Crédit photo: Wikipedia

Détection de la cendre volcanique // Volcanic ash detection

drapeau francaisBien que les compagnies aériennes soient très conscientes des perturbations et des pertes d’argent que peut entraîner la cendre volcanique, on n’a guère enregistré de progrès dans ce domaine depuis l’éruption islandaise du Vatnajökull en 2010. La dernière éruption du Raung en Indonésie a entraîné de fréquentes fermetures des aéroport de Bali et Surabaya. Comme je l’ai écrit auparavant, il semble que le système AVOID n’ait pas rencontré le succès escompté et les constructeurs comme Boeing n’ont pas installé de systèmes de détection de cendre volcanique dans les avions.
Cependant, les recherches continuent dans ce domaine. Par exemple, le projet VIPR (Vehicle Integrated Propulsion Research), fruit d’un partenariat entre la NASA, l’US Air Force et un certain nombre d’autres organismes et entreprises, inclut une série de tests destinés à contrôler la fiabilité des moteurs à bord des avions commerciaux. Leur but est de prendre en compte les technologies capables d’identifier les défauts des moteurs d’avions le plus tôt possible.
Les tests ont commencé en 2011. Deux turboréacteurs F-117 fournis par l’armée ont été montés sur un avion C-17 sur lequel les tests sont effectués avec l’avion au sol. Ces tests comprennent l’étude du moteur au cours de son fonctionnement normal, l’étude de défauts mécaniques provoqués, l’étude de défauts provoqués sur les circuits des gaz, et enfin, l’étude de la dégradation du moteur par ingestion de cendre volcanique.
La soumission du moteur à de la cendre volcanique représente la prochaine étape des tests VIPR de la NASA. La cendre volcanique a été choisie car c’est une façon intéressante de mettre un moteur en défaut et c’est un domaine qui n’a pas été soigneusement étudié.
Le test fonctionne par pulvérisation « faible à modérée » de cendre volcanique dans le moteur du C-17 tandis qu’il est en train de tourner. Parmi les capteurs utilisés pendant les tests figure un capteur de vibrations ainsi que d’un capteur dynamique de température qui enregistre les fluctuations rapides de température dans le moteur (voir image ci-dessous). Dans la partie turbine du moteur, un capteur (mis au point par la NASA) mesure l’intervalle entre la paroi externe de la turbine et les pointes des pales de turbine. C’est une mesure clé dans les moteurs d’avions parce que si l’on peut mesurer cet intervalle avec grande précision, on peut non seulement dire si oui ou non il y a des problèmes avec les pales de la turbine, mais cela permet aussi d’avoir un moteur plus économe en carburant .
L’accumulation de cendre sur les pales de compression du moteur contribue à son usure, ce qui compromet en fin de compte la santé du moteur, et par conséquent, la sécurité du vol.
Des capteurs d’émission sont installés derrière le moteur afin d’observer la combustion, ce qui donne une meilleure idée de la santé du moteur.
Grâce à ces tests, les chercheurs pourront étudier l’effet de plusieurs heures d’exposition du moteur à la cendre. Ils ont trois objectifs principaux:
1) L’incorporation de capteurs intelligents destinés à améliorer la sécurité des vols et à réduire les coûts pour les compagnies aériennes.
2) La détection des défauts potentiels du moteur.
3) L’évaluation des progrès en matière de diagnostic des moteurs.
Source: CBS Los Angeles.

 —————————————————-

drapeau anglaisAlthough air companies are quite conscious of the disruptions and the losses of money volcanic ash can cause, little has been done since the 2010 eruption of Vatnajökull in Iceland to solve the problem. Mount Raung’s last eruptions led to the closure of Bali airport in Indonesia. As I put it before, it seems the AVOID system did not meet with the expected success and plane builders like BOEING are not installing any volcanic ash detecting equipment in the aircraft.

However, research is going on in that domain. For instance, the VIPR (Vehicle Integrated Propulsion Research) project, the product of a partnership between NASA, the U.S. Air Force and a number of other agencies and companies, includes a series of tests to evaluate health management technologies on commercial engines. Its aim is to look at technologies that will be able to identify aircraft engine faults at the beginning stages.

The tests began in 2011. Two F-117 turbofan engines, provided by the Air Force, were mounted on a C-17 aircraft, on which the tests are performed as the aircraft is grounded. These tests include studying the engine through normal engine operations, seeded mechanical faults, seeded gas path faults, and finally, accelerated engine life degradation through the ingestion of volcanic ash.

The subjection to volcanic ash represents the next stage of NASA’s VIPR testing. Volcanic ash has been chosen because it’s an interesting way to fault an engine, but it’s also something that hasn’t been carefully studied.

The test works by spraying “low to moderate” concentrations of volcanic ash into the C-17’s running engine. Among the sensors under study is a vibration sensor, as well as a dynamic temperature sensor which picks up quick temperatures fluctuations in the engine (see image below). In the turbine section of the engine, a sensor can measure the gap between the outer wall of the turbine and the tips of the turbine blades. This is a key measurement in aircraft engines, because if one can measure this, and measure it precisely, not only one can tell whether or not there are problems with the turbine blades,  but one can also help to having a more fuel-efficient engine.

Ash accumulation on the engine’s compression blades contributes to erosion, ultimately compromising the health of the engine, and therefore, the safety of the flight.

Behind the engine, emissions sensors are installed to read the combustion of the engine, giving more insight to the health of the engine.

Through the volcanic ash test, researchers aim to study the effect of several hours of exposure to the ash.

The tests have three primary objectives:

The incorporation of smarter sensors designed to improve flight safety and reduce aviation costs.

The detection of potential engine faults.

The evaluation of advances in engine diagnostics.

Source: CBS Los Angeles.

Test avion

Source:  NASA.

Drones et nuages de cendre volcanique

drapeau francaisAprès le système AVOID censé détecter les nuages de cendre volcanique et aider les pilotes à les éviter, voici un autre dispositif mis au point en 2014 et dont le but est de cartographier la cendre dans l’espace aérien. Le NavSonde est un drone qui recueille et géolocalise les échantillons de cendre qu’il a récupérés.
Le NavSonde est installé sur un avion qui l’achemine à l’altitude désirée. Il est ensuite livré à lui-même, déploie ses ailes rétractables et son gouvernail gérés par des servo-moteurs. Pendant qu’il plane à travers des particules volcaniques en suivant une trajectoire déterminée par GPS, le collecteur de cendre s’ouvre et se ferme à des points précis de sorte que les chercheurs savent où chaque échantillon a été prélevé. Une fois que le drone a touché le sol, les scientifiques peuvent analyser son contenu pour connaître la densité et le type de cendre recueilli. Ils peuvent donc facilement en déduire la zone où le vol peut s’effectuer en toute sécurité.

Au final, le NavSonde pourra être utilisé dans différents contextes comme les tempêtes de poussière, les panaches de pollution, et même les incendies de forêts.
Voici une vidéo (en anglais) montrant le fonctionnement du NavSonde:
http://www.engineeringtv.com/video/NavSonde-Designed-to-Glide-Throu;AUVSI-Unmanned-Systems-2014

Source : NASA & Engineering TV.

 ————————————————

drapeau anglaisAfter the AVOID system supposed to detect volcanic ash clouds and help pilots avoid them, here is another device developed in 2014 whose aim is to map airspace ash. The NavSonde is a drone that collect and geotag ash samples.

After a ride on a plane, the NavSonde is let free, releasing its retractable, servo-driven wings and rudder. As it floats through volcanic particles, the ash collector opens and closes at precise points so researchers know where each sample originated. And once the glider goes back to the ground, scientists can analyze its contents for density and ash type, learning exactly where it’s safe to fly. Eventually, the NavSonde will collect all kinds of airborne troublemakers from dust storms, plumes of pollution, and even burning forests.

Here is a video showing how the NavSonde works:

http://www.engineeringtv.com/video/NavSonde-Designed-to-Glide-Throu;AUVSI-Unmanned-Systems-2014

Source : NASA & Engineering TV.

NavSonde

Source:  NASA.

Histoires de détection de cendre // Stories of ash detection

drapeau francaisAprès le renifleur de cendre AVOID, voici les lasers détecteurs de cendre allemands ! La presse nous apprend que les Allemands ont conçu « un avion spécialisé et un réseau de stations laser » dans l’éventualité d’une éruption du Barðarbunga. Les mesures effectuées par ces stations – capables de détecter la concentration de cendre jusqu’à 12 km d’altitude – permettront de savoir si le taux de cendre dans l’atmosphère permet ou interdit le trafic aérien.

On apprend cette information alors qu’un vol au départ de Berlin à destination de Reykjavik a été annulé au moment où l’alerte aérienne avait été portée au Rouge par les autorités islandaises, mais qu’aucun nuage de cendre n’était apparu au-dessus du volcan!

De la même façon, ce n’est que plusieurs jours après la crise sismique que la compagnie EasyJet a déclaré qu’elle envisageait d’utiliser son fameux système AVOID qui, jusqu’à présent, n’a été testé que de manière très artificielle…

L’inquiétude des compagnies aériennes la semaine dernière montre que la situation n’a guère évolué depuis l’éruption de l’Eyjafjallajökull en 2010 ! Nouvelle pagaille en vue en cas d’éruption sous-glaciaire avec panache de cendre!

 ———————————————–

drapeau anglaisAfter the AVOID ash detector, here are the German ash laser detectors! The press tells us that the Germans have designeda « specialized aircraft and a network of laser stations » in the event of an eruption of Barðarbunga. The measurements performed by these stations – able to detect ash concentration up to 12 km a.s.l. – will reveal whether the concentration of ash in the atmosphere allows or prohibits air traffic.
We hear about this piece of news a few days after a flight from Berlin to Reykjavik was cancelled when the air colour code hd been raised to Red by the Icelandic authorities, but no ash cloud had appeared above the volcano.

Similarly, it was not until several days after the seismic crisis that EasyJet said it planned to use its famous AVOID system which, so far, has been tested only very artificially…

The concern of airlines last week shows that the situation has not much changed since the eruption of Eyjafjallajökull in 2010!

Eyjafjallajokull-blog

Le Barðarbunga sera-t-il un nouveau Eyjafjallajökull?  Pas si sûr!  (Crédit photo:  Wikipedia)

L’Irlande et la cendre volcanique // Ireland and volcanic ash

   Depuis l’éruption de l’Eyjafjallajökull – le volcan islandais qui a causé une panique monstre dans le transport aérien en 2010 – les compagnies aériennes affirment les unes après les autres qu’elles seront en mesure d’éviter pareil scénario catastrophe si un autre volcan vient à émettre un important panache de cendre.

Cette fois-ci, c’est la compagnie irlandaise Aer Lingus qui prétend que son nouveau système de détection et de prévision de cendre volcanique réduira les perturbations causées aux avions en europe. La nouvelle technologie vient d’être présentée aux responsables de la compagnie. Elle utilise des satellites et des modélisations pour détecter les nuages de cendre et prévoir leur trajectoire. L’Agence Spatiale Européenne (ESA) a investi 2,1 millions d’euros dans le projet qui est piloté par l’Institut Norvégien pour la Recherche aérienne. La société Entreprise Ireland – qui assure la coordination avec l’ESA en Irlande – a permis de sécuriser le financement du projet.

Il faut noter que tous ces projets ont été conçus pendant des périodes de calme volcanique et qu’ils s’appuient essentiellement sur des simulations informatiques. Reste à savoir ce qui se passera le jour où le Katla ou l’un de ses copains reprendra du service en émettant un volumineux nuage de cendre. Il y a un fossé énorme entre la théorie et la pratique, la simulation et la réalité !

Source: Presse irlandaise.

 

   Since the eruption of Eyjafjallajökull  – the Icelandic volcano that caused an incredible stampede in air transport in 2010 – most air companies pretend that they will be able to avoid such a scenario in the future if some other volcano happens to emit a voluminous ash plume.

This time, it is up to the Irish company Aer Lingus to affirm that a new ash cloud detection and forecasting system will reduce the disruption to aviation in the event of a volcanic eruption in Europe. The new technology, which has just been demonstrated at the company’s headquarters, uses satellites and forecast models to detect ash clouds and forecast their movements. The European Space Agency (ESA) has invested 2.1 million euros in the project, which is led by the Norwegian Institute for Air Research. The funding was secured with the aid of Enterprise Ireland, which is the coordinating body for ESA in Ireland.

One can notice that all these projects have been set up during periods of volcanic calm and mostly rely on computer models. The point is to know what will happen the day when Katla or some other volcano will start erupting and emit a voluminous ash cloud. There is a huge gap between theory and practise, between simulation and reality!

Source: Irish newspapers.

Eyjafjallajokull-blog

Eruption de l’Eyjafjallajökull en 2010  (Crédit photo:  Wikipedia)