Réveil du volcan sous-marin Axial (États Unis) // Awakening of Axial Seamount (United States)

Situé à environ 482 km à l’ouest d’Astoria, dans l’Oregon, le volcan sous-marin Axial – Axial Seamount – est le plus jeune volcan et le principal centre éruptif actif de la chaîne Cobb-Eickelberg, une chaîne de volcans sous-marins qui se termine au sud de l’Alaska. L’Axial se trouve à l’endroit où la chaîne croise la dorsale Juan de Fuca. Sa présence est le fruit du point chaud de Cobb, mais il se trouve aussi sur une zone d’accrétion océanique entre la plaque Juan de Fuca et la plaque nord-américaine, comme on peut le voir sur la carte ci-dessous.

Carte Montrant la position de l’Axial sur la dorsale Juan de Fuca (Source : USGS)

L’Axial Seamount est le volcan le plus actif de la région nord-ouest du Pacifique. Depuis de nombreuses années, les chercheurs suivent attentivement son activité qui connaît un processus cyclique d’inflation et de déflation depuis sa dernière éruption en 2015, décrite dans ma note du 16 septembre 2015 :
https://claudegrandpeyvolcansetglaciers.com/2015/09/16/confirmation-de-leruption-de-laxial-seamount/

En mars 2024, le soulèvement du volcan sous-marin atteignait 90 – 95 % du niveau qui a précédé l’éruption de 2015 et se rapprochait du seuil susceptible de provoquer une nouvelle éruption. L’inflation, qui avait augmenté au moment de l’éruption de 2015, avait progressivement diminué jusqu’à ces derniers temps. Cependant, à partir d’octobre 2023, on a observé une augmentation significative du soulèvement au niveau de l’Axial, qui est actuellement estimé à 5 à 6 cm par an, signe d’un réveil potentiel du volcan. La hausse de l’inflation s’accompagne d’une augmentation de l’activité sismique avec de nombreuses secousses enregistrées récemment dans la région.

Source : NOAA

Les scientifiques affirment qu’une éruption pourrait se produire entre 2025 et 2026, mais admettent leur incapacité à prévoir un tel événement. Ils soulignent l’importance d’une surveillance et de recherches cohérentes pour améliorer la prévision des éruptions.
L’Axial Seamount présente la structure d’un volcan bouclier, semblable à ceux que l’on rencontre à Hawaï; elle contribue à son modèle éruptif distinct. Le comportement de l’Axial offre aux scientifiques des informations importantes sur les processus volcaniques sous-marins et les risques qui les accompagnent
Source : The Watchers.

————————————————–

Located about 482 km west of Astoria, Oregon, Axial Seamount is the youngest volcano and current eruptive center of the Cobb–Eickelberg Seamount chain, a chain of seamounts that terminates south of Alaska. Axial lies where the chain intersects with the Juan de Fuca Ridge. It is a product of the Cobb hotspot, but now sits on an ocean spreading center between the Juan de Fuca Plate and the North American Plate (see map above).

Axial Seamount is the most active volcano in the Pacific Northwest region. For many years, researchers have been keenly observing the activity of the volcano which has been undergoing a cyclical process of inflation and deflation since its last eruption in 2015 that I described in a post of September 16th, 2015 :

https://claudegrandpeyvolcansetglaciers.com/2015/09/16/confirmation-de-leruption-de-laxial-seamount/

By March 2024, the seamount was 90 – 95% reinflated to its pre-eruption level and was getting close to a crucial threshold that might cause another eruption. The inflation rate which originally surged at the time of the 2015 eruption has progressively decreased until recently. However, from October 2023  there has been a noticeable increase in the pace of uplift, which is now estimated at 5 – 6 cm per year, indicating a potential awakening.The rise in inflation is accompanied by an increase in seismic activity with many earthquakes rocking the region recently (see chart above).

Although no real prediction is possible, local scientists say that an eruption might occur between 2025 and 2026, but they admit the unpredictability of volcanic activity, emphasizing the importance of consistent monitoring and research to improve eruption forecasting.

Axial Seamount’s shield volcano structure, similar to those found in Hawaii, contributes to its distinct eruptive pattern. This behaviour offers scientists important information about underwater volcanic processes and their possible hazards.

Source : The Watchers.

Volcans sous-marins, subduction et séismes// Seamounts, subduction and earthquakes

Selon une nouvelle étude conduite par des chercheurs de l’Université de Memphis, et publiée en novembre 2023 dans le Journal of Geophysical Research : Solid Earth, un ancien volcan – ou mont – sous-marin (seamount en anglais) à cheval sur une plaque tectonique en train de s’enfoncer par subduction au large des côtes japonaises pourrait avoir déclenché plusieurs séismes majeurs inexpliqués par frottement contre une autre plaque tectonique située au-dessus.
Le volcan sous-marin éteint, connu sous le nom de Daiichi-Kashima Seamount, se trouve sur la plaque tectonique Pacifique, à environ 40 kilomètres de la côte est du Japon. C’est là que se rencontrent trois plaques tectoniques : la plaque Pacifique à l’est et la plaque Philippine au sud, qui glissent toutes deux sous la plaque Okhotsk au nord.

Contexte tectonique au Japon (Source : Wikipedia)

Le Daiichi-Kashima Seamount se trouve sur une partie de la plaque qui a commencé à s’enfoncer dans le manteau terrestre il y a entre 150 000 et 250 000 ans. Toutefois, ce volcan sous-marin est encore suffisamment proche de la surface – moins de 50 km de profondeur – pour déclencher des séismes. Alors que la majorité de l’activité sismique autour du Daiichi-Kashima Seamount se manifeste par de petites secousses, on a aussi enregistré plusieurs séismes avec des magnitudes M 7,0 et 7,8 en 1982 (M 7,0), 2008 (M 7,0) et 2011 (M 7,8). Jusqu’à présent, personne n’avait réussi à expliquer les causes de leur déclenchement.
Lorsqu’une plaque tectonique s’enfonce sous une autre plaque, les volcans sous-marins (seamounts) qui se trouvent à sa surface frottent la base de la plaque qui les surmonte. Une étude de 2008 a expliqué que ce frottement était trop faible pour déclencher de puissants séismes : il ne génère que de très petites secousses.

Source : ScienceDirect

Cependant, des données plus récentes laissent supposer le contraire. Les données sismiques recueillies au fond de l’océan au Japon indiquent que les monts sous-marins rencontrent une énorme résistance lorsqu’ils se déplacent à la surface d’une plaque subductrice et restent parfois bloqués. On peut lire dans l’étude que « le mont sous-marin lui-même est quasiment immobile, car il doit faire fasse à de très forts frottements. »
À mesure que le volcan sous-marin s’enfonce sous la plaque qui le surmonte, les contraintes s’accumulent sur son bord d’attaque. La zone située autour du volcan sous-marin se verrouille tandis que le reste de la plaque subductrice continue sa descente dans le manteau terrestre. « Les contraintes deviennent très fortes et au bout d’un certain temps, elles migrent vers l’intérieur. « Cette accumulation de contraintes ne peut pas continuer indéfiniment, et une libération brutale se produit lorsque le volcan sous-marin se libère brusquement de la plaque qui le surmonte. La plaque dominante donne un à-coup dans la direction opposée, ce qui déclenche un nouveau type de séisme que les auteurs de l’étude ont appelé « séisme de blocage ».
Des séismes de blocage ont peut-être déclenché des tsunamis dans le passé. Les dépôts de sédiments le long de la côte Est du Japon indiquent que d’énormes vagues ont frappé le littoral en 1677, après qu’un séisme ait secoué une zone de chevauchement avec le Daiichi-Kashima Seamount. Selon l’étude, « la rupture du volcan sous-marin en processus de subduction constitue la source la plus probable de ces grands séismes déclencheurs de tsunamis ».

Volcan sous-marin Minami Kasuga-2 dans l’océan Pacifique (Source : Université de Memphis)

Source  : Live Science.

———————————————-

According to a new study by University of Memphis researchers, published in November 2023 in the Journal of Geophysical Research: Solid Earth, an ancient underwater volcano riding a sinking tectonic plate off the coast of Japan may have unleashed several unexplained major earthquakes by grinding against another tectonic plate above it.

The extinct underwater volcano, known as Daiichi-Kashima seamount, sits on the Pacific tectonic plate about 40 kilometers off Japan’s east coast. There, three tectonic plates intersect, with the Pacific plate to the east and the Philippine plate to the south both slipping beneath the Okhotsk plate to the north. The seamount sits on a section of the plate that began descending into Earth’s mantle between 150,000 and 250,000 years ago. But the seamount is still close enough to the surface to trigger earthquakes, as it currently sits less than 50 km deep. While the majority of the seismic activity around the seamount manifests as small tremors, there have been several earthquakes between magnitudes M 7.0 and 7.8 in 1982 (M 7.0), 2008 (M 7.0) and 2011 (M 7.8) that previous research has failed to explain.

When a tectonic plate subducts beneath another plate, the seamounts peppered across its surface scrape against the bottom of the overriding plate. A 2008 study suggested this friction was too weak to trigger earthquakes, creating only very small tremors.

However, newer data indicate the opposite. Seismic information gathered at the bottom of the ocean in Japan indicates seamounts encounter huge resistance as they ride along on a subducting plate and sometimes become stuck. One can read in the study that « the seamount itself is almost stationary, because it has very strong friction.

As the seamount digs into the overriding plate, stress accumulates on its leading edge. The region around the seamount becomes locked and grinds to a halt, while the rest of the subducting plate continues its creeping descent into Earth’s mantle. « Stress increases at the edge of the seamount and after some time, the stress propagates and migrates inward. » This buildup cannot continue infinitely, and the stress is eventually released when the seamount suddenly frees itself from the overriding plate and jerks forward. The overriding plate jolts in the opposite direction, triggering a new kind of earthquake that the authors of the study called a « hang-up » earthquake.

Hang-up earthquakes may have unleashed tsunamis in the past. Sediment deposits along Japan’s east coast indicate huge waves battered the coastline in 1677, after an earthquake shook an area overlapping with the Daiichi-Kashima seamount. According to the study, « the rupture of the subducted seamount thus provides the most plausible source for these great tsunami earthquakes. »

Source : Live Science.

Nouveau volcan sous-marin // New underwater volcano

Un article publié sur le site web Live Science nous informe qu’une expédition océanographique dans l’Arctique a permis de découvrir un volcan sous-marin qui émet de la boue et du méthane à l’intérieur d’un autre cratère plus grand qui s’est probablement formé lors d’une éruption majeure à la fin de la dernière période glaciaire.
Les chercheurs ont découvert cette formation géologique étrange à environ 130 kilomètres au sud de Bear Island dans la mer de Barents. Le volcan, baptisé Borealis Mud Volcano, est seulement le deuxième du genre découvert dans les eaux norvégiennes.
Un volcan de boue sous-marin est une structure géologique formée par une expulsion de fluide boueux et de gaz, principalement du méthane. Le Borealis Mud Volcano mesure environ 7 mètres de diamètre et 2,50 mètres de hauteur. Le 7 mai 2023, les scientifiques ont utilisé un robot télécommandé pour obtenir des images du petit édifice qui émet en permanence un fluide boueux, qui, selon les chercheurs, est riche en méthane. Il est bon de rappeler que le méthane est un puissant gaz à effet de serre une fois qu’il atteint l’atmosphère et contribue au réchauffement climatique.
Le volcan se trouve au milieu d’un autre cratère beaucoup plus grand, qui mesure 300 mètres de large et 25 mètres de profondeur. L’ensemble se trouve à 400 mètres sous la surface de la mer et résulte probablement d’une puissante éruption de méthane à la fin la dernière période glaciaire, il y a 18 000 ans.
Les flancs du volcan regorgent de vie animale qui se nourrit de croûtes carbonatées, autrement dit des croûtes minérales qui se forment lorsque des micro-organismes consomment du méthane et produisent du bicarbonate. Les chercheurs ont également observé des anémones de mer, des éponges, des coraux, des étoiles de mer, des araignées de mer et divers crustacés.
Le seul autre volcan de boue connu dans les eaux norvégiennes est le Håkon Mosby Volcano. Cet édifice de 1 km de diamètre a été découverte à 1 250 mètres sous la surface, sur le plancher océanique au sud du Svalbard en 1995.
Les volcans de boue sous-marins sont difficiles à détecter et à cartographier, mais les chercheurs estiment qu’il pourrait y en avoir des centaines ou des milliers sur le plancher océanique à l’échelle mondiale. (NDLR : Une fois de plus, on remarquera que nous connaissons mieux la surface de Mars que les fonds de nos propres océans !) Ces volcans offrent une fenêtre sur les processus géologiques qui se produisent en profondeur sous la croûte terrestre, car ils émettent principalement de l’eau, des minéraux et des sédiments fins à ces profondeurs. Ils offrent des indices sur les environnements et conditions antérieurs sur Terre. Ils pourraient aussi donner un aperçu des systèmes sur d’autres planètes.
Source : Live Science.

——————————————-

An article released on the Live Science website informs us that ocean explorers in the Arctic have discovered an underwater volcano spewing mud and methane from inside another, larger crater that probably formed after a catastrophic eruption at the end of the last ice age.

Researchers spotted the unusual feature about 130 kilometers south of Norway’s Bear Island in the Barents Sea. The volcano, dubbed Borealis Mud Volcano, is only the second of its kind discovered in Norwegian waters.

A submarine mud volcano is a geological structure formed by an expulsion of muddy fluid and gas, predominantly methane. The Borealis Mud Volcano measures roughly 7 meters in diameter and is about 2.5 meters tall. On May 7th, 2023, the scientists used a remote-controlled rover to capture footage of the small mount continuously emitting a muddy fluid, which the researchers say is rich in methane. Methane is a powerful greenhouse gas once it reaches the atmosphere and contributes to climate change.

The volcano sits in the middle of another, much larger crater, which is 300 meters wide and 25 meters deep. The volcanic edifice sits 400 meters below the sea surface and likely resulted from a sudden and massive methane eruption after the last glacial period, 18,000 years ago.

The volcano’s flanks are teeming with animal life feeding off carbonate crusts, namely mineral crusts formed when microorganisms consume methane and produce bicarbonate as a byproduct. The researchers also observed sea anemones, sponges, corals, starfish, sea spiders and diverse crustaceans.

The only other known mud volcano in Norwegian waters is the Håkon Mosby volcano. This 1-km-wide feature was discovered 1,250 meters below the water’s surface on the seabed south of Svalbard in 1995.

Underwater mud volcanoes are difficult to spot and map, but researchers estimate there could be hundreds or thousands of them on the seafloor globally. (Personal note : Once again, we know the surface of Mars better than the seafloor of our own oceans!) These volcanoes provide a rare window into geological processes occurring deep below Earth’s crust, since they spout mainly water, minerals and fine sediment from these depths. They also offer clues about previous environments and conditions on Earth, and could give an insight into systems on other planets.

Source : Live Science.

Le Borealis Mud Volcano photographié par le robot télécommandé (Source : UiT/AKMA3)

Kavachi, le volcan aux requins // Kavachi, the Shark Volcano

Situé près des îles Salomon dans le Pacifique, à l’est de la Nouvelle-Guinée, le Kavachi est un volcan sous-marin dont la dernière éruption remonte à octobre 2021. La Smithsonian Institution précise que d’autres éruptions majeures se sont produites en 2007 et 2014. La première éruption connue a eu lieu en 1939.

Source: NASA

Selon les scientifiques, le Kavachi est à nouveau entré en éruption, avec des panaches de gaz et de cendres ainsi que, très probablement, des fragments des requins qui ont élu domicile dans son cratère. La NASA a récemment publié des images satellites montrant le volcan faisant jaillir d’énormes panaches d’eau de son cratère.

Crédit photo: NASA

Le Kavachi a été surnommé « Volcan aux requins »en 2015 lorsque les scientifiques ont découvert deux espèces de requins, dont des requins-marteaux, dans l’eau chaude, acide et riche en soufre du cratère, au fond de l’océan.
En 2016, à l’aide d’une caméra dotée d’un appât descendue à près de 45 mètres à l’intérieur du cratère, les scientifiques ont également vu des carangues, des vivaneaux, des raies pastenagues, des méduses et des requins soyeux vivant dans cet environnement extrême. L’expédition a été décrite dans un article publié dans la revue Oceanography et intitulé « Exploration du Volcan aux Requins: observations biogéochimiques du volcan sous-marin Kavachi (îles Salomon) ».

Crédit photo: NASA

Des populations d’animaux gélatineux, de petits poissons et de requins ont été observées à l’intérieur du cratère actif, ce qui interpelle à nouveau sur la vie autour des volcans sous-marins actifs et les environnements extrêmes dans lesquels les grands animaux marins peuvent exister.
L’expédition de janvier 2015 sur le Kavachi, situé à environ 25 km au sud de l’île de Vangunu dans la mer des Salomon, a été organisée pendant une rare accalmie de l’activité volcanique, ce qui a permis d’accéder à l’intérieur du cratère actif et aux flancs du volcan. La NASA a publié des images satellites du volcan en éruption le 14 mai. On y voit à plusieurs reprises l’eau décolorée autour du volcan entre avril et mai 2022.
Source : Yahoo Actualités, NASA.

——————————————–

Located near the Solomon Islands in the Pacific, east of New Guinea, Kavachi is an undersea volcano whose last eruption was in October 2021. The Smithsonian Institution specifies other major eruptions occurred in 2007 and 2014. The first recorded eruption was in 1939.

According to scientists, Kavachi has started to erupt, spewing high in the sky smoke and ash plus, quite possibly, fragments of the highly adaptable sharks that live inside it. NASA recently released satellite images showing the volcano spouting huge plumes of water from the crater that has been dubbed the « Sharkcano. »

Kavachi earned its nickname in 2015, when scientists discovered two species of sharks, including hammerheads, living and thriving in the hot, acidic, sulfur-laden water in the crater, located deep in the ocean.

Using a baited drop camera nearly 45 meters inside the crater, the scientists also saw bluefin trevally, snapper, sixgill stingrays, jellyfish and silky sharks living in this extreme environment, the researchers wrote in a 2016. The expedition was desscribed in an article published in the journal Oceanography and entitled « Exploring the ‘Sharkcano’: Biogeochemical observations of the Kavachi submarine volcano (Solomon Islands). »

Populations of gelatinous animals, small fish, and sharks were observed inside the active crater, raising new questions about the ecology of active submarine volcanoes and the extreme environments in which large marine animals can exist.

The January 2015 expedition to the Kavachi Volcano, which is about 25 km south of Vangunu Island in the Solomon Sea, was organised during a rare lull in volcanic activity that permitted access to the inside of Kavachi’s active crater and its flanks. NASA released satellite images of the volcano erupting on May 14th, showing discolored water around the volcano several times between April and May 2022.

Source: Yahoo News, NASA.