La cendre du Novarupta (Alaska) // Novarupta’s ash (Alaska)

Le 6 juin 1912, une violente éruption a secoué le Novarupta en Alaska, à l’intérieur de ce qui est aujourd’hui le Parc National du Katmai. Pendant trois jours, le volcan a vomi 100 fois plus de matériaux que l’éruption du Mont St. Helens, avec des panaches qui sont montés jusqu’à plus 30 kilomètres dans le ciel avant de retomber sur la vallée qui a été enfouie par endroits sous plus de 150 mètres de cendres et de roches volcaniques. Le Mont Katmai s’est effondré pendant l’éruption. Quatre ans plus tard, quand le botaniste Robert Griggs a visité la région, des gaz continuaient à s’échapper de la cendre qui recouvrait la vallée, et il lui a donné le nom de Vallée des 10 000 Fumées.
Aujourd’hui, quelques jours chaque année, le vent rappelle à la population de la région cette impressionnante éruption. Cela se passe le plus souvent à l’automne, lorsque les tempêtes balayent la région, avant l’arrivée de la neige.
La semaine dernière, de forts vents de nord-ouest ont soulevé la cendre de l’éruption du 20ème siècle, affectant la visibilité sur l’Ile Kodiak. Le Service Météorologique a publié un bulletin spécial pour Kodiak, avertissant les habitant que le vent avait soulevé la cendre qui se dirigeait essentiellement vers la partie ouest de l’île.
Aujourd’hui, une éruption semblable à celle du Novarupta affecterait gravement le trafic aérien. Au début du 20ème siècle, quand le Novarupta est entré en éruption, il n’y avait aucun avion dans le ciel; le premier aéronef a volé en Alaska seulement un an après l’éruption. De nos jours, le Pacifique Nord est l’un des couloirs aériens les plus fréquentés au monde, avec plus de 200 vols par jour.
Pour calculer les effets qu’aurait aujourd’hui une éruption du Novarupta sur le trafic aérien, un chercheur américain a utilisé un modèle informatique appelé Puff développé par des scientifiques de l’Université de l’Alaska et affiné par un scientifique de l’Institut de Géophysique. A l’aide de ce modèle, le chercheur a imaginé que le Novarupta émettait de la cendre une fois par semaine pendant cinq ans. Il a constaté que la plupart des aéroports de l’hémisphère Nord fermeraient, mais aussi que la cendre de l’éruption atteindrait probablement l’Australie. Le pire scénario coûterait plus de 300 millions de dollars uniquement en termes de passagers et de vols retardés.
Source: Alaska Dispatch News.

———————————-

On June 6th 1912, a violent eruption shook Mt Novarupta in Alaska, in what is now Katmai National Park and Preserve. For three days, the volcano spewed 100 times more material than the Mount St. Helens eruption, shooting plumes 30 kilometres into the air and burying the valley downwind in over 150 metres of ash and volcanic rock. Mount Katmai collapsed during the explosion. Four years later, when botanist Robert Griggs visited the region, steam still poured from vents across the valley, prompting the crew to name it the Valley of 10,000 Smokes.

Today, a few times every year, the wind reminds the population of the region of that impressive eruption. It is most commonly seen in fall, when storms are passing through the area, and before snow has settled.

Last week, strong northwestern winds kicked up ash from the 20th century eruption, impacting visibility on Alaska’s Kodiak Island. The National Weather Service issued a special weather statement for Kodiak, letting locals know that loose ash had been stirred up, particularly toward the west side of the island.

Today, an eruption similar to Novarupta’s would severely affect air traffic. In the early 20th century, when Novarupta erupted, there were no planes in the air; the first plane didn’t fly in Alaska until one year after the eruption. Now, the North Pacific is one of the busiest air corridors in the world, with more than 200 flights a day.

To calculate the effects of a modern-day Novarupta on today’s air travel, a U.S. researcher used a computer model called Puff developed by University of Alaska scientists and refined by a scientist at the Geophysical Institute. The researcher used the model to spew ash from Novarupta’s vent once a week for five years and discovered that most airports in the Northern Hemisphere would close, but ash would also likely reach Australia. The worse case scenario would cost in excess of 300 million dollars just in terms of passengers and delayed flights.

Source: Alaska Dispatch News.

Falaises de cendre dans la Vallée des 10 000 Fumées (Photos: C. Grandpey)

Publicités

Un panache mantellique sous l’Ouest Antarctique ? // A mantle plume beneath West Antarctica ?

Des chercheurs de la NASA ont découvert sous la Terre Marie-Byrd en Antarctique, entre la Barrière de Ross et la Mer de Ross, un panache mantellique produisant presque autant de chaleur que le super volcan de Yellowstone. Ce point chaud donne naissance à de vastes lacs et de longues rivières sous la calotte glaciaire. La présence d’un énorme panache mantellique pourrait expliquer pourquoi la région est si instable aujourd’hui, et pourquoi elle s’est effondrée si rapidement à la fin de la dernière période glaciaire, il y a 11 000 ans.
Depuis 30 ans, les scientifiques sont persuadés qu’un panache mantellique existe sous la Terre Marie-Byrd. Sa présence expliquerait l’activité volcanique observée dans la région, ainsi que le dôme qui s’y trouve. Cependant, il n’y avait jusqu(à présent aucune preuve pour étayer cette idée. Aujourd’hui, les scientifiques du Jet Propulsion Laboratory (JPL) de la NASA ont créé des modèles numériques performants pour montrer quelle quantité de chaleur devrait exister sous la glace pour confirmer leurs observations. Ces dernières incluent le dôme et les rivières, ainsi que les lacs souterrains géants présents sur le substrat rocheux de l’Antarctique. Au fur et à mesure que les lacs se remplissent et se vident, la glace située à des centaines de mètres au-dessus monte et descend, parfois avec des variations de niveau allant jusqu’à 6 mètres.
Pour avoir une meilleure idée du fonctionnement d’un point chaud, les chercheurs du JPL ont examiné l’un des panaches mantelliques les plus étudiés sur Terre, le point chaud de Yellowstone. L’équipe scientifique a créé un modèle de panache mantellique afin de déterminer la quantité de chaleur nécessaire pour expliquer ce qui se passe au niveau de la Terre Marie-Byrd. Ils ont ensuite utilisé l’Ice Sheet System Model (ISSM), qui montre les propriétés physiques de la banquise, pour étudier les sources naturelles de chaleur et de transport de cette chaleur. Ce modèle a permis aux chercheurs de tester différents scénarios montrant comment la chaleur est produite en profondeur sous la glace.
Leurs résultats montrent qu’en général l’énergie produite par le panache mantellique ne dépasse pas 150 milliwatts par mètre carré; une énergie supérieure ferait trop fondre la glace. La chaleur produite dans le Parc National de Yellowstone est en moyenne de 200 milliwatts par mètre carré. Les scientifiques ont également identifié une zone où le flux de chaleur doit être d’au moins 150-180 milliwatts par mètre carré, mais les données laissent supposer que la chaleur en provenance du manteau à cet endroit sort d’une fracture dans la croûte terrestre.
Dans la conclusion de leur étude, les chercheurs du JPL expliquent que le panache mantellique de la Terre Marie-Byrd s’est formé il y a entre 50 et 110 millions d’années, bien avant que la terre qui se trouve au-dessus ait été recouverte par la glace. Ils ajoutent que la chaleur produite par le panache a un «impact local important» sur la calotte glaciaire. Comprendre ces processus permettra aux chercheurs de déterminer le comportement de la banquise dans les années à venir.
Source: Jet Propulsion Laboratory de la NASA.

—————————————–

Researchers at NASA have discovered a mantle plume producing almost as much heat as Yellowstone supervolcano under Marie Byrd Land in Antarctica, which lies between the Ross Ice Shelf and the Ross Sea. This hotspot is creating vast lakes and rivers under the ice sheet. The presence of a huge mantle plume could explain why the region is so unstable today, and why it collapsed so quickly at the end of the last Ice Age, 11,000 years ago.

For 30 years, scientists have suggested that a mantle plume may exist under Marie Byrd Land. Its presence would explain the volcanic activity seen in the area, as well as a dome feature that exists there. However, there was no evidence to support this idea. Now, scientists from NASA’s Jet Propulsion Laboratory (JPL) have created advanced numerical models to show how much heat would need to exist beneath the ice to account for their observations which include the dome and the giant subsurface rivers and lakes that are present on Antarctica’s bedrock. As lakes fill and drain, the ice hundreds of metres above rises and falls, sometimes by as much as 6 metres.

To have a better idea of how a hotspot works, the JPL researchers looked at one of the most well studied magma plumes on Earth, the Yellowstone hotspot. The team developed a mantle plume model to look at how much geothermal heat would be needed to explain what is seen at Marie Byrd Land. They then used the Ice Sheet System Model (ISSM), which shows the physics of ice sheets, to look at the natural sources of heating and heat transport. This model enabled researchers to test out different scenarios of how much heat was being produced deep beneath the ice.

Their findings showed that generally the energy being generated by the mantle plume is no more than 150 milliwatts per square metre; any more would result in too much melting. The heat generated under Yellowstone National Park, on average, is 200 milliwatts per square meter. Scientists also found one area where the heat flow must be at least 150-180 milliwatts per square metre, but data suggests mantle heat at this location comes from a rift in the Earth’s crust where heat can rise up.

In the conclusion of their study, the JPL researchers say the Marie Byrd Land mantle plume formed 50-110 million years ago, long before the land above was hidden by ice. They add that heat from the plume has an “important local impact” on the ice sheet. Understanding these processes will allow researchers to work out what will happen to it in the future.

Source: NASA’s Jet Propulsion Laboratory.

L’Ouest Antarctique et la terre Marie-Byrd (Source: Wikipedia)

Vue de la Terre Marie-Byrd (Crédit photo: NASA)