Taupo (Nouvelle Zélande) : surveillance conseillée // Taupo (New Zealand) : recommended monitoring

Le Taupo, volcan rhyolitique le plus actif de la Zone Volcanique de Taupo (TVZ) en Nouvelle-Zélande, est une caldeira d’environ 35 km de large. Le volcan fut le siège d’une super éruption environ 22 600 ans avant notre ère. Elle a produit environ 1 170 km3 de téphra qui ont recouvert l’île du Nord d’une épaisseur de matériaux atteignant parfois 200 mètres. Ce fut la plus grande éruption volcanique sur Terre au cours des 70 000 dernières années.

Cet événement a été précédé à la fin du Pléistocène par l’éruption d’un grand nombre de dômes rhyolitiques au nord du lac Taupo.

De puissantes éruptions explosives se sont produites au cours de l’Holocène à partir de bouches dans le lac Taupo et près de ses berges.

L’éruption majeure la plus récente a eu lieu environ 1 800 ans avant notre ère à partir d’au moins trois bouches le long d’une fracture orientée NE-SW. Cette éruption extrêmement violente a été la plus importante en Nouvelle-Zélande pendant l’Holocène. Elle a produit la Taupo Ignimbrite qui a couvert 20 000 km2 dans l’île du Nord.

Dans les temps historiques, le Taupo a connu des périodes d’activité accompagnées de nombreux séismes qui ont parfois provoqué des dégâts, ainsi que de déformations du sol, mais sans déclenchement d’éruptions. La caldeira est aujourd’hui remplie par le lac Taupo,

Une étude publiée par l’American Geophysical Union (AGU) en juin 2021 révèle que l’activité observée sous le super volcan Taupo en 2019 était de nature et d’origine volcaniques. Cela montre que le Taupo est toujours un volcan actif et potentiellement dangereux qui doit être étroitement surveillé.

Une augmentation significative de la sismicité a été enregistrée en 2019 et une déformation du sol a été détectée dans la caldeira. Grâce à la localisation des séismes et aux schémas de déformation du sol, les auteurs de l’étude ont pu déduire que sous la caldeira du Taupo se trouve un réservoir magmatique actif d’au moins 250 km3 dont au moins 20 à 30% est en fusion. L’injection d’un magma juvénile dans ce réservoir a provoqué le déclenchement de séismes dans la croûte terrestre la plus fragile le long des lignes de faille qui traversent à la fois la région et le volcan.

En conséquence, les chercheurs insistent sur le fait que le Taupo doit être étroitement surveillé pour mieux comprendre les processus qui se déroulent en profondeur et les facteurs qui pourraient provoquer une nouvelle éruption.

Source : The Watchers.

——————————————

Taupo, the most active rhyolitic volcano of New Zealand’s Taupo Volcanic Zone (TVZ), is a roughly 35-km-wide caldera. It was the seat of a super eruption about 22 600 years before present (BP). It produced about 1 170 km3 of tephra which covered NewZealand’s North Island in debris up to 200 m deep. It was the largest volcanic eruption on Earth in the past 70 000 years.

This event was preceded during the late Pleistocene by the eruption of a large number of rhyolitic lava domes north of Lake Taupo.

Large explosive eruptions have occurred frequently during the Holocene from vents within Lake Taupo and near its margins.

The most recent major eruption took place about 1 800 years BP from at least three vents along a NE-SW-trending fissure. This extremely violent eruption was New Zealand’s largest during the Holocene and produced the Taupo Ignimbrite, which covered 20 000 km2 of North Island.

In historical times, Taupo has undergone periods of unrest involving abundant, sometimes damaging earthquakes and ground deformation, but no eruption. The caldera is now filled by Lake Taupo,

A research published by the American Geophysical Union (AGU) in June 2021 reveals that the unrest registered under Taupo supervolcano in 2019 was volcanic in nature and origin. This shows that it is still an active and potentially hazardous volcano that needs to be carefully monitored. 

A significant increase in the number of earthquakes was recorded in that year and observable ground deformation was detected within the caldera.

Using the locations and patterns of the earthquakes and ground deformation allowed the authors of the study to infer that beneath the caldera there is an active magma reservoir of at least 250 km3 and which is at least 20–30% molten.

New magma being fed into this reservoir caused the triggering of earthquakes in the surrounding brittle crust along fault lines that cut across both the region and the volcano.

As a consequence, the researchers warn that Taupo needs to be carefully monitored to better understand the processes at depth and the factors that might cause a new eruption in the future.

Source: The Watchers.

 

Le Lac Taupo et la caldeira (Source : GNS Science)

Le lac Taupo vu depuis sa berge (Photo : C. Grandpey)

Les super éruptions de Yellowstone // Yellowstone’s super eruptions

Attraction touristique majeure aux États-Unis, Yellowstone est l’un des rares volcans du monde à avoir connu des super éruptions. Ces événements comptent parmi les plus extrêmes et les plus redoutés sur Terre. Les super volcans émettent d’énormes quantités de matériaux – au moins 1 000 fois plus que l’éruption du Mont St. Helens en 1980 – et ils sont capables de modifier le climat de la planète.
La dernière super éruption de Yellowstone se serait produite il y a environ 630 000 ans. Certains scientifiques affirment que le volcan est en retard dans son cycle éruptif, ce qui signifie qu’une éruption pourrait se produire à court terme. Heureusement, les cycles éruptifs n’ont jamais été clairement démontrés en volcanologie et il n’y a actuellement aucun signe d’une éruption imminente dans le Parc National de Yellowstone.
Une nouvelle étude publiée dans la revue Geology explique que deux super éruptions ont récemment été identifiées à Yellowstone, en relation avec le déplacement du point chaud sous la région. L’une d’elles a été probablement l’événement le plus cataclysmique jamais observé. Au final, les résultats de l’étude indiquent que le point chaud qui donne naissance aujourd’hui à l’activité hydrothermale dans le Parc National de Yellowstone est peut-être en train de décliner en intensité.
Les auteurs de l’étude ont utilisé un ensemble de techniques scientifiques pour analyser les dépôts volcaniques répartis sur des dizaines de milliers de kilomètres carrés. Ils ont découvert que ceux que l’on croyait appartenir à plusieurs éruptions mineures sont en fait d’immenses nappes de matériaux volcaniques émis par deux super éruptions il y a environ 9,0 et 8,7 millions d’années. La plus jeune, la super éruption de Grey’s Landing, est à ce jour l’événement le plus important observé dans l’ensemble de la province volcanique de Snake-River-Yellowstone.
L’équipe scientifique, qui comprend des chercheurs de l’Université de Leicester, du British Geological Survey et de l’Université de Californie à Santa Cruz, estime que la super éruption de Grey’s Landing était 30% plus puissante que la détentrice du record précédent, celle de Huckleberry Ridge. Elle a eu des effets dévastateurs à l’échelle locale et au niveau de la planète. L’éruption de Grey’s Landing a recouvert de verre volcanique à haute température une zone de la taille du New Jersey où tout a été brûlé et stérilisé à la surface du sol. Tout ce qui se trouvait dans cette région a été enfoui et très probablement vaporisé pendant l’éruption. Les particules de cendre ont probablement saturé la stratosphère, avec des retombées d’abord sur l’ensemble des Etats-Unis, puis l’ensemble de la planète.
Les deux super éruptions qui viennent d’être découvertes se sont produites pendant le Miocène, il y a 23-5,3 millions d’années. Elles portent à six le nombre de super éruptions enregistrées au Miocène dans la province volcanique de Yellowstone-Snake River. Cela signifie que la fréquence des super éruptions au niveau du point chaud de Yellowstone au cours du Miocène était, en moyenne, une fois tous les 500 000 ans.
En comparaison, deux super éruptions ont eu lieu au cours des trois derniers millions d’années dans ce qui est maintenant le Parc National de Yellowstone. Il semble donc que le point chaud de Yellowstone connaisse un très net déclin de sa capacité à produire des super éruptions.
Les chercheurs font remarquer que leur étude n’a pas pour but d’évaluer le risque d’une nouvelle super éruption à Yellowstone. Leurs recherches démontrent que la fréquence des super éruptions à Yellowstone semble être d’une fois tous les 1,5 million d’années. Comme je l’ai écrit plus haut, la dernière super éruption a eu lieu il y a 630 000 ans, ce qui laisse supposer qu’il faudra attendre jusqu’à 900 000 ans avant que se produise une autre éruption de cette ampleur. Cependant, cette estimation est loin d’être exacte et il faut continuer à surveiller l’activité volcanique dans la région.
Source: Geological Society of America.

La prévision éruptive à court terme pose toujours de gros problèmes. Inutile de dire que nous sommes bien incapables de prévoir ce qui se produira à Yellowstone dans les prochaines décennies ou les prochains siècles !

———————————————

 A major tourist attraction in the United States, Yellowstone volcano lists among the few volcanoes of the world that went through super eruptions. Super eruptions are some of the most extreme events on Earth. They eject enormous volumes of material – at least 1,000 times more than the 1980 eruption of Mount St. Helens – and have the potential to alter the planet’s climate.

The latest super eruption at Yellowstone is said to have occurred about 630,000 years ago and some scientists affirm that the volcano is late in its eruptive cycle, which means an eruption would happen in the short term. Fortunately, eruptive cycles have never clearly been proved in volcanology and there are currently no signs of an impending eruption.

A new study published in Geology announces the discovery of two newly identified super-eruptions associated with the Yellowstone hotspot track, including what researchers believe was the volcanic province’s largest and most cataclysmic event. The results indicate the hotspot, which today fuels hydrothermal activity in Yellowstone National Park, may be waning in intensity.

The scientists used a combination of techniques to correlate volcanic deposits scattered across tens of thousands of square kilometres. They discovered that deposits previously believed to belong to multiple, smaller eruptions were in fact colossal sheets of volcanic material from two previously unknown super-eruptions at about 9.0 and 8.7 million years ago. The younger of the two, the Grey’s Landing super-eruption, is now the largest recorded event of the entire Snake-River-Yellowstone volcanic province.

The team, which   includes researchers from the University of Leicester, the British Geological Survey and the University of California, Santa Cruz, estimates the Grey’s Landing super-eruption was 30% larger than the previous record-holder (the well-known Huckleberry Ridge Tuff) and had devastating local and global effects. The Grey’s Landing eruption enamelled an area the size of New Jersey in searing-hot volcanic glass that instantly sterilized the land surface. Anything located within this region was probably buried and most likely vaporized during the eruption. Particulates probably choked the stratosphere, raining fine ash over the entire United States and gradually encompassing the globe.

Both of the newly discovered super-eruptions occurred during the Miocene, namely 23-5.3 million years ago. These two new eruptions bring the total number of recorded Miocene super-eruptions at the Yellowstone-Snake River volcanic province to six. This means that the recurrence rate of Yellowstone hotspot super-eruptions during the Miocene was, on average, once every 500,000 years.

By comparison, two super-eruptions have, so far, taken place in what is now Yellowstone National Park during the past three million years. It therefore seems that the Yellowstone hotspot has experienced a three-fold decrease in its capacity to produce super-eruption events, which is a very significant decline.

The reserachers indicate that the findings of their study have little bearing on assessing the risk of another super-eruption occurring today in Yellowstone. They have demonstrated that the recurrence rate of Yellowstone super-eruptions appears to be once every 1.5 million years. As I put it above, the last super-eruption there was 630,000 years ago, suggesting we may have up to 900,000 years before another eruption of this scale occurs. However, this estimate is far from exact and monitoring of volcanic activity in the region should continue.

Source :  Geological Society of America.

Short-term eruptive prediction is still a problem. Needless to say that we are fully unable to predict what will happen at Yellowstone in the next decades or centuries.

Déplacement du point chaud de Yellowstone en millions d’années (Source : Wikiwand)

Coupe sud-ouest / nord-est sous Yellowstone obtenue grâce à l’imagerie sismique (Source: University of Utah)

Photos : C. Grandpey

La menace d’une super éruption // The threat of a super eruption

A la fin de ma conférence sur les volcans et les risques volcaniques, j’exprime ma crainte de voir se produire un jour une super éruption si un volcan comme celui de Yellowstone vient à se réveiller. Cette crainte a également été évoquée récemment par Paolo Papale, volcanologue italien appartenant à la section de Pise de l’Institut National de Géophysique et de Volcanologie (INGV). A la fin du mois de mars, il a expliqué dans la revue Science pourquoi l’humanité devait se préparer à la possibilité d’un tel événement qui clouerait les avions au sol et réduirait les GPS au silence pendant des années, en plus de refroidir la Terre de plusieurs degrés.

Paolo Papale explique que la dernière super éruption volcanique s’est produite il y a plus de 27 000 ans. Cela ne veut pas dire qu’il ne s’en produira plus jamais. Le risque d’assister à une éruption d’un indice d’explosivité volcanique (VEI) de 8, le maximum de l’échelle, est très faible, mais néanmoins réel : 0,001 % dans la prochaine année et 0,01 % dans la prochaine décennie.

Comme indiqué plus haut, une éruption de VEI 8 empêcherait probablement les satellites de communiquer avec la Terre et clouerait les avions au sol pendant des mois, voire des années. Selon le volcanologue italien, « un VEI 8 a une probabilité plus grande que le risque qu’un astéroïde de plus de 1 km de diamètre frappe la Terre. Un tel astéroïde serait peut-être fatal pour l’humanité, mais nous avons des programmes de détection pour contrer ce risque. En revanche, une éruption d’un VEI 8 pourrait aussi sonner le glas de notre civilisation si nous ne nous préparons pas. »

En conséquence, il est urgent de trouver des moyens pour sécuriser nos communications sans fil et nos avions. Il faut aussi faire des progrès en matière de prévision éruptive. Comme je l’ai fait remarquer dans plusieurs notes, 10 % des volcans du monde sont pratiquement sans surveillance.

Les volcanologues et les volcanophiles le savent : La dernière super éruption a eu lieu en avril 1815 sur le Tambora en Indonésie. Elle avait un VEI de 7. La colonne éruptive est montée jusqu’à 44 km de hauteur. Elle n’a, bien sûr, pas entraîné de problèmes pour les avions ou les satellites, mais l’agriculture et le climat ont été profondément altérés pendant des années. On attribue même parfois la défaite de Napoléon à Waterloo à l’éruption du Tambora. En juin 1815, la pluie a nui aux manoeuvres françaises. Par ailleurs, la mousson asiatique a été perturbée pendant plusieurs années, ce qui a causé famines et inondations, alors que l’Europe et l’Amérique du Nord étaient plongées dans un froid qui a anéanti les récoltes. 1816 a été surnommée « l’année sans été ».

Paolo Papale a été le premier à démontrer, dans la revue Scientific Reports, qu’il est impossible de prédire une super éruption. Selon lui, « comme les éruptions surviennent très rarement, il faut remonter loin dans le temps pour avoir assez d’événements d’un VEI 7 et 8 qui permettraient de définir la probabilité statistique d’une super éruption. »

On sait que les super éruptions donnent naissance à des caldeiras comme celle du Parc de Yellowstone aux Etats-Unis qui présente une superficie de 3600 km2 formée par trois super éruptions depuis 2,1 millions d’années. On sait également que ce volcan possède au moins deux chambres magmatiques susceptibles de déclencher une éruption de très grand ampleur. Comme le disait le regretté Maurice Krafft, un volcan est comme une bombe, mais on ignore le longueur de la mèche qui va la faire exploser.

Source : LA PRESSE.CA.

————————————————–

At the end of my lecture about volcanoes and volcanic Risks, I express my fear that a super eruption might occur some day if a volcano like Yellowstone happens to wake up. This fear has also been mentioned recently by Paolo Papale, an Italian volcanologist belonging to the Pisa section of the National Institute of Geophysics and Volcanology (INGV). At the end of March, he explained in the journal Science why humanity needs to prepare for the possibility of such an event that would ground aircraft and silence GPS for years, in addition to cooling the Earth by several degrees.
Paolo Papale explains that the last super volcanic eruption occurred more than 27,000 years ago. This does not mean that it will never happen again. The risk of witnessing an eruption with a Volcanic Explosive Index (VEI) of 8, the maximum of the scale, is very low, but nevertheless real: 0.001% in the next year and 0.01% in the next decade.
As noted above, a VEI 8 eruption would likely prevent satellites from communicating with the Earth and would ground planes for months or even years. According to the Italian volcanologist, « a VEI 8 eruption has a greater probability than the risk that an asteroid more than 1 km in diameter might hit Earth. Such an asteroid may be fatal for humanity, but we have detection programs to counter this risk. On the other hand, an eruption with a VEI 8 could also sound the death of our civilization if we do not prepare ourselves.  »
As a result, there is an urgent need to find ways to secure our wireless communications and planes. Progress must also be made in eruptive prediction. As I pointed out in several posts, 10% of the world’s volcanoes are not monitored.
Volcanologists and volcano lovers know that the last super eruption took place in April 1815 on Tambora in Indonesia. It had a VEI 7. The eruptive column rose up to 44 km. It did not, of course, cause problems to airplanes or satellites, but agriculture and climate have been profoundly altered for years. Even the defeat of Napoleon at Waterloo is sometimes attributed to the eruption of Tambora. In June 1815, the rain disturbed the French maneuvers. In addition, the Asian monsoon was disrupted for several years, causing famines and floods, while Europe and North America were plunged into a cold wave that destroyed the harvests. 1816 was nicknamed « the year without a summer ».
Paolo Papale was the first to demonstrate in Scientific Reports that it is impossible to predict a super eruption. According to him, « as such eruptions occur very rarely, we need go back far in time to have enough events with a VEI 7 and 8 that would define the statistical probability of a super eruption. »
Super eruptions are known to give birth to calderas such as the Yellowstone Park in the United States, which has an area of ​​3600 square kilometres formed by three super eruptions over 2.1 million years. It is also known that this volcano has at least two magma chambers capable of triggering a very large eruption. As the late Maurice Krafft said, a volcano is like a bomb, but we do not know the length of the wick that will blow it up.
Source: LA PRESSE.CA.

La caldeira du Tambora vue depuis l’espace (Crédit photo: NASA)

Yellowstone, un super volcan (Photo: C. Grandpey)

Sommes-nous prêts à affronter la prochaine super éruption? // Are we ready to face the next super eruption ?

Je termine généralement ma conférence «Volcans et risques volcaniques» en disant que ce que je crains le plus, c’est l’éruption d’un «super volcan» comme le Taupo en Nouvelle-Zélande, le Toba en Indonésie ou le Yellowstone aux États-Unis. S’agissant de Yellowstone, j’explique que les volumineux nuages ​​de cendre produits par l’éruption causeraient de très sérieux dégâts aux Grandes Plaines qui sont le grenier des États-Unis. Ils affecteraient aussi profondément les communications. Notre société basée sur Internet serait certainement en grande difficulté si une telle situation se produisait. Je suis d’accord avec les scientifiques qui disent que le monde doit faire davantage d’efforts pour se préparer à la prochaine méga éruption volcanique.
Le tsunami dévastateur dans l’Océan Indien en 2004 et le séisme de Tohoku au Japon en 2011 sont des exemples de graves catastrophes naturelles. Cependant, le monde moderne n’a pas eu à faire face à une véritable catastrophe volcanique depuis au moins 1815, lorsque l’éruption du Tambora en Indonésie a tué des dizaines de milliers de personnes et provoqué une «année sans été» en Europe et en Amérique du Nord. De telles éruptions majeures atteignent le niveau 7 ou plus sur l’Indice d’Explosivité Volcanique (VEI) qui présente 8 échelons.
Il faut garder à l’esprit que la prochaine éruption de VEI-7 pourrait survenir au cours de notre vie et nous ne savons pas prévoir les éruptions. Même si nous en étions capables, je ne suis pas certain que nous soyons prêts à affronter de tels super événements
Un article publié par trois chercheurs américains au début du mois de mars 2018 dans Geosphere examine les conséquences potentielles d’une éruption de VEI-7. Les trois scientifiques ont analysé l’éruption de VEI-5 du Mont St Helens en 1980, et l’éruption de VEI-6 du Pinatubo en 1991. Ces événements ont tué des dizaines, voire des centaines de personnes, et occasionné des perturbations à des régions entières. Le Pinatubo a même envoyé assez de SO2 dans la stratosphère pour provoquer une baisse des températures sur la planète.
Une éruption de VEI-7 aurait des conséquences bien différentes. En 1257, une éruption de VEI-7 en Indonésie a probablement refroidi suffisamment la planète pour provoquer un Petit âge glaciaire. Le problème est que la prochaine super éruption aura lieu dans un environnement bien différent de celui du 13ème siècle. Aujourd’hui, l’agriculture, les systèmes de santé, le monde de la finance et d’autres secteurs de la vie moderne sont beaucoup plus interconnectés à l’échelle mondiale qu’ils ne l’étaient il y a quelques décennies. Il suffit de voir ce qui s’est passé en 2010 lors de l’éruption d’Eyjafjallajökull en Islande. L’éruption qui n’avait qu’un VEI-3 a paralysé le trafic aérien européen pendant plusieurs jours à cause des nuages ​​de cendre émis par le volcan. L’événement a causé des pertes économiques estimées à 5 milliards de dollars.
En conséquence, il serait souhaitable que les chercheurs commencent à anticiper une éruption de VEI-7 en étudiant ses effets potentiels sur les liaisons de communication. Par exemple, il faudrait savoir comment l’humidité atmosphérique et les cendres volcaniques peuvent interférer avec les signaux GPS. Il faudrait aussi faire des études afin de mieux comprendre comment de grandes quantités de magma s’accumulent et provoquent des éruptions. Cela permettrait de mieux prévoir où le prochain événement de VEI-7 est susceptible de se produire.
Les chercheurs possèdent déjà une longue liste de volcans capables de déclencher une éruption de VEI-7. Comme je l’ai écrit plus haut, ces volcans comprennent le Taupo en Nouvelle-Zélande, site de la dernière éruption du VEI-8 il y a 26 500 ans, et le Mont Damavand, situé à seulement 50 kilomètres de Téhéran.
Même s’il existe actuellement une faible probabilité de voir une super éruption survenir dans le court terme, si un tel événement devait se produire, les gens se tourneraient vers les scientifiques, les gestionnaires des services d’urgences, les gouvernements et d’autres entités et s’attendraient à ce qu’ils soient prêts à y faire face.
Source: D’après un article publié dans Nature.

——————————————

I usually end my conference « Volcanoes and volcanic risks” with the conclusion that what I fear most is an eruption of a ‘super volcano’ like Taupo in New Zealand, Toba in Indonesia, or Yellowstone in the United States. As far as Yellowstone is concerned, I explain that the massive ash clouds produced by the eruption would cause very serious damage to the Great Plains which are the granary of the U.S. They would also deeply affect communications. Our society based on the Internet would certainly be at a loss if such a situation occurred.  I agree with the scientists who say that the world needs to do more to prepare for the next huge volcanic eruption.

The devastating Indian Ocean tsunami of 2004 and the Tohoku earthquake in Japan in 2011 highlighted some of the worst-case scenarios for natural disasters. However, humanity has not had to deal with a cataclysmic volcanic disaster since at least 1815, when the eruption of Tambora in Indonesia killed tens of thousands of people and led to a ‘year without a summer’ in Europe and North America. Such powerful eruptions rank at 7 or more on the Volcanic Explosivity Index (VEI), which goes to 8.

We have to admit that the next VEI-7 eruption could occur within our lifetime, but we are not yet able to predict future eruptions. Even if we did, I am not sure we are ready to face super events

A paper published by three American researchers in early March 2018 in Geosphere explores the potential consequences of the next VEI-7 eruption.  All three have researched the VEI-5 eruption of Mount St Helens in Washington state in 1980, and the VEI-6 eruption of Mount Pinatubo in the Philippines in 1991. Those events killed dozens to hundreds of people and disrupted entire regions. Pinatubo even spewed enough SO2 into the stratosphere to cause global cooling.

A VEI-7 eruption would be of an entirely different scale. In 1257, a VEI-7 eruption in Indonesia probably cooled the planet down enough to kick off the Little Ice Age. The problem is the next super eruption will take place in quite a different environment. Today, agriculture, health care, financial systems and other aspects of modern life are much more globally interconnected than they were just a few decades ago. It suffices to see what happened in 2010 with the eruption of Eyjafjallajökull in Iceland. The eruption that ranked at just VEI 3 grounded European air traffic for days because of the ash clouds emitted by the volcano. The event caused an estimated 5 billion US dollars in economic losses.

As a consequence, researchers should start to prepare for a VEI-7 eruption by studying potential effects on crucial communications links such as how atmospheric moisture and volcanic ash can interfere with GPS signals. Others could work to improve their understanding of how large amounts of magma accumulate and erupt, helping scientists to forecast where the next VEI-7 event might occur.

The researchers already have a long list of candidate volcanoes that might be capable of a VEI-7 blast. As I put it before, they include Taupo in New Zealand, site of the world’s last VEI-8 eruption 26,500 years ago, and Iran’s Mount Damavand, which lies just 50 kilometres from Tehran.

Even if there is currently a low probability of a super eruption in the short term, when it occurs people will look to scientists, emergency managers, governments and other entities and expect them to be prepared.

Source : After an article published in Nature.

Yellowstone fait partie des super volcans de la planète (Photo: C. Grandpey)