Des drones pour mesurer les gaz volcaniques // Drones to measure volcanic gases

Les drones sont de plus en plus populaires de nos jours et ils sont utilisés dans différents domaines d’activités, depuis la géologie jusqu’à l’agriculture. Certains d’entre eux trouvent également des applications sur les volcans, même si la présence de gaz agressifs et de turbulences dans les cratères rendent leur utilisation difficile, avec le risque de perdre cet équipement coûteux. Jeannie Curtis sur Facebook a attiré mon attention sur un article concernant l’utilisation de drones pour mesurer le dioxyde de carbone près d’un volcan actif au Costa Rica.
Black Swift Technologies (BST)*, une société d’ingénierie basée à Boulder (Colorado), a annoncé qu’elle avait mis en place un partenariat avec le Jet Propulsion Laboratory (JPL) de la NASA pour effectuer des mesures de dioxyde de carbone (CO2) sans l’air au moyen d’un drone capable de survoler la canopée à proximité d’un volcan actif.
En mesurant l’évolution des gaz volcaniques émis par les bouches éruptives et les fractures des volcans actifs, le JPL espère mieux comprendre le fonctionnement des volcans, anticiper les éruptions et avertir les populations.
Les vols ont été effectués au Costa Rica en janvier 2018. Les scientifiques ont utilisé le drone Black Swift S2 de chez BST, équipé de capteurs conçus pour mesurer le CO2 et la vapeur d’eau émis par le volcan. Les prochains vols du Black Swift S2 incorporeront des capteurs capables de mesurer le méthane, l’hydrogène sulfuré et le dioxyde de soufre, ainsi qu’un néphélomètre pour évaluer la taille et la répartition des particules volcaniques, ainsi que des sondes atmosphériques pour analyser la pression, la température et l’humidité.
Selon les partenaires, les premiers vols ont démontré qu’un drone spécialement conçu peut mesurer avec précision (contrairement aux satellites) les éléments présents dans les panaches de gaz émis par les bouches éruptives et les fractures des volcans – y compris ceux masqués par la canopée – pour quantifier les cycles de vie des volcans.
Un drone peut atteindre et se déplacer dans des endroits difficilement accessibles avec plus d’efficacité que le personnel au sol ou les aéronefs coûteux avec un pilote à leur bord. Le but des premiers vols était, dans un environnement difficile, d’utiliser un drone capable de suivre les contours de la canopée autour d’un volcan afin d’échantillonner les gaz horizontalement et verticalement. Cela permet d’obtenir des données en temps réel sur la variation du panache éruptif par rapport à l’altitude. Le drone est plus performant que les satellites qui ne peuvent calculer qu’une valeur moyenne sur tout le panache.
Les scientifiques du JPL peuvent programmer le Black Swift S2 en quelques minutes pour calculer la zone à explorer, puis commencer à collecter des données pour analyse immédiate et prise de décision. La fonction de pilotage automatique à bord du drone permet de le piloter à la fois en AGL (hauteur variable autonome suivant terrain) et en MSL (hauteur quasi constante). De plus, la conception modulaire du compartiment de la charge utile du Black Swift S2 permet une rotation rapide entre les circuits de vol, ce qui permet aux scientifiques de changer ou d’étalonner rapidement la charge utile du capteur ou de remplacer des composants. La société BST ajoute que les opérations de contrôle et la cartographie des missions sont effectuées à partir d’une simple tablette Android  sur laquelle on a chargé le logiciel SwiftTab de chez BST.
Source: Unmanned Aerial.

* Plus de détails sur les produits Black Swift à cette adresse: http://blackswifttech.com/pages/products/s2/

———————————————

Drones are getting are and more popular these days and they are used in different fields of activities ranging from geology to agriculture. Some of them are also used on volcanoes, even though the presence of aggressive gases and turbulences within the craters make their use difficult, with the risk of losing this costly equipment. Jeannie Curtis on Facebook has drawn my attention to an article about the use of drones to measure carbon dioxide close to an active volcano in Costa Rica.

Black Swift Technologies (BST), a specialized engineering firm based in Boulder, Colorado, has announced a successful collaboration with NASA’s Jet Propulsion Laboratory (NASA/JPL) to capture airborne carbon dioxide (CO2) measurements via a small unmanned aircraft system (sUAS) over the forest canopy near an active volcano.

By measuring and monitoring the prevalence of volcanic gases emitted from the vents and fractures of active volcanoes, NASA/JPL hopes to better understand how volcanoes work and improve volcano eruption planning and warning capabilities.

The flights were conducted in Costa Rica in January. They used BST’s Black Swift S2 drone, equipped with sensors designed to measure CO2 and water vapour being emitted by the volcano. Future flights of the Black Swift S2 will incorporate sensors capable of measuring methane, hydrogen sulfide and sulphur dioxide, as well as a nephelometer to assess volcanic particle size and distribution, coupled with atmospheric probes to analyze pressure, temperature, humidity.

According to the partners, the flights demonstrated that a purpose-built sUAS can more accurately measure (as opposed to satellites) the compounds present in gas plumes released from vents and fractures all around volcanoes – including those obscured by tree canopy – to help quantify the life cycles of volcanoes.

A drone can go places more effectively than ground personnel or costly manned aircraft. The goal was to deploy an sUAS in a challenging environment that was capable of following the contours of the forest canopy around a volcano to sample gases horizontally and vertically to obtain real-time data on how a plume varies over altitude, as opposed to satellite observations which might just capture an average value over its entire column.

NASA/JPL scientists can program the Black Swift S2 in minutes to calculate the area under review and then begin collecting data for immediate analysis and decision-making. The autopilot function aboard the drone allows to deploy the drone at both AGL (autonomous variable height following terrain) and MSL (near constant height). Additionally, the modular design of the payload compartment of the Black Swift S2 provides for quick turn-around between flight deployments, enabling scientists to quickly change out or calibrate the sensor payload or to replace components. BST adds that mission monitoring and mapping are done from a handheld Android tablet loaded with BST’s SwiftTab software.

Source: Unmanned Aerial.

More details on the Black Swift products at this address: : http://blackswifttech.com/pages/products/s2/

Source: Black Swift Technologies

 

Publicités

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion /  Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion /  Changer )

w

Connexion à %s