Piton de la Fournaise (Ile de la Réunion : Photos de l’éruption

Voici quelques photos de l’éruption du Piton de la Fournaise que vient de me faire parvenir mon ami Christian Holveck. Très belles, comme d’habitude. Avec tous mes remerciements.

Ne manquez pas de visiter le site de Christian. Vous allez en prendre plein les yeux!

http://www.christianholveck.com/

Photos : C. Holveck

Le lithium de la Salton Sea (Californie) // The Salton Sea lithium (California)

À environ 60 kilomètres au nord de la frontière entre la Californie et le Mexique se trouve la mer de Salton – Salton Sea. Il s’agit d’une vaste étendue d’eau qui a été autrefois un lieu de divertissement très populaire. Aujourd’hui, c’est fini. La contamination de l’eau et des décennies de sécheresse ont fait d’effondrer son écosystème et ont donné naissance à des villes fantômes.
Au sein de cette catastrophe environnementale, la California Energy Commission estime qu’il y a suffisamment de lithium dans la Salton Sea pour répondre à toute la demande future des États-Unis et à 40 % de la demande mondiale. C’est une bonne nouvelle pour l’industrie des véhicules électriques, car le lithium est le dénominateur commun à tous les types de batteries alimentant ces véhicules.
En général, l’extraction du lithium se fait soit par une exploitation à ciel ouvert, soit par des bassins de décantation et d’évaporation où on pompe la saumure contenant du lithium à la surface. Ces deux méthodes ont un énorme impact sur l’environnement. De plus, elles sont souvent très gourmandes en eau; elles génèrent aussi beaucoup de contamination et de déchets, comme on peut le voir en Amérique du Sud.
A côté de ces modes d’extraction traditionnels, trois entreprises autour de la Salton Sea développent des procédés chimiques pour extraire le lithium de manière beaucoup plus propre, en tirant parti des riches ressources géothermiques de la région. Près de la Salton Sea, il y a déjà 11 centrales géothermiques en activité, dont 10 appartiennent à BHE Renewables, la division des énergies renouvelables de Berkshire Hathaway.
Le président de BHE Renewables a déclaré : « Nous pompons déjà 190 000 litres de saumure par minute dans l’ensemble de nos 10 installations géothermiques et nous utilisons la vapeur de cette saumure pour générer de l’énergie propre.
Deux autres sociétés, EnergySource and Controlled Thermal Resources (CTR) développent également des installations géothermie-lithium à côté de la Salton Sea. General Motors a déjà promis de s’approvisionner en lithium auprès de la CTR.
Cette nouvelle industrie pourrait être une aubaine économique majeure pour la région, où la majorité de la communauté mexicaine-américaine est confrontée à des taux élevés de chômage et de pauvreté et souffre de problèmes sanitaires à cause de la poussière toxique qui s’échappe du lit asséché de la Salton Sea.
Fin mars 2022, le président Joe Biden a cautionné le Defense Production Act pour stimuler la production de minéraux pour batteries de véhicules électriques tels que le lithium, le nickel, le cobalt, le graphite et le manganèse.
Le problème, c’est que l’extraction du lithium à partir de saumures géothermiques n’a jamais été réalisée à grande échelle. Il reste donc à voir si l’industrie des véhicules électriques, les populations locales et l’environnement bénéficieront réellement de cette nouvelle technologie d’extraction du lithium.
Ce n’est pas la première fois que l’on s’intéresse à l’extraction du lithium dans la Salton Sea. La start-up Simbol Materials a construit une usine de démonstration, mais elle a cessé ses activités en 2015 et n’a jamais développé d’infrastructures à l’échelle commerciale.
Depuis cette époque, la demande de lithium a explosé et, après avoir fortement chuté en 2018, les prix augmentent à nouveau, ce qui encourage des projets qui n’auraient peut-être pas été rentables auparavant. Si le trio d’entreprises mentionné ci-dessus peut prouver que sa technologie est opérationnelle, il pourra tirer beaucoup d’argent des centaines de milliers de tonnes de lithium disponibles dans la région.
Selon un responsable de la CTR, le gisement de Salton Sea, pleinement exploité, pourrait fournir plus de 600 000 tonnes de lithium par an, alors que la production mondiale est inférieure à 400 000 tonnes actuellement. Contrairement à Berkshire Hathaway et EnergySource, la CTR n’a pas de centrales géothermiques dans la région. La compagnie construit donc une installation conjointe de récupération géothermique et de production de lithium. Actuellement, la CTR construit une usine de démonstration et prévoit d’ouvrir sa première installation de production à grande échelle d’ici le début de l’année 2024. Elle fournira alors 20 000 tonnes de lithium à General Motors. La première usine de la CTR devrait coûter environ un milliard de dollars, mais les trois sociétés s’attendent à ce que ce prix baisse à mesure que la technologie se développera.
La CTR utilise la technologie d’échange d’ions pour récupérer le lithium. Avec cette méthode, la saumure géothermique s’écoule à travers des réservoirs remplis de billes de céramique, qui absorbent le lithium de la saumure. Lorsque les billes sont saturées, le lithium est éliminé avec de l’acide chlorhydrique et il reste du chlorure de lithium. Il s’agit d’un produit intermédiaire que la CTR prévoit de raffiner sur place, ce qui donnera du carbonate de lithium ou de l’hydroxyde de lithium. Il s’agit d’une poudre prête à être traitée et transformée en précurseurs chimiques, puis transformée en cellules de batterie.
La société Berkshire Hathaway utilise également la technologie d’échange d’ions, mais elle n’a pas divulgué le processus de fabrication..

EnergySource a développé une technologie connue sous le nom de Integrated Lithium Adsorption Desorption, ou ILiAD, et va construire une usine à grande échelle qui devrait être opérationnelle d’ici 2024.
Il convient de noter que les trois sociétés prévoient de raffiner le lithium sur place, un processus qui se déroule normalement à l’étranger. Toutefois, elles ne sont pas équipées pour gérer des étapes suivantes, telles que le traitement chimique et la fabrication de cellules de batteries, qui se déroulent encore principalement en Asie.
La nouvelle industrie pourrait avoir un impact majeur sur Imperial Valley dans la région de la Salton Sea, où de nombreux habitants à faible revenu travaillent dans l’agriculture et où le taux de chômage est de 12%, plus de trois fois la moyenne nationale.
La Californie a mis sur pied la Lithium Valley Commission afin que le gouvernement, l’industrie et les parties prenantes de la population puissent se réunir et analyser les opportunités potentielles que l’extraction du lithium pourrait apporter.
Les écologistes voient également ce développement technologique comme une opportunité de restaurer l’habitat dans la mer de Salton. Alors que la Californie travaille sur le problème depuis des années, les défenseurs de l’environnement poussent l’État à accélérer les projets impliquant la création d’étangs à faible salinité où des espèces de poissons et d’oiseaux pourraient prospérer. Avec l’excédent budgétaire de l’Etat, les choses commencent enfin à bouger.
Alors que les projets miniers d’extraction du lithium font face à des réactions négatives dans d’autres parties des Etats Unis, il semble que l’extraction du lithium dans la Salton Sea fédère la plupart des parties prenantes. La grande question maintenant est de savoir si cela fonctionnera.

Source: CNBC.

——————————————–

About 60 kilometers north of the California-Mexico border lies the Salton Sea. Though the lake was once a popular entertainment spot, water contamination and decades of drought have contributed to a collapse of its ecosystem and given rise to ghost towns.

But amid this environmental disaster, the California Energy Commission estimates that there is enough lithium at the Salton Sea to meet all of the United States’ future demand and 40% of the world’s demand. This is good news for the booming electric-vehicle industry, as lithium is the common denominator across all types of EV batteries.

Traditionally, lithium extraction involves either open-pit mining or evaporation ponds, which work by pumping lithium-containing brine to the surface and waiting for the water to dry up. Both of these methods have huge land footprints, are often very water intensive and can create a lot of contamination and waste, as can be seen in South America.

However, three companies at the Salton Sea are developing chemical processes to extract lithium in a much cleaner way, taking advantage of the Salton Sea’s rich geothermal resources. Near the lake, there are already 11 operating geothermal power plants, 10 of which are owned by Berkshire Hathaway’s renewable energy division, BHE Renewables.

Says the president of BHE Renewables: “We are already pumping 190,000 liters of brine per minute across all of our 10 geothermal facilities to the surface and we’re using the steam from that brine to generate clean energy.”

Two other companies, EnergySource and Controlled Thermal Resources, or CTR, are also developing joint geothermal-lithium facilities at the Salton Sea, and General Motors.

This new industry could be a major economic boon to the region, where the majority Mexican-American community faces high rates of unemployment and poverty and suffers health impacts from the toxic dust that blows off the Salton Sea’s drying lake bed.

At the end of March 2022, President Joe Biden invoked the Defense Production Act to boost production of EV battery minerals such as lithium, nickel, cobalt, graphite and manganese.

But extracting lithium from geothermal brines has never been done before at scale, so it remains to be seen whether the electric-vehicle industry, the local community and/or the environment will actually benefit.

This is not the first time there has been interest in lithium recovery at the Salton Sea. The start-up company Simbol Materials developed a demonstration plant, but the company ceased operations in 2015 and never developed a commercial-scale facility.

Since then, demand for lithium has shot up and, after falling sharply in 2018, prices are surging once again, incentivizing projects that might not have been economical before. If the current trio of companies can prove their technology works, they stand to make a lot of money from the hundreds of thousands of tons of lithium in the area.

According to a CTR official, the Salton Sea field, fully developed, could well serve over 600,000 tons a year, when the world production is less than 400 thousand tons now. Unlike Berkshire Hathaway and EnergySource, CTR does not have any geothermal power plants in the region, so it is building a joint geothermal and lithium recovery facility all at once. Currently, the company is constructing a demonstration plant and plans to open its first full-scale facility by the beginning of 2024, providing 20,000 tons of lithium to General Motors. CTR’s first plant is expected to cost about one billion dollars, but all three companies expect that price to drop as the technology develops further.

CTR is using ion-exchange technology to recover lithium. In this method, geothermal brine flows through tanks filled with ceramic beads, which absorb lithium from the brine. When the beads are saturated, the lithium is flushed out with hydrochloric acid, and lithium chloride remains. This is an intermediary product that CTR plans to refine on-site, yielding lithium carbonate or lithium hydroxide, a powder that’s ready to be processed and transformed into precursor chemicals and then manufactured into battery cells.

Berkshire Hathaway is also using ion-exchange technology, though the company has not revealed about how it will work.

EnergySource has developed a technology known as Integrated Lithium Adsorption Desorption, or ILiAD, and it is going to build a full-scale facility which is expected to be operational by 2024.

It should be noted that all three companies plan to refine the lithium on-site, a process that normally takes place overseas. But the companies are not equipped to handle additional steps, such as chemical processing and battery cell manufacturing, which still primarily take place in Asia.

The new industry could have a major impact on the Imperial Valley community in the Salton Sea area, where many low-income residents work in agriculture and the unemployment rate is 12%, over three times the national average.

California formed the Lithium Valley Commission so that government, industry and community stakeholders could come together and analyze the potential opportunities that lithium recovery could bring.

Environmentalists also see this technological development as an opportunity to catalyze momentum around habitat restoration at the Salton Sea. While California has been working on the problem for years, advocates are pushing the state to expedite projects that involve creating lower-salinity ponds on the dry lake bed where fish and bird species can thrive. And with the state’s budget surplus, things are finally moving.

As mining projects face community concern and backlash in other parts of the country, it seems that lithium recovery at the Salton Sea could be the rare-minerals project that unites most stakeholders. The big question right now is to know if it will work.

Source: CNBC.

 

Processus de production du lithium par géothermie

(Source: Energysource Minerals)

Eruption du Piton de la Fournaise (Ile de la Réunion) !

7 heures (heure métropole) – 9 heures (heure locale) : Le Piton de la Fournaise est entré en éruption ce lundi 19 septembre 2022. Une crise sismique a été enregistrée à partir de 6h23. Cette crise, accompagnée de déformations rapides, indiquait que le magma quittait son réservoir pour se propager vers la surface

Moins de deux heures après le début de cette crise sismique, le Piton de la Fournaise est entré en éruption sur le flanc sud-ouest, dans le secteur du cratère Rivals, à environ 2200 m d’altitude.

L’accès à l’ensemble de l’Enclos est interdit. La RN2 reste ouverte à la circulation.

Rappelons qu’une première crise sismique avait été enregistrée le 7 septembre, mais n’avait duré que 2 heures. L’éruption prévue dans les minutes ou les heures suivantes n’avait pas eu lieu. Comme lors de précédents événements semblables, les scientifiques de l’OVPF n’écartaient alors aucune hypothèse quant à la suite.

Au vu des hésitations du magma pour atteindre la surface, on peut raisonnablement penser qu’il ne s’agira pas d’une éruption de grande ampleur. Les conditions météorologiques sont mauvaises ce matin sur le volcan et on ne voit absolument rien sur les webcams. L’Observatoire se veut prudent « Nous ne pouvons pas confirmer l’arrivée de la lave en surface. Néanmoins la présence d’un tremor montre l’émission de gaz chauds et incandescents en surface, et de la possibilité d’émission de lave à court terme. »

Le Journal de l’Ile propose une première vidéo de l’éruption :

https://www.clicanoo.re/article/volcan/2022/09/19/decouvrez-les-premieres-images-de-leruption

++++++++++

11 heures (heure métropole) – 13 heures (heure locale) : Il a fallu attendre quelques minutes avant 12 heures (heure locale) ce lundi 19 septembre 2022 pour avoir une confirmation visuelle de l’éruption. Les mauvaises conditions météorologiques sur le volcan entravent considérablement les observations. Selon Météo-France, le temps ne devrait pas s’améliorer ce lundi après-midi. Une amélioration est possible mercredi.

La première observation directe de cette nouvelle éruption, depuis le sentier du Piton de Bert, a pu être rapportée peu avant midi par un des scientifiques de l’OVPF. Il a confirmé la localisation de l’éruption à l’intérieur de l’Enclos sur le flanc Sud Sud-Ouest, aux alentours de 2 200 m d’altitude, non loin du cratère Rivals, à l’Est du Piton Kalla et Pelé.

L’accès à l’Enclos est interdit. Pour espérer entrevoir l’éruption, il faudra se rendre sur le Piton de Bert, sur la bordure Sud de l’Enclos. Elle se trouvera alors juste en face.

Cette éruption était attendue depuis la fin de la dernière le 17 janvier dernier car des signaux indiquaient que du magma s’accumulait dans le réservoir magmatique. Une première intrusion a été constatée le 7 septembre dernier, avec une crise sismique mais sans éruption faute de pression suffisante pour permettre au magma d’arriver en surface. C’est ce qui explique le raté de la prévision éruptive à ce moment-là.

Cette fois-ci, la nouvelle intrusion de ce lundi est arrivée en surface Faute de confirmation visuelle, l’OVPF s’est d’abord montré très prudent dans ses communiqués. Selon la directrice, « il est impossible à dire si ce magma va sortir en une seule éruption de grande ampleur et de longue durée, ou par plein de petites éruptions. »

Même sur un volcan effusif bien surveillé comme le Piton de la Fournaise, la prévision éruptive reste fort complexe. On comprend pourquoi elle est quasiment impossible sur les volcans explosifs de la Ceinture de Feu du Pacifique.

++++++++++

17 heures (heure métropole – 19 heures (heure locale) : L’éruption se poursuit. Après une phase d’augmentation en début d’éruption, l’intensité du tremor volcanique est en baisse progressive depuis 8h00, une évolution habituelle au début de chaque éruption du Piton de la Fournaise.

Les conditions météo restent médiocres, ce qui est fort dommage car c’est souvent au début de l’éruption que les fontaines de lave sont les plus spectaculaires. Voici l’une des rares images de l’éruption, diffusée par le Peloton de Gendarmerie de haute Montagne: (PGHM).

——————————————

7 am (Paris time) – 9 am (local time) : Piton de la Fournaise erupted on Monday September 19th, 2022. A seismic crisis was recorded from 6:23 a.m. This crisis, accompanied by rapid deformations, indicated that magma was leaving its reservoir to ascend towards the surface
Less than two hours after the start of this seismic crisis, Piton de la Fournaise erupted on the southwest flank, in the Rivals crater area, about 2200 m above sea level.
Access to the Enclos is prohibited. RN2 remains open to traffic.
A first seismic crisis was recorded on September 7th, but only lasted 2 hours. The eruption expected in the following minutes or hours had not taken place. As in previous similar events, OVPF scientists did not rule out any hypothesis as to the next events.
In view of the hesitations of magma to reach the surface, it is reasonable to think that it will not be a large-scale eruption. The weather conditions are bad this morning on the volcano and we cannot see anything on the webcams. The Observatory wants to be cautious « We cannot confirm the arrival of lava on the surface. Nevertheless the presence of a tremor shows the emission of hot and incandescent gases on the surface, and the possibility of lava emission in the short term. »

++++++++++

11 a.m. (Paris time) – 1 p.m. (local time): A few minutes before 12 p.m. (local time) this Monday, September 19th, 2022, one could have visual confirmation of the eruption. Poor weather conditions at the volcano significantly hamper observations. According to Météo-France, the weather should not improve this Monday afternoon. An improvement is possible on Wednesday.
The first direct observation of this new eruption, from the Piton de Bert trail, was reported shortly before noon by one of the OVPF scientists. He confirmed the location of the eruption inside the Enclos on the South South-West flank, around 2,200 m above sea level, not far from the Rivals crater, east of Piton Kalla and Pelé .
Access to the Enclosure is prohibited. To hope to catch a glimpse of the eruption, people will have to go to Piton de Bert, on the southern rim of the Enclos. It will then be right in front of them.
This eruption was expected since the end of the last one on January 17th because signals indicated that magma was accumulating in the reservoir. A first intrusion was observed on September 7th, with a seismic crisis but without an eruption due to lack of sufficient pressure to allow magma to reach the surface. This explains the failure of the eruptive prediction at that time.
This time, the new intrusion has come to the surface. For lack of visual confirmation, OVPF was initially very cautious in its press releases. According to the director, « it is impossible to say whether this magma will come out in one large and long-lasting eruption, or in many small eruptions. »
Even on a well-monitored effusive volcano like Piton de la Fournaise, eruptive prediction remains very complex. It is easy to understand why it is almost impossible on the explosive volcanoes of the Pacific Ring of Fire.

Here is a first video of the eruption on the Journal de l’Ile :

https://www.clicanoo.re/article/volcan/2022/09/19/decouvrez-les-premieres-images-de-leruption

++++++++++

5 p.m. (Paris time – 7 p.m. (local time): The eruption continues. After a phase of increase at the start of the eruption, the intensity of the volcanic tremor has been gradually decreasing since 8:00 a.m., a usual evolution at the beginning of each eruption of Piton de la Fournaise.
The weather conditions remain poor, which is a shame because it is often at the beginning of the eruption that the lava fountains are the most spectacular. See above one of the rare images of the eruption, released by the High Mountain Gendarmerie Peloton: (PGHM):

Photo: C. Grandpey

Approche scientifique de l’éruption islandaise de 2021 // Scientific approach of the 2021 Icelandic eruption

Nous ne savons pas prévoir les éruptions, mais nous savons décrire le déroulement des événements éruptifs.
Des scientifiques de l’Université d’Islande et du Met Office islandais (IMO) ont publié deux articles dans la revue Nature, dans lesquels ils présentent le fruit de leurs observations lors de l’éruption de Fagradalsfjall en 2021. C’était la première éruption sur la péninsule de Reykjanes après 800 ans de calme volcanique.
Les études montrent que les précurseurs de l’éruption islandaise étaient différents de ceux qui ont précédé de nombreuses autres éruptions à travers le monde, et que la composition de la lave a évolué au fur et à mesure que l’éruption progressait.
Les chercheurs ont analysé l’activité sismique sur la péninsule de Reykjanes. Elle a commencé en décembre 2019, a culminé avec l’éruption du 19 mars 2021 et s’est poursuivie pendant environ six mois.

L’un des articles – intitulé « La déformation et le déclin de la sismicité avant l’éruption de Fagradalsfjall de 2021 » – s’attarde sur les précurseurs de l’éruption et montre dans quelle mesure ils diffèrent des précurseurs de nombreuses autres éruptions dans le monde.
Il y a eu une activité sismique intense sur la péninsule de Reykjanes dans les semaines qui ont précédé l’éruption de 2021, avec une libération de contraintes tectoniques dans la croûte terrestre. Cependant, pendant plusieurs jours avant l’éruption, la déformation du sol et l’activité sismique ont diminué dans la zone autour du site de l’éruption. Ce schéma précurseur est donc différent de ceux qui précèdent de nombreuses autres éruptions dans le monde, qui montrent souvent une augmentation de la déformation du sol et de la sismicité peu de temps avant le début de l’éruption, signe que le magma se fraye un chemin vers la surface.
Les auteurs de l’article expliquent que la situation observée sur le Fagradalsfjall a été provoquée par l’interaction entre le flux magmatique et les contraintes au niveau des plaques tectoniques. Lorsque le magma se fraye un chemin à travers la croûte avant une éruption, une contrainte tectonique est parfois libérée, ce qui provoque des séismes et une déformation du sol. Un déclin de la sismicité et de la déformation peut indiquer que ce processus touche à sa fin et que le magma est prêt à percer la surface.
Au cours de la période de trois semaines qui a précédé l’éruption de Fagradalsfjall, il y a eu à la fois une déformation de surface considérable et une forte sismicité. La cause était la mise en place d’un dyke magmatique vertical entre la surface et 8 km de profondeur. Dans le même temps, des contraintes tectoniques dans la croûte ont été libérées. Des séismes d’une magnitude pouvant atteindre M 5,6 ont été enregistrés dans les zones voisines.
Les scientifiques pensent que la baisse de la sismicité dans les jours qui ont précédé l’éruption peut s’expliquer par le fait que le magma avait alors presque atteint la surface, là où la croûte est la plus faible et où il y a donc moins de résistance.
Cette situation montre qu’il faut tenir compte de la relation entre les volcans et les contraintes tectoniques dans la prévision des éruptions. Une libération des contraintes tectoniques, suivie d’une diminution de la déformation et de la sismicité, peut précéder un certain type d’éruption.

Le deuxième article – intitulé « Déplacement rapide d’une source magmatique profonde sur le volcan Fagradalsfjall » – traite des changements dans la composition de la lave dans la Geldingadalir au cours de l’éruption.
Les scientifiques ont fréquemment échantillonné la lave au cours des 50 premiers jours de l’éruption et ils ont mesuré les gaz volcaniques autour du site éruptif. Ces mesures ont révélé que la lave du Fagradalsfjall provenait directement d’un réservoir magmatique à grande profondeur, à la frontière entre la croûte et le manteau, autrement dit la zone proche du Moho.
Une éruption avec du magma provenant directement de la zone proche du Moho n’a pas été observée dans d’autres éruptions en temps réel. Dans ces cas précédents, le magma provenait de profondeurs moindres de la croûte terrestre. On manque d’informations sur les parties les plus profondes des systèmes magmatiques. L’éruption du Fagradalsfjall a fourni à la communauté scientifique de nouvelles connaissances sur les processus impliqués.
Au début de l’éruption de 2021, la lave était relativement riche en magnésium, comparée à la lave d’autres éruptions historiques en Islande, ce qui révèle un apport de magma particulièrement chaud. Il y avait aussi beaucoup de dioxyde de carbone (CO2) dans les gaz volcaniques émis par la bouche éruptive, ce qui confirme un apport de magma très profond. Selon les scientifiques, cela montre que le magma a subi peu de refroidissement en remontant à travers la croûte jusqu’à la surface. On pense que le réservoir magmatique se trouvait à une quinzaine de kilomètres sous la surface.

L’étude de l’éruption révèle également que la composition de la lave du Fagradalsfjall a radicalement changé au fur et à mesure que l’éruption progressait. Cela laisse supposer que pendant l’éruption un nouveau magma est arrivé en provenance de profondeurs plus importantes que le magma déjà présent dans le réservoir.
Les scientifiques expliquent que l’on sait depuis longtemps que différents types de magma peuvent se mélanger en profondeur, dans les systèmes magmatiques, avant une éruption. Cette éruption présente des preuves en temps réel que ces processus se produisent.
De plus, les modifications de la composition des produits volcaniques montrent que du nouveau magma peut s’introduire rapidement dans un réservoir profond, dans un délai d’environ 20 jours, et se mélanger au magma déjà présent dans le réservoir, en déclenchant potentiellement l’éruption.
Ces découvertes peuvent aider à mieux comprendre les volcans et la géochimie du manteau et pourraient contribuer à l’élaboration de modèles de systèmes magmatiques partout dans le monde.

Source: Met Office islandais, Université d’Islande, The Watchers.

Il sera maintenant intéressant de comparer les conclusions de l’éruption de 2021 avec celles de l’éruption de 2022. Il faudra voir si la dernière éruption se situe dans le prolongement de celle de 2021 ou s’il s’agit de deux événements indépendants l’un de l’autre.

———————————————

We are not good at predicting eruptions, but we are dood at describing what happened.

Scientists from the University of Iceland, the Icelandic Met Office (IMO) have published two papers in the journal Nature, presenting new findings from the 2021 eruption at Fagradalsfjall. It was the first eruption on the Reykjanes Peninsula after 800 years of dormancy.

The studies show that the precursors to the eruption were unusual compared to many other eruptions across the world and that the composition of the lava changed as the eruption continued.

Researchers closely observed the seismic activity on Reykjanes Peninsula, which began in December 2019, culminated with the eruption on March 19th, 2021 and continued for around half a year.

One of the papers – titled “Deformation and seismicity decline before the 2021 Fagradalsfjall eruption” -discusses the precursors to the eruption and how they differ from the precursors of many other eruptions around the world.

There was a significant seismic activity on the Reykjanes Peninsula in the weeks leading up to the 2021 eruption, marked by tectonic stress release in the crust. However, for several days before the eruption, deformation and seismic activity declined in the area around the eruption site. This precursory pattern is different from those preceding many other eruptions around the world, which often show escalating rates of ground displacement and seismicity shortly before the eruption onset, as the magma forces its way to the surface.

The scientists behind the paper explain that the behaviour at Fagradalsfjall was caused by the interplay between magma flow and plate tectonic stress. As magma forces its way through the crust before an eruption, tectonic stress may be released, causing earthquakes and ground deformation in the early stages. A decline in seismicity and deformation may indicate that this process is coming to an end and that the magma may erupt.

During the three-week period preceding the eruption at Fagradalsfjall, there was both considerable surface deformation and a large number of earthquakes. This was caused by the emplacement of a vertical magma-filled dyke between the surface and a depth of 8 km. At the same time, tectonic stress in the crust was released. Earthquakes occurred in nearby areas, up to magnitude M 5.6.

The scientists also suggest that the decline in seismicity in the days before the eruption could be explained by the fact that the magma had then almost reached the surface, where the crust is weakest and there is therefore less resistance.

This situation shows that consideration must be given to the relationship between volcanoes and tectonic stress in eruption forecasting. A release of tectonic stress followed by a decline in deformation and seismicity rate may be a precursory activity for a certain type of eruption.

The second paper – titled “Rapid shifting of a deep magmatic source at Fagradalsfjall volcano, Iceland” – discusses the changes to the composition of the lava that flowed through Geldingadalir and the surrounding area as the eruption continued.

Scientists sampled the lava frequently during the first 50 days of the eruption and measured the volcanic gases around the eruption site. This revealed that the lava at Fagradalsfjall was directly sourced from a magma reservoir at great depth, at the boundary between the crust and the mantle – the near-Moho zone.

Eruption directly from the near-Moho zone has not been observed in other eruptions with real-time investigation. In these previous cases, the magma came from shallower levels in the crust. Until now, there has therefore been a lack of information about the deepest parts of magmatic systems. The eruption at Fagradalsfjall has provided the scientific community with new knowledge of the processes involved.

At the start of the eruption, the lava was relatively rich in magnesium in comparison with lava from other historical eruptions in Iceland, indicating an unusually hot magma supply. There was also a lot of carbon dioxide in the volcanic gases emitted from the eruption vent, indicating an unusually deep magma supply. The scientists explain that this suggests that the magma underwent little cooling on its way up through the crust to the surface. It is believed that the magma reservoir was located about 15 km from the surface.

The research also revealed that the composition of the lava at Fagradalsfjall radically changed as the eruption progressed. This suggests that during the eruption, a new magma was generated at greater depths than the magma already present in the reservoir.

The scientists point out that it has long been argued that different kinds of magma can mix deep in magmatic systems before an eruption. This study presents real-time evidence that these processes do occur.

Furthermore, changes to the composition of volcanic products show that new magma can flow into a deep reservoir rapidly, in a timescale of around 20 days, mixing with the magma already in the reservoir and potentially triggering the eruption.

These findings may aid our understanding of volcanoes and the geochemistry of the mantle and could support the development of models of magmatic systems all over the world.

Source: Icelandic Met Office, University of Iceland, The Watchers.

It will now be interesting to compare the conclusions of the 2021 eruption with those of the 2022 eruption. It will be particularly interesting to see if the last eruption is a continuation of that of 2021 or if they are two distinct events.

Captures d’écran de l’éruption de 2021