Réchauffement climatique et plates-formes glaciaires en Antarctique // Global warming and ice-shelves in Antarctica

En mars 2002, la plate-forme glaciaire Larsen B – une surface de 3 200 kilomètres carrés de glace flottante à proximité de la pointe de la Péninsule Antarctique – s’est effondrée avant de dériver dans la mer. Dans les semaines qui ont précédé cet événement, les satellites avaient repéré de nombreux lacs de fonte à la surface de la plate-forme en raison des températures chaudes dans la région au cours de l’été austral. Ensuite, en seulement trois jours, à partir du 2 mars, c’est presque toute la plate-forme qui s’est fracturée et est partie dans la mer de Weddell.
Aujourd’hui, près de 20 ans après cet événement, on observe une nouvelle désintégration de plate-forme glaciaire dans cette partie du monde. Une fois qu’une plate-forme glaciaire s’effondre et disparaît, elle ne se régénère pas et continue de s’effondrer. Contrairement à la glace de mer, qui fond et regèle chaque année, une plate-forme glaciaire se forme lorsque la partie avant d’un glacier avance à la surface de l’océan et devient une extension de la glace terrestre. Des icebergs se détachent de temps en temps des bordures des plates-formes glaciaires sous l’action des courants océaniques ou lors de collisions avec la glace de mer. La glace se reconstitue ensuite à partir de la poussée du glacier sur la terre ferme, mais il faut des décennies ou plus pour qu’une immense plate-forme glaciaire se régénère.
C’est ainsi qu’à partir de 2011, une nouvelle bande de glace de mer s’est mise en place dans la baie de Larsen B (Larsen B Embayment). Ce n’était certes pas l’épaisse glace qui était là une décennie auparavant, mais c’était la première fois depuis l’effondrement de la plate-forme au début de l’année 2002 que l’on voyait la baie de Larsen B retrouver sa glace qui est restée pendant plusieurs étés australs. Année après année, cette nouvelle glace s’est maintenue dans la baie. Espionnée par des satellites en orbite, elle a même repris la forme (sinon l’épaisseur) de la plate-forme d’origine.

Cependant, tout au long du mois de décembre 2021 et de la première moitié de janvier 2022, les satellites ont enregistré une répétition du processus observé en 2002. De nombreux lacs de fonte sont apparus à la surface de la glace. Ensuite, en quelques jours, la glace s’est désintégrée et est partie à la dérive dans l’océan
Le 11 janvier 2022, le National Snow and Ice Data Center (NSIDC) a expliqué que les lacs de fonte résultaient d’une série de vents de Foehn qui avaient parcouru la Péninsule Antarctique depuis le mois de décembre. Ces vents de Foehn, qui véhiculent de l’air chaud, ont eu un fort impact sur la saison de fonte à travers la Péninsule. Ainsi, fin décembre 2021, la fonte de la glace était trois fois supérieure à la moyenne pour la même période de 1990 à 2020.
La désintégration de la nouvelle glace qui s’était formée dans la baie de Larsen B n’aura pas d’impact direct sur l’élévation du niveau de la mer. De la même façon, un nouvel iceberg, ou même l’effondrement d’une banquise, ne contribue pas à cet aspect particulier du changement climatique. C’est comme un glaçon qui fond dans un verre d’eau.
Ce dernier événement de fonte dans la baie de Larsen B est toutefois préoccupant. Selon la NASA, il est maintenant probable que la glace qui vient de disparaître ne retiendra plus les glaciers en amont de la baie de Larsen B et que ces glaciers terrestres ne tarderont pas à perdre une glace qui fera s’élever le niveau de la mer.
Il convient de rappeler que la plate-forme glaciaire Larsen est une étendue de glace épaisse le long du littoral oriental de la Péninsule Antarctique. Après avoir été complètement cartographiée, elle a été divisée en quatre sections: Larsen A, B, C et D. Larsen A est la plus septentrionale. Elle s’est effondrée en janvier 1995. Larsen B a tenu bon jusqu’en 2002, avant de se désintégrer. Larsen C a fait la une des journaux en 2017 lorsque l’iceberg A68 s’est détaché de son front en juillet de la même année. Poussé par les courants, le plus grand iceberg du monde à l’époque a fini par dériver en mer jusqu’à l’île de Géorgie du Sud où il s’est brisé en mille morceaux à la fin de l’année 2020. Aujourd’hui, ce qu’il reste de Larsen C et tout Larsen D restent intacts.
Source : The Weather Network.

———————————————–

In March 2002, the Larsen B ice shelf — 3,200 square kilometres of floating glacial ice attached near the tip of the Antarctic Peninsula — broke apart and collapsed into the sea. In the weeks leading up to this event, satellites had spotted numerous melt ponds on the ice shelf’s surface due to warm summer temperatures over the region. Then, in just three days, starting on March 2nd, nearly the entire ice shelf fractured and surged out into the Weddell Sea.

Now, close to 20 years after that event, there was a second collapse of the ice in that part of the world. Once an ice shelf collapses, it never regenerates and keeps collapsing. Unlike sea ice, which melts and refreezes each year, an ice shelf forms when the leading edge of a glacier pushes out over water, becoming a direct extension of the land ice. Icebergs break off the edges of ice shelves from time to time simply due to the stresses of ocean currents and sea ice collisions. The sheet ice is replenished from the glacier on land, though. So it would take decades or longer for an immense ice shelf to regenerate, even without the continued stresses of global warming.

However, starting in 2011, a swath of sea ice set up in the Larsen B embayment. This was not the thick glacial ice that was there a decade before, but it was the first time since the early 2002 shelf collapse that the Larsen B embayment was seen to freeze up and stay frozen through multiple austral summers.

Year after year, this new ice persisted in the embayment. As captured by orbiting satellites, it even took on the shape (if not the thickness) of the original ice shelf. However, throughout December 2021 and the first half of January 2022, satellites recorded a repeat of the same pattern that occurred in 2002. Numerous blue melt ponds were spotted on the surface of the ice. Then, in a matter of days, the ice disintegrated and drifted away.

On January 11th, 2022, the National Snow and Ice Data Center (NSIDC) noted that the extensive melt water ponds resulted from a series of wind storms accompanied by Foehn winds that crossed the Peninsula since December. Each of these wind storms, with thee warm air brought by the Foehn winds, had a strong impact on the melt season across the Peninsula. For example, in late December, the amount of melting detected was roughly three times greater than the average for that same period from 1990 to 2020.

The disintegration of the new ice that had formed in the Larsen B embayment will not directly impact sea level rise. This is for the same reason a new iceberg, or even the collapse of an ice shelf, does not contribute much to this particular aspect of climate change. It is like an ice cube melting in a glass of water.

There is an indirect concern stemming from this event, though. According to NASA Earth Observatory, this summer’s breakup of the sea ice in the embayment is important because it is now likely that the backstress will be reduced on all glaciers in the Larsen B Embayment and that additional inland ice losses will be coming soon.

It is worth reminding that the Larsen ice shelf is an expanse of thick glacial ice along the eastern shoreline of the Antarctic Peninsula. After it was completely mapped out, it was divided into four different sections — Larsen A, B, C, and D. Larsen A was the northernmost of these ice shelves. It collapsed in January of 1995. Larsen B held on until 2002, before it disintegrated. Larsen C made headlines in 2017 when iceberg A68 broke away from its front in July of that year. The largest iceberg in the world at the time, A68 ended up floating out to sea and got as far as South Georgia Island by late 2020. There, it shattered into numerous pieces. So far, the rest of Larsen C and all of Larsen D currently remain intact.

Source: The Weather Network.

Images satellites montrant le processus de désintégration de la plate-forme Larsen B en janvier 2022. (Source: NASA)

Gros plan sur les plates-formes Larsen A et B avec, en encart, un aperçu des 4 plate-formes de la Péninsule Antarctique (Source: NASA)

Les aurores de Jupiter // Jupiter’s auroras

Selon une nouvelle étude par des chercheurs de l’Université de Leicester, publiée début janvier 2022 dans le Journal of Geophysical Research: Space Physics, les aurores de Jupiter sont causées par un « bras de fer » cosmique généré par les volcans situés Io, la lune la plus proche de la planète.
La sonde Juno de la NASA et le télescope spatial Hubble ont fourni de nouvelles preuves montrant que la rotation rapide de Jupiter et l’émission de soufre et d’oxygène par les volcans sur Io créent un système de courants électriques qui génère les puissantes aurores observées autour des pôles de Jupiter.
La taille de Jupiter est plus de 11 fois supérieure à celle de la Terre. La planète effectue une rotation environ toutes les 9 heures 30 minutes. En orbite autour de Jupiter, à une distance moyenne d’environ 422 000 kilomètres, Io compte plus de 400 volcans actifs, qui projettent de la lave à des dizaines de kilomètres de hauteur. Ces émissions retombent dans l’orbite de Jupiter où elles deviennent du plasma, un matériau chargé électriquement.
Le Magnetic Field Investigation à bord de Juno, qui mesure le champ magnétique de Jupiter depuis l’orbite de la sonde spatiale, offre une vue détaillée de l’environnement plasmatique externe de Jupiter et des courants électriques qui le traversent. De son côté, le spectrographe d’imagerie de Hubble mesure la luminosité des aurores de Jupiter.
Les résultats obtenus sur le processus qui gère les aurores de Jupiter montrent l’intérêt de combiner les observations du télescope Hubble avec les mesures de la sonde Juno. Les images fournies par Hubble donnent une vue globale, tandis que Juno effectue des observations de proximité.
La rotation rapide de Jupiter repousse la plus grande partie des matériaux en provenance de lo, et à mesure que ces matériaux sont repoussés vers l’extérieur, leur vitesse de rotation ralentit. Cependant, Jupiter tente de maintenir ces matériaux dans sa propre vitesse de rotation via des courants électriques circulant dans la haute atmosphère et la magnétosphère de la planète. Cette situation crée une sorte de bras de fer électromagnétique entre le système de courants électriques et les matériaux à l’intérieur de la magnétosphère. Au fur et à mesure que ces matériaux se déplacent le long des lignes de champ magnétique de Jupiter, en se dirigeant vers les pôles de la planète, ils parcourent la haute atmosphère de cette dernière et interagissent avec les gaz, ce qui donne naissance à de superbes aurores aux couleurs éclatantes.
Cette situation permet non seulement de comprendre le fonctionnement du champ magnétique de Jupiter, mais aussi celui des planètes en orbite autour d’autres étoiles, pour lesquelles les mêmes théories ont déjà été avancées.
Source : Space.com.

——————————————

According to a new study by researchers from the University of Leicester published early January 2022 in the Journal of Geophysical Research: Space Physics, Jupiter’s auroras are caused by a cosmic game of « tug-of-war, » fueled by volcanoes on the planet’s innermost moon, Io.

NASA’s Juno spacecraft and Hubble Space Telescope have revealed new evidence suggesting Jupiter’s rapid rotation and the release of sulfur and oxygen from volcanoes on Io create an electric current system that drives the powerful auroras observed around the gas giant’s poles.

Jupiter is more than 11 times wider than Earth, completing one rotation approximately every 9.5 hours. Orbiting Jupiter at an average distance of about 422,000 kilometers, Jupiter’s moon Io has more than 400 active volcanoes, which shoot lava dozens of kilometers high. These emissions fall into Jupiter’s orbit and become plasma, an electrically charged material.

Juno’s Magnetic Field Investigation, which measures Jupiter’s magnetic field from orbit, offers a detailed view of Jupiter’s outer plasma environment and the electrical currents traveling through it, while Hubble’s Imaging Spectrograph measures the brightness of Jupiter’s auroras.

These results on how Jupiter’s aurorae work show the interest of combining Earth-based observations from Hubble with Juno measurements. The Hubble Space Telescope images provide the broad overview, while Juno investigates close up.

Jupiter’s rapid rotation repels most of the material ejected from lo, and as the material moves outward, its rotation rate slows. However, Jupiter attempts to keep this material spinning at its rotation speed via electric currents flowing through the planet’s upper atmosphere and magnetosphere. In turn, this creates an electromagnetic tug-of-war between the electric current system and material in the magnetosphere. As the material travels along Jupiter’s magnetic field lines, back toward the planet’s poles, it cycles through the planet’s upper atmosphere and interacts with gases, creating vivid aurora light shows.

This relation not only helps understand how Jupiter’s magnetic field works, but also those of planets orbiting other stars, for which the same theories have previously been used.

Source: Space.com.

 

Image composite d’aurores sur Jupiter, réalisée à l’aide du spectrographe d’imagerie du télescope spatial Hubble. (Source : NASA)

Promesse de l’UNESCO au Sommet sur les Océans de Brest : Vers une cartographie à grande échelle des fonds marins

Je ne cesse de le dire et de le répéter sur ce blog : nous connaissons mieux la surface de la planète Mars que les abysses de nos propres océans. Il est vrai que, médiatiquement parlant, les images colorées de la planète rouge font davantage rêver que le noir absolu des fosses océaniques. Comme je l’écrivais récemment, le noir est la couleur de la mort et n’intéresse personne.

Il serait pourtant essentiel d’aller voir ce qui se passe au coeur des fosses océaniques car elles correspondent souvent à des zones de subduction, là même où se déclenchent les séismes et les tsunamis les plus dévastateurs. En y installant les instruments de haute technologie dont nous disposons, nous en saurions sans aucun doute beaucoup plus sur les processus qui provoquent ces catastrophes naturelles.

Le Sommet sur les Océans – One Ocean Summit – de Brest aura au moins été l’occasion d’apprendre une bonne nouvelle, en espérant qu’elle se concrétisera rapidement. L’UNESCO a promis qu’au moins 80% des fonds marins seraient cartographiés d’ici 2030, contre 20% aujourd’hui, un chiffre qui me laisse pantois.

Pour relever ce défi, l’agence de l’ONU a précisé qu’elle va mobiliser une flotte de 50 navires spécialement dédiée à la cartographie des fonds marins, intensifier le recours au sonar sur navire autonome et intensifier la transmission par les gouvernements et les entreprises des données cartographiques dont ils disposent.

L’UNESCO reconnaît que les fonds marins recèlent encore de nombreux secrets. Connaître leur profondeur et leurs reliefs est essentiel pour comprendre l’emplacement des failles océaniques, le fonctionnement des courants océaniques et des marées, comme celui du transport des sédiments. Sans oublier les éruptions volcaniques. La dernière éruption sous-marine aux Tonga a montré la nécessité d’aller observer de plus près les volcans qui se cachent sous la surface des océans.

« Ces données contribuent à protéger les populations en anticipant les risques sismiques et les tsunamis, à recenser les sites naturels qu’il convient de sauvegarder, à identifier les ressources halieutiques pour une exploitation durable, à planifier la construction des infrastructures en mer, ou encore à réagir efficacement aux catastrophes à l’image des marées noires, des accidents aériens ou des naufrages. »

Il faut juste espérer qu’il ne s’agit pas de voeux pieux et que nous en saurons bientôt plus sur les fosses océaniques.

Source: Médias français.

La fosse des Mariannes est la fosse océanique la plus profonde connue à ce jour. Elle est située dans la partie nord-ouest de l’océan Pacifique, à l’est des Îles Mariannes, à proximité de l’île de Guam. Le point le plus bas connu se situerait, selon les relevés, à 10 984 ± 25 m (Source: Wikipedia)

NASA : des drones au service de la volcanologie // Drones to help volcanology

La NASA est bien connue pour ses projets spatiaux comme l’envoi d’hommes sur la Lune. Cependant, l’agence participe également à des projets de surveillance sur Terre, notamment ceux liés au climat. Actuellement, les scientifiques de la NASA travaillent sur un projet visant à utiliser des drones pour surveiller les volcans actifs et avertir de la possibilité d’éruption.
La NASA collabore avec la société Black Swift Technologies qui crée des systèmes d’aéronefs sans pilote (UAS) – ou drones – capables de faire face aux conditions difficiles au-dessus des volcans. La société a mis au point un module d’analyse de gaz installé à bord des drones pour détecter des signes d’activité volcanique.
Une première version de ce nouveau drone a été testée sur un volcan au Costa Rica en 2018. J’avais écrit une note à ce sujet le 14 mars 2018:

Des drones pour mesurer les gaz volcaniques // Drones to measure volcanic gases

Une version plus récente de l’engin a récemment été testée au-dessus du volcan Makushin dans les îles Aléoutiennes en Alaska. Le drone peut voler même lorsqu’il est hors de portée visuelle des pilotes. Il utilise pour cela des systèmes autonomes combinés à un plan de vol prédéfini permettant d’atteindre le sommet du volcan où il peut collecter des informations visuelles et thermiques sur l’activité volcanique.
L’objectif de Black Swift Technologies est d’améliorer encore davantage la capacité des drones à fournir des informations précieuses sur les phénomènes naturels. Le but ultime est de développer cette technologie afin qu’elle puisse surveiller régulièrement les volcans et agir comme système d’alerte précoce si une éruption est imminente. En conséquence, les drones pourraient être utilisés pour aider les autorités à avertir les populations d’un début d’éruption et de nombreux autres dangers qui prennent souvent les scientifiques par surprise. Avec cet outil, les volcanologues pourraient surveiller régulièrement l’activité de volcans, même éloignés, et réagir plus rapidement quand une éruption se produit.
Source: digitaltrends.

—————————————–

NASA is well known for its space projects like sending men on the Moon. However, the agency also takes part in Earth-monitoring projects, particularly those related to the climate. Currently, it is working on a plan to use drones to monitor active volcanoes and give warnings of potential eruptions.

NASA is collaborating with the company Black Swift Technologies, which creates unmanned aircraft systems (UASs) – or drones – which can withstand the tough environments above volcanoes. The company also developed a gas-sensing payload the UAS could carry to look for signs of volcanic unrest.

A first version of the UAS was tested for monitoring a volcano in Costa Rica in 2018. I had written a post about this mission on March 14th, 2018 (see above).

A newer version of the craft has recently been tested with flights at Makushin Volcano in the Aleutian Islands in Alaska. The drone can fly even when it is out of visual range of the pilots, by using autonomous systems combined with a pre-set flight plan to reach the volcano’s summit. From there, it can collect visual and thermal information on volcanic activity.

Black Swift Technologies’ goal is to continue to push the capabilities of UASs to provide valuable insight into natural phenomena.

The hope is to develop this technology so that it can routinely monitor volcanoes and act as an early-warning system if an eruption is imminent. As a result, UASs could be used to help authorities warn communities about the onset of dangerous volcanic eruptions, and many other hazards that now take scientists by surprise. With this tool, they could routinely monitor even remote volcanoes for activity and respond to eruption events.

Source: digitaltrends.

Vue du sommet du Makushin (Alaska) capturée par une caméra installée sur l’aile d’un drone S2 qui a volé en autonomie jusqu’à plus de 20 km, donc au-delà de la portée de la vue de son pilote, et à une altitude de 1800 m. Démonstration de vol réalisée en septembre 2021 (Source: Black Swift Technologies).