Quand se produit un épisode éruptif (souvent baptisé paroxysme) sur l’Etna, c’est toujours la même galère pour les localités qui se trouvent sous le vent : elles reçoivent de pluies de cendres qu’il faut évacuer rapidement car elles peuvent poser des problèmes à la circulation, obstruer les systèmes d’évacuation des eaux pluviales, etc. Les habitants doivent sortir les balais quand une éruption se produit. Chaque événement a également un coût pour les municipalités des bourgades autour du volcan sicilien.
Le maire de Catane a récemment convoqué ses collègues de la région de l’Etna pour proposer un plan stratégique sur le long terme. Les maires présents à la réunion ont fait part des inconvénients de la cendre volcanique pour les citoyens et des énormes ressources investies jusqu’à présent par les municipalités.
Le maire de Catane a proposé une solution qui prévoit une optimisation des coûts, amortis dans le temps, en recourant à l’achat de véhicules permettant le nettoyage des rues, des regards et caniveaux, ainsi que des bâtiments scolaires. Ces véhicules seraient achetés par la métropole catanaise et leur utilisation serait coordonnée par la Protection Civile. Ils seraient équipés d’aspirateurs et de brosses, ainsi que de bennes pour collecter la cendre. Ces véhicules seraient mis à la disposition des municipalités qui en ont besoin. Les équipements destinés au nettoyage de la cendre volcanique ne seraient donc plus loués comme cela se fait actuellement. Cela permettrait aux maires d’économiser des millions d’euros et de ne plus recourir à des fonds extrabudgétaires.
Si ses collègues sont d’accord, le maire de Catane a déclaré que la métropole encouragera « un changement d’orientation substantiel et achètera, avec des fonds régionaux ou étatiques, des instruments et moyens efficaces et utiles pour lutter contre les retombées de cendres. »
Les maires des communes de l’Etna ont accueilli favorablement la proposition avancée par le premier magistrat de Catane ; ils sont conscients qu’une stratégie commune et préventive pourrait être la solution la plus adaptée pour résoudre les problèmes liés aux cendres volcaniques. Ils ont également proposé la création d’un fonds permanent « d’urgence pour les cendres », qui pourrait être utilisé à tour de rôle et immédiatement en cas de besoin.
Reste à voir si cette réunion aura les effets espérés…
Comme je l’ai écrit précédemment, le Met Office islandais s’attend à une nouvelle éruption dans les prochains jours sur la péninsule de Reykjanes. Afin d’être prêt à faire face à cet événement, de nombreux préparatifs sont en cours pour en minimiser l’impact.
Les digues de terre ont prouvé leur efficacité pour détourner le cours de la lave. Elles ont donc été renforcées et surélevées.
La stratégie utilisée à Heimaey en 1973 pourrait être utilisée pour protéger les infrastructures sur la péninsule de Reykjanes. De nouveaux équipements de refroidissement de la lave avec de l’eau sont en train d’être mis en place. Des tuyaux d’environ 25 centimètres de diamètre ont été connectés aux réserves d’eau de Svartengi et du Blue Lagoon et à des pompes, puis ont été installés le long de plusieurs des digues de terre dans le secteur de Sundhnúksgígaröðin, là où la prochaine éruption est la plus susceptible d’avoir lieu. Quatre kilomètres de ces tuyaux géants sont opérationnels, reliés à quatre pompes de 13 000 litres. Ils traversent Sýlingarfell et passent sous la Grindavíkurvegur pour atteindre la zone à protéger. Cette stratégie permettra de commencer à refroidir la lave beaucoup plus tôt et d’être beaucoup plus efficace que lors des tentatives précédentes.
Source : Iceland Review.
Opération de refroidissement de la lave à Heimaey en 1973 (Source: Wikipedia)
Premiers tests de refroidissement de la lave en 2024 (Crédit photo : Iceland Review)
————————————————–
As I put it before, a new eruption is expected in the short term by the Icelandic Met Office on the Reykjanes Peninsula. In order to be ready to face this event, many preparations are being made to minimise the impact.
The earthen barriers have proved their efficiency to divert the course of lava. They have been reinforced and elevated.
The strategy used in Heimaey in 1973 might be used to protect infrastructure on the Reykjanes Peninsula. New lava cooling equipment is being set up to try and cool lava with water. Hoses about 25 centimeters in diameter have been connected to water sources and pumps, and then led to several of the earthen barriers already around Sundhnúksgígaröðin, where the next eruption is most likely to take place. The water sources are both Svartengi and the Blue Lagoon. Four kilometres of these giant hoses have already been laid down, stretching from four 13,000L pumps, across Sýlingarfell and under Grindavíkurvegur to reach the protected area. This will allow the lava cooling to begin much sooner, and reach much closer, than previous efforts.
L‘Observatoire des Volcans d’Hawaï (HVO) publie régulièrement des articles dans le cadre d’une série baptisée « Volcano Watch » dont le but est d’informer sur les observations et les mesures effectuées par les scientifiques en poste à l’Observatoire. C’est aussi un travail de vulgarisation qui informe le public sur les risques volcaniques.
L’un des derniers articles « Volcano Watch » est consacré à la mesure des gaz volcaniques, un paramètre essentiel, que ce soit pour la sécurité du public ou pour la compréhension de l’activité volcanique. Le HVO explique dès le début de l’article que la technologie repose avant tout sur le vent.
Panache de gaz émis par le cratère de l’Halema’uma’u (Photo : C. Grandpey)
Le HVO exploite actuellement 19 stations permanentes de mesure des gaz et 7 instruments portables pour analyser les éruptions du Kilauea. L’ensemble de ces instruments peut être divisé en deux catégories : (1) ceux qui analysent les concentrations de gaz ; et (2) ceux qui étudient les taux d’émission.
Les instruments qui analysent les concentrations de gaz comprennent des stations multi-gaz qui mesurent un ensemble de gaz (CO2, H2O, SO2 et H2S) et des stations haute résolution capables de mesurer un seul gaz (le SO2, par exemple) jusqu’à de très faibles concentrations. Ces instruments prélèvent des échantillons de panaches volcaniques pour indiquer quels gaz sont présents et les rapports de ces gaz les uns par rapport aux autres, ce qui est important pour comprendre le système volcanique.
Les instruments qui analysent les taux d’émission mesurent l’absorption de la lumière ultraviolette du soleil par le panache via la télédétection. Cela permet aux scientifiques du HVO de déterminer la quantité de SO2 émise par le volcan, mais uniquement pendant la journée.
Un géochimiste du HVO mesure les gaz émis par le Kilauea à l’aide d’un spectromètre infrarouge à transformée de Fourier (FTIR), un instrument qui détecte la composition des gaz sur la base de la lumière infrarouge absorbée. (Crédit photo : HVO)
Tous ces instruments nécessitent une bonne coopération des gaz. Cela signifie que le panache doit passer à proximité ou au-dessus de l’instrument pour qu’une mesure soit effectuée.
Le panache volcanique ne bouge pas tout seul. Il dépend du vent pour le transporter dans une direction donnée. Le travail des scientifiques spécialisés dans la mesure des gaz volcaniques consiste à rechercher et à mesurer cette formation de gaz changeante et transitoire, ce qui n’est pas une tâche facile. En effet, les instruments ne fonctionnent pas dans certaines conditions météorologiques. Ils ont besoin que le vent souffle dans la bonne direction et à la bonne vitesse pour effectuer une mesure utile.
Sur le Kilauea, les alizés sont les vents dominants, ce qui signifie que les vents proches de la surface soufflent du nord-est la majeure partie de l’année. Pour cette raison, les stations permanentes de mesure des gaz du HVO sont positionnées au sud-ouest (sous le vent) de l’Halema’uma’u, le cratère sommital.
Si la direction du vent s’inverse par rapport aux alizés (une situation appelée « vents de Kona »), les scientifiques se trouvent en difficulté car le vent éloigne les gaz des capteurs permanents. De même, si le vent est trop lent (en dessous d’environ 4 mètres par seconde), le panache peut alors s’élever verticalement et se trouver hors de portée des capteurs. Dans le cas contraire, si le vent est trop fort, il dilue le panache, l’étale et rend difficile la mesure par les capteurs.
Une autre difficulté est que les volcans n’entrent pas en éruption toujours au même endroit. Lors de l’éruption la plus récente du Kilauea, des fissures se sont ouvertes dans la partie supérieure de la zone de rift sud-ouest, sous le vent de la quasi-totalité du réseau de mesure des gaz. Un seul instrument, une station à haute résolution – la HRPKE – était située à proximité des bouches éruptives, à quelques centaines de mètres à l’ouest-nord-ouest des fissures. Le problème, c’est que le vent soufflait du nord ce jour-là et emportait l’épais panache éruptif vers le sud, loin de la station HRPKE qui a dû se contenter d’un filet de gaz plusieurs heures après le début de l’éruption. Par la suite, le vent a tourné plus à l’est et dirigé le panache vers la station.
Created with GIMP
Station HRPKE installée au sud-ouest du sommet du Kīlauea, dans l’Upper Southwest Rift Zone. L’instrument mesure les concentrations de SO2 dans l’air, ainsi que des données météorologiques telles que la vitesse et la direction du vent, et les précipitations. (Crédit photo : USGS)
Pour parvenir à des mesures de gaz efficaces, il faut la combinaison de quatre éléments : la direction et la vitesse du vent, parfois la lumière du jour, et toujours beaucoup de chance. Les chercheurs en charge de la mesure des gaz volcaniques à l’USGS ne cessent de mettre au point de nouvelles technologies pour être plus efficaces et pouvoir informer le public sur ce risque volcanique.
Source : HVO / USGS.
—————————————————–
The Hawaiian Volcano Observatory (HVO) regularly publishes articles as part of a series called “Volcano Watch” whose aim is to inform about the observations and measurements performed by scientists stationed at the Observatory . It is also popularization work which informs the public about volcanic hazards.
One of the latest « Volcano Watch » articles is dedicated to the measurement of volcanic gases which is critical for both public safety and understanding volcanic activity. HVO explains from the beginning that the technology relies on the wind.
HVO currently operates 19 permanent gas monitoring stations and 7 portable instruments for eruption response on Kilauea. These can be divided into two categories : (1) gas concentrations; and (2) emission rates.
Gas concentration instruments include multi-GAS stations that measure a combination of gases (CO2, H2O, SO2, and H2S) and high-resolution stations that can measure a single gas (SO2) down to very low concentrations. These instruments draw in samples of volcanic plumes to indicate which gases are present and the ratios of these gases to each other, which is important for understanding the volcanic system.
Emission rate instruments measure the plume’s absorption of ultraviolet light from the sun via remote sensing. This allows HVO scientists to determine how much SO2 is coming out of the volcano, though only during daylight hours.
All these instruments require cooperation from the gases themselves: the plume must pass by or over the instrument for a measurement to be made.
The volcanic plume, however, doesn’t move on its own. It relies on the wind to carry it in any given direction. The job of volcano gas scientists is to chase around and measure this shifting, transient gas claoud, which is not an easy task. Indeed, gas instruments do not work in certain weather conditions. They need the wind to be in the right direction and the right speed to make a useful measurement.
At Kilauea volcano, the dominant trade winds mean that near-surface winds blow from the northeast most of the year. For this reason, HVO’s permanent gas monitoring stations are positioned to the southwest (downwind) of Halemaʻumaʻu, the summit crater.
If the wind direction is reversed relative to normal trade winds (a condition called “Kona winds”), scientists have no easy way of measuring it because the wind is blowing the gas away from the permanent sensors. Similarly, if the wind is too slow (below about 4 m/s), then the plume can loft straight up and once again miss the sensors. Alternatively, if the wind is too strong then it effectively dilutes the plume, spreading it thin and making it difficult for the sensors to measure.
Another complication is that volcanoes do not always erupt from the same location. In the most recent eruption at Kilauea, fissures opened in the Upper Southwest Rift Zone, downwind of nearly the entire gas monitoring network. Only one instrument, a high-resolution station called HRPKE, was located near the eruptive vents, a few hundred meters to the west-northwest of the fissures. However, the winds were northerly that day and were blowing the thick eruptive plume to the south, away from HRPKE which di not record a wisp of gas until several hours into the eruption when the wind turned more easterly, finally blowing the plume to the station.
Effective gas measurements require an alignment of four things: wind direction, wind speed, sometimes daylight, and always luck. Volcano gas researchers at the USGS continue to develop new technologies to be more efficient and be able to inform the public about this volcanic hazard.