Sommes-nous prêts à affronter la prochaine super éruption? // Are we ready to face the next super eruption ?

Je termine généralement ma conférence «Volcans et risques volcaniques» en disant que ce que je crains le plus, c’est l’éruption d’un «super volcan» comme le Taupo en Nouvelle-Zélande, le Toba en Indonésie ou le Yellowstone aux États-Unis. S’agissant de Yellowstone, j’explique que les volumineux nuages ​​de cendre produits par l’éruption causeraient de très sérieux dégâts aux Grandes Plaines qui sont le grenier des États-Unis. Ils affecteraient aussi profondément les communications. Notre société basée sur Internet serait certainement en grande difficulté si une telle situation se produisait. Je suis d’accord avec les scientifiques qui disent que le monde doit faire davantage d’efforts pour se préparer à la prochaine méga éruption volcanique.
Le tsunami dévastateur dans l’Océan Indien en 2004 et le séisme de Tohoku au Japon en 2011 sont des exemples de graves catastrophes naturelles. Cependant, le monde moderne n’a pas eu à faire face à une véritable catastrophe volcanique depuis au moins 1815, lorsque l’éruption du Tambora en Indonésie a tué des dizaines de milliers de personnes et provoqué une «année sans été» en Europe et en Amérique du Nord. De telles éruptions majeures atteignent le niveau 7 ou plus sur l’Indice d’Explosivité Volcanique (VEI) qui présente 8 échelons.
Il faut garder à l’esprit que la prochaine éruption de VEI-7 pourrait survenir au cours de notre vie et nous ne savons pas prévoir les éruptions. Même si nous en étions capables, je ne suis pas certain que nous soyons prêts à affronter de tels super événements
Un article publié par trois chercheurs américains au début du mois de mars 2018 dans Geosphere examine les conséquences potentielles d’une éruption de VEI-7. Les trois scientifiques ont analysé l’éruption de VEI-5 du Mont St Helens en 1980, et l’éruption de VEI-6 du Pinatubo en 1991. Ces événements ont tué des dizaines, voire des centaines de personnes, et occasionné des perturbations à des régions entières. Le Pinatubo a même envoyé assez de SO2 dans la stratosphère pour provoquer une baisse des températures sur la planète.
Une éruption de VEI-7 aurait des conséquences bien différentes. En 1257, une éruption de VEI-7 en Indonésie a probablement refroidi suffisamment la planète pour provoquer un Petit âge glaciaire. Le problème est que la prochaine super éruption aura lieu dans un environnement bien différent de celui du 13ème siècle. Aujourd’hui, l’agriculture, les systèmes de santé, le monde de la finance et d’autres secteurs de la vie moderne sont beaucoup plus interconnectés à l’échelle mondiale qu’ils ne l’étaient il y a quelques décennies. Il suffit de voir ce qui s’est passé en 2010 lors de l’éruption d’Eyjafjallajökull en Islande. L’éruption qui n’avait qu’un VEI-3 a paralysé le trafic aérien européen pendant plusieurs jours à cause des nuages ​​de cendre émis par le volcan. L’événement a causé des pertes économiques estimées à 5 milliards de dollars.
En conséquence, il serait souhaitable que les chercheurs commencent à anticiper une éruption de VEI-7 en étudiant ses effets potentiels sur les liaisons de communication. Par exemple, il faudrait savoir comment l’humidité atmosphérique et les cendres volcaniques peuvent interférer avec les signaux GPS. Il faudrait aussi faire des études afin de mieux comprendre comment de grandes quantités de magma s’accumulent et provoquent des éruptions. Cela permettrait de mieux prévoir où le prochain événement de VEI-7 est susceptible de se produire.
Les chercheurs possèdent déjà une longue liste de volcans capables de déclencher une éruption de VEI-7. Comme je l’ai écrit plus haut, ces volcans comprennent le Taupo en Nouvelle-Zélande, site de la dernière éruption du VEI-8 il y a 26 500 ans, et le Mont Damavand, situé à seulement 50 kilomètres de Téhéran.
Même s’il existe actuellement une faible probabilité de voir une super éruption survenir dans le court terme, si un tel événement devait se produire, les gens se tourneraient vers les scientifiques, les gestionnaires des services d’urgences, les gouvernements et d’autres entités et s’attendraient à ce qu’ils soient prêts à y faire face.
Source: D’après un article publié dans Nature.

——————————————

I usually end my conference « Volcanoes and volcanic risks” with the conclusion that what I fear most is an eruption of a ‘super volcano’ like Taupo in New Zealand, Toba in Indonesia, or Yellowstone in the United States. As far as Yellowstone is concerned, I explain that the massive ash clouds produced by the eruption would cause very serious damage to the Great Plains which are the granary of the U.S. They would also deeply affect communications. Our society based on the Internet would certainly be at a loss if such a situation occurred.  I agree with the scientists who say that the world needs to do more to prepare for the next huge volcanic eruption.

The devastating Indian Ocean tsunami of 2004 and the Tohoku earthquake in Japan in 2011 highlighted some of the worst-case scenarios for natural disasters. However, humanity has not had to deal with a cataclysmic volcanic disaster since at least 1815, when the eruption of Tambora in Indonesia killed tens of thousands of people and led to a ‘year without a summer’ in Europe and North America. Such powerful eruptions rank at 7 or more on the Volcanic Explosivity Index (VEI), which goes to 8.

We have to admit that the next VEI-7 eruption could occur within our lifetime, but we are not yet able to predict future eruptions. Even if we did, I am not sure we are ready to face super events

A paper published by three American researchers in early March 2018 in Geosphere explores the potential consequences of the next VEI-7 eruption.  All three have researched the VEI-5 eruption of Mount St Helens in Washington state in 1980, and the VEI-6 eruption of Mount Pinatubo in the Philippines in 1991. Those events killed dozens to hundreds of people and disrupted entire regions. Pinatubo even spewed enough SO2 into the stratosphere to cause global cooling.

A VEI-7 eruption would be of an entirely different scale. In 1257, a VEI-7 eruption in Indonesia probably cooled the planet down enough to kick off the Little Ice Age. The problem is the next super eruption will take place in quite a different environment. Today, agriculture, health care, financial systems and other aspects of modern life are much more globally interconnected than they were just a few decades ago. It suffices to see what happened in 2010 with the eruption of Eyjafjallajökull in Iceland. The eruption that ranked at just VEI 3 grounded European air traffic for days because of the ash clouds emitted by the volcano. The event caused an estimated 5 billion US dollars in economic losses.

As a consequence, researchers should start to prepare for a VEI-7 eruption by studying potential effects on crucial communications links such as how atmospheric moisture and volcanic ash can interfere with GPS signals. Others could work to improve their understanding of how large amounts of magma accumulate and erupt, helping scientists to forecast where the next VEI-7 event might occur.

The researchers already have a long list of candidate volcanoes that might be capable of a VEI-7 blast. As I put it before, they include Taupo in New Zealand, site of the world’s last VEI-8 eruption 26,500 years ago, and Iran’s Mount Damavand, which lies just 50 kilometres from Tehran.

Even if there is currently a low probability of a super eruption in the short term, when it occurs people will look to scientists, emergency managers, governments and other entities and expect them to be prepared.

Source : After an article published in Nature.

Yellowstone fait partie des super volcans de la planète (Photo: C. Grandpey)

Impact de l’éruption du Toba sur la population de la Terre // Impact of the Toba eruption on the Earth’s population

L’éruption du Toba sur l’île indonésienne de Sumatra il y a 74 000 ans est souvent citée comme un exemple de super éruption. On pense que c’est la plus grande éruption volcanique des deux derniers millions d’années. Le Toba a expulsé environ 10 000 fois plus de roches et de cendre que l’éruption du Mont St. Helens en 1980. Les masses de matériaux émis par le volcan ont probablement obscurci le ciel dans le monde entier. Les scientifiques pensent que l’éruption a pu plonger la Terre dans un hiver volcanique ressenti loin de l’Indonésie. Les modèles climatiques laissent supposer que les températures ont chuté de 17 degrés Celsius. Dans un univers aussi froid, les plantes ont probablement cessé de pousser, les glaciers ont peut-être progressé, le niveau de la mer a peut-être baissé et les précipitations ont peut-être ralenti.
Cependant, une nouvelle étude publiée le 12 mars 2018 dans la revue Nature avance l’idée que les humains ont non seulement survécu à l’événement; ils ont aussi prospéré. L’étude va à l’encontre des hypothèses précédentes qui prétendent que l’éruption cataclysmique a été si désastreuse qu’elle a conduit l’espèce humaine au bord de l’extinction.
En 1998, un anthropologue a établi un lien entre la catastrophe et des preuves génétiques. Sa conclusion montre qu’une réduction démographique drastique est apparue à l’époque de l’éruption du Toba. Le chercheur était persuadé que la super éruption avait fait chuter la population de la planète à seulement 10 000 personnes. Plusieurs théories catastrophistes sont par la suite apparues, à la fois dans le monde scientifique et dans l’imagination publique.
Toutefois, la dernière étude publiée en 2018 s’efforce de démontrer que ces théories sont incorrectes. A environ 9 000 kilomètres du site de la super éruption du Toba en Asie du sud-est, un anthropologue de l’Arizona State University et ses collègues ont découvert des traces de matériaux émis par le volcan sur deux sites archéologiques situés sur la côte sud de l’Afrique du Sud. La présence d’éclats de verre volcanique microscopiques éjectés par le Toba parmi des couches d’os anciens, d’outils en pierre et de feux allumés par des humains a permis à l’équipe scientifique d’observer directement et pour la première fois l’impact de l’éruption sur la population humaine.
Les résultats de ces découvertes ont surpris les chercheurs. Si la théorie avancée en 1998 – effet de réduction drastique de la population par l’éruption – était correcte, il y aurait moins de signes d’occupation humaine dans la couche de sol au-dessus de celle présentant des traces de la super éruption du Toba. En fait, l’équipe scientifique a constaté qu’après l’événement catastrophique, il y avait plus de signes d’occupation humaine. Non seulement les humains semblaient s’être adaptés au traumatisme causé par l’événement, mais ils avaient aussi prospéré. Cela ne veut pas dire que l’hiver volcanique provoqué par l’éruption du Toba n’a jamais eu lieu, mais le  refroidissement qui a suivi l’éruption a pu pousser ces êtres préhistoriques à se diriger vers la côte où ils ont pu survivre.
Cependant, tous les scientifiques ne sont pas d’accord avec cette interprétation. Certains expliquent que les dernières recherches ne soutiennent pas l’hypothèse d’une catastrophe climatique mondiale suite à l’éruption du Toba. Ils font référence à une étude publiée cette année sur une couche de cendre similaire analysée dans le lac Malawi en Afrique de l’Est. Là, les scientifiques n’ont détecté aucun signe que la température du lac avait chuté de manière significative après l’événement, ce qui laisse supposer qu’il n’y a pas eu d’hiver volcanique, et cela met à mal l’idée d’un déclin de la population humaine provoqué par l’éruption du Toba.
Source: Presse américaine.

——————————————-

The eruption of Toba volcano on the Indonesian island of Sumatra 74,000 years ago is often cited as an example of a super eruption. It is said to be the largest volcanic eruption of the last two million years. It expelled roughly 10,000 times more rock and ash than the 1980 Mount St. Helens eruption. So much ejecta probably darkened skies worldwide, causing scientists to speculate that it might have plunged the Earth into a volcanic winter whose chill could be felt far from Indonesia. Climate models suggest that temperatures may have plummeted by as much as 17 degrees Celsius. In such a cold world, plants may have ceased growing, glaciers may have advanced, sea-levels may have dropped and rainfall may have slowed.

However, a new study published on March 12th, 2018, in Nature suggests that humans not only survived the event; they also thrived. The study counters previous hypotheses, which suggested that the cataclysmal eruption was so disastrous it caused the human species to teeter on the brink of extinction.

In 1998, an anthropologist linked the proposed disaster to genetic evidence that suggested a population bottleneck had occurred around the same time. He was certain that the Toba super eruption had caused the human population to decline to some 10,000 people. Several dramatic theories became popular, both in the scientific world and in the public imagination.

The latest study, however, suggests that those theories are incorrect. About 9,000 kilometres from the site of the Toba super eruption in Southeast Asia, an anthropologist at Arizona State University, and his colleagues discovered signs of its debris at two archaeological sites on South Africa’s southern coast. The appearance of microscopic glass shards once ejected by the Toba event amid layers of ancient bones, complex stone tools and evidence of human fires allowed the team to directly observe the volcano’s impact on the human population for the first time.

The results surprised the researchers. Should the theory suggested in 1998 be correct, there would be fewer signs of human occupation in the layer of soil above the one with the signs of the Toba super eruption. Actually, the scientific team saw the opposite: After the catastrophic event, there were more signs of human occupation. Not only did humans appear to adapt to the trauma caused by the event, they also thrived. That doesn’t mean Toba’s volcanic winter never occurred. The global chill that followed the eruption may have driven these prehistoric humans to the coast where they were able to survive.

However, not all experts agree with that interpretation. They say the latest research does not buttress the case for a global climate catastrophe following the Toba eruption. They point to a study published this year of a similar ash layer within Lake Malawi in East Africa. There, scientists found no signs that the lake’s temperature dropped significantly after the event, which suggests that there was no volcanic winter, and further challenging the idea of a human population decline resulting from the Toba eruption.

Source: American press.

Site de l’éruption du Toba vu depuis l’espace (Source: NASA)

La caldeira de Kikai (Japon) // The Kikai caldera (Japan)

Il y a environ 7300 ans, l’éruption du volcan Akahoya a dévasté ce qui correspond aujourd’hui aux îles du sud du Japon, et enfoui la majeure partie de l’archipel sous une épaisse couche de cendre. Considéré comme une super éruption avec un VEI de niveau 7, l’événement a provoqué l’effondrement de la chambre magmatique du volcan et l’apparition de la caldeira de Kikai, d’un diamètre d’une vingtaine de kilomètres, dissimulée en grande partie sous l’eau de la mer.
Dans une nouvelle étude publiée dans la revue Science Advances, les scientifiques ont découvert qu’un dôme de lave se cache sous la caldeira. En étudiant les conduits magmatiques, les volcanologues pourraient avoir un aperçu de l’ensemble du système d’alimentation de la caldeira, ce qui pourrait les aider à mieux prévoir une éventuelle prochaine éruption.
Des recherches antérieures avaient indiqué que les chances de voir une super éruption dans l’archipel japonais au cours du siècle prochain ne sont que d’environ un pour cent. Cependant, les chercheurs indiquaient que si un volcan dans cette région entrait en éruption, il pourrait éjecter près de 42 kilomètres cubes de matériaux et recouvrir presque tout le pays et ses 120 millions d’habitants de près de 20 centimètres de cendre.
La nouvelle étude explique que les scientifiques du Centre d’Exploration des Fonds océaniques de Kobe ont effectué trois levés dans la caldeira. Ils ont associé les observations de robots sous-marins et les résultats d’analyses de roches avec des sismographes et des électromagnétomètres.
Ils ont découvert le dôme de lave en effectuant un sondage acoustique. On estime qu’il a un volume d’environ 33 kilomètres cubes, un diamètre d’une dizaine de kilomètres et une hauteur de près de 600 mètres.
Le site de la caldeira a connu au moins trois super éruptions: il y a 140 000 ans, il y a 95 000 ans, puis l’éruption du Akahoya il y a 7 300 ans. Les scientifiques ne savent pas exactement quand le dôme actuel a commencé à se former. Il se peut que ce soit immédiatement après l’éruption ou progressivement au cours des milliers d’années qui ont suivi. Comme le dôme de lave présente une composition chimique différente des matériaux émis pendant la super éruption, il se peut qu’un nouveau système d’alimentation magmatique se soit développé il y a 7300 ans. Les chercheurs ont découvert que le dôme de lave est formé d’un magma similaire à celui observé dans les volcans de l’île voisine de Satsuma Iwo-jima. Une nouvelle mission sur le terrain prévue pour le mois de mars permettra de recueillir des images haute résolution du système magmatique souterrain en utilisant des méthodes sismiques et électromagnétiques. Les chercheurs espèrent ainsi avoir une meilleure idée de l’époque à laquelle la caldeira et son dôme de lave pourraient à nouveau entrer en éruption, et sous quelle forme. .
Source: The New York Times et d’autres médias d’information scientifique.

———————————————

Some 7,300 years ago, the Akahoya eruption devastated the southern islands of what is now Japan, burying most of the archipelago in thick ash. Considered as a super eruption with a VEI of 7, it caused the volcano’s magma chamber to collapse, leaving the 20-kilometre-wide Kikai Caldera which is mostly underwater.

In a new study published in the journal Science Advances, scientists have discovered that a dome of lava lurks beneath the caldera. By studying its magma plumbing, volcanologists could gain insight into the entire caldera system, which could help them better predict when another eruption might occur.

Previous research had suggested that the chances of a super eruption happening in the Japanese archipelago in the next century are only about one percent. However, it indicated that if a volcano in this area erupted, it could eject nearly 42 cubic kilometres of magma, covering almost all of the country and its 120 million people in nearly 20 centimetres of ash.

The new study explains that Japanese scientists at the Kobe Ocean Bottom Exploration Center conducted three surveys of the caldera, during which they combined the observations of underwater robots and the results of rock sample analysis with data collected by seismographs and electromagnetometers.

They found the lava dome using an acoustic survey. It is estimated to have a volume of about 33 cubic kilometres, a diameter of about 10 kilometres and a height of almost 600 metres.

This site has experienced at least three super eruptions: One 140,000 years ago, another 95,000 years ago, and then the Akahoya eruption 7,300 years ago. The scientists are not sure when exactly the current dome began to form, whether it was immediately after the eruption or gradually in the thousands of years that followed. As the lava dome is chemically different from the super eruption, a new magma supply system might have developed after 7,300 years ago. The researchers found that the lava dome was made of similar magma to what is seen in volcanoes on the nearby island of Satsuma Iwo-jima. Another survey in March will gather high-resolution images of the underground magma system by using seismic and electromagnetic methods. The future surveys will give them a better idea of how and when the caldera and its lava dome might erupt in the future.

Source: The New York Times and other scientific news media.

Situation géographique de la caldeira de Kikai

Une super éruption dans l’Idaho (Etats Unis) ? // A super eruption in Idaho (United States) ?

drapeau francaisYellowstone fait s’agiter la communauté scientifique en ce moment! Il est généralement admis que le volcan qui a donné naissance à la caldeira et à tous les phénomènes hydrothermaux était probablement le résultat d’un point chaud qui a percé la croûte terrestre dans le nord-ouest en Amérique, bien que cette hypothèse ait été récemment contestée par des chercheurs de l’Université de l’Illinois (voir ma note du 26 mars 2016). Une étude récente publiée dans le Bulletin de la Geological Society of America explique que le point chaud de Yellowstone a « connu une étape très agitée dans le sud de l’Idaho » avant d’atteindre son emplacement actuel.
Des scientifiques des universités de Californie et de Leicester ont examiné dans le détail l’ancienne histoire géologique de l’Idaho et ont identifié 12 grandes éruptions dans le sud de cet Etat, parmi lesquelles une super éruption semblable à celle qui a donné naissance à la caldeira de Yellowstone il y a environ 640.000 ans.
Selon les chercheurs, au cours de sa durée de vie de 17 millions d’années, le point chaud de Yellowstone a migré à travers la Plaine de la Snake River dans le sud de l’Idaho et à travers le nord du Nevada avant d’atteindre son emplacement actuel.
Le Grand bassin (The Great Basin) – une zone qui s’étend de la chaîne de la Sierra Nevada en Californie jusqu’à la chaîne de Wasatch dans l’Utah, et du sud de l’Oregon au sud du Nevada – s’est formé il y a entre 20 et 30 millions d’années ; il existait avant la formation de Yellowstone et était déjà fracturé.
Il y a environ 20 millions d’années, le Grand Bassin a commencé à s’étirer pour atteindre ce qui représente aujourd’hui deux fois sa largeur d’origine ; dans le processus, il a fracturé la croûte terrestre et le manteau supérieur dans la région. Ces fractures et l’amincissement de la lithosphère ont facilité l’ascension du panache magmatique de Yellowstone vers la surface et provoqué une série d’environ 150 éruptions volcaniques. Les plus violentes ont eu lieu dans les premières années, puis elles ont perdu de leur intensité en traversant la Plaine de la Snake River.
Les recherches récentes sur le sud de l’Idaho montrent l’importance de certaines de ces éruptions. L’une d’elles, celle de Castleford Crossing, a eu lieu il y a environ 8,1 millions d’années. La cartographie montre que l’épanchement de matériaux – essentiellement de la cendre volcanique – a recouvert au moins 22 500 kilomètres carrés sur une épaisseur de plus de 1320 mètres. Cela signifie que l’éruption de Castleford Crossing a atteint un niveau d’environ 8,6 sur l’indice d’explosivité volcanique (VEI). Selon l’USGS, les éruptions de VEI 5 ​​ou plus sont considérées comme de très grands événements explosifs. L’éruption du Mont St Helens en 1980 correspond à ce niveau, tandis que la dernière super éruption de Yellowstone a reçu le VEI 8.

Affaire à suivre!
Source: Statesman Journal: http://www.statesmanjournal.com/

————————————–

drapeau anglaisThe volcano that gave birth to the Yellowstone caldera and all its hydrothermal features was probably the result of a hotspot that pierced the Earth’s crust in northwestern America, although this hypothesis has recently been disputed by University of Illinois researchers (see my note of March 26th 2016). A recent study published in the Geological Society of America Bulletin explains that the Yellowstone hotspot first “made a rowdy passage through southern Idaho”before reaching its current location.

Scientists of the Universities of California and Leicester examined the ancient geological history of Idaho in greater detail and identified 12 major eruptions in southern Idaho, one of which was a super eruption similar in scale to Yellowstone’s explosion about 640,000 years ago.

According to the researchers, over the course of its 17-million-year lifespan, the Yellowstone hotspot migrated across the Snake River Plain in southern Idaho and northern Nevada to its present location.

“The Great Basin – an area that extends from the Sierra Nevada Range in California to the Wasatch Range in Utah, and from southern Oregon to southern Nevada – formed 20 to 30 million years ago, was in existence before Yellowstone was formed and it was already fractured.

About 20 million years ago, the Great Basin began stretching to what is now twice its original width, fracturing the Earth’s crust and upper mantle in the region. Those fractures and thinning of the lithosphere made it easier for the Yellowstone magma plume to push to the surface and create a series of about 150 volcanic eruptions. These eruptions were most intense in early years, then got smaller as they came across the Snake River Plain.

The recent research about southern Idaho shows how big some of those eruptions were. One of them, called Castleford Crossing, took place about 8.1 million years ago. Mapping showed its outflow covered at least 22,500 square kilometres in rock composed of volcanic ash. That rock extended to a depth of more than 1,320 metres thick. This means that the Castleford Crossing eruption was about 8.6 in magnitude on the volcanic explosivity index (VEI). Eruptions of VEI 5 or higher are considered very large explosive events, according to the U.S. Geological Survey, which would have included Mount St. Helens’ 1980 eruption. Yellowstone’s last super eruption is considered a VEI 8.

Source: Statesman Journal:  http://www.statesmanjournal.com/

Idaho 01

Idaho 02

Epanchements basaltiques dans le sud de l’Idaho (Photos: C. Grandpey)

La super éruption ignimbritique de Campanie // The Campanian Ignimbrite super-eruption

drapeau-francaisUne nouvelle étude sur la super éruption ignimbritique* de Campanie il y a quelque 39 000 ans met en relief de manière détaillée le déroulement de cet événement. Pour la première fois, les chercheurs ont reconstitué les deux phases de cette éruption qui a déposé une énorme quantité de matériaux entre le sud de l’Italie et les plaines de Sibérie. L’étude, intitulée “Reconstructing the plinian and co-ignimbrite 1 sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite”, est publié par Nature Scientific Reports. Vous pourrez la lire dans son intégralité à cette adresse: www.nature.com/articles/srep21220

Des chercheurs du Supercomputing Center de Barcelone (Espagne) et de l’Istituto Nazionale de Geofísica e Vulcanologia (Italie) ont reconstitué l’éruption en utilisant des centaines de simulations effectuées sur le super ordinateur MareNostrum.
Ces simulations ont permis d’établir que, dans la première phase (de type plinien), cette énorme éruption a généré une colonne de 44 kilomètres de hauteur et répandu 54 km3 de dépôts sur ce qui est aujourd’hui le sud de l’Italie.
Au cours de la deuxième phase (co-ignimbritique), un volume estimé à 154 km3 de particules fines a été émis.
L’ensemble des dépôts accumulés au cours des deux phases représente à peu près huit fois la partie visible de l’Everest.
Au total, la super éruption ignimbritique de Campanie a recouvert de cendre une superficie de plus de trois millions de kilomètres carrés, entre la Méditerranée et ce qui est aujourd’hui la Sibérie. Les plus grandes accumulations se sont produites dans ce qui est de nos jours la Macédoine, la Bulgarie et la Roumanie, tandis que la couche de matériaux en Méditerranée orientale atteignait jusqu’à 10 centimètres d’épaisseur.
Une autre caractéristique de l’éruption campanienne a été l’ « hiver volcanique » provoqué par la quantité importante de cendre et d’aérosols dans la stratosphère. Diverses études ont montré que ce phénomène a entraîné une chute de deux degrés de la température à l’échelle de la planète au cours de l’année qui a suivi l’éruption, alors que la température en Europe occidentale perdait jusqu’à cinq degrés.
En plus des effets sur l’environnement naturel, la grande éruption ignimbritique de Campanie a eu un impact significatif sur l’évolution de l’espèce humaine en Europe. En effet, elle s’est produite au moment où l’Homme moderne commençait à avancer sur le continent en provenance du Moyen-Orient, tout en déplaçant les Néandertaliens. L’éruption de Campanie, venant s’ajouter aux événements de la dernière période glaciaire, a considérablement réduit la surface habitable en Europe. Elle a peut-être contribué à ralentir le passage du Paléolithique moyen au Paléolithique supérieur, ce qui a probablement aussi ralenti l’entrée de l’Homme moderne et réduit la population qui s’était installée dans la zone dévastée par les dépôts de cendre. Des années plus tard, cependant, cette même zone allait devenir remarquablement fertile pour les nouveaux arrivants.
Source: Scientific Computing: http://www.scientificcomputing.com/

*Ignimbrite : Les ignimbrites sont issues de dépôts majoritairement ponceux que l’on rencontre dans les coulées pyroclastiques. Elles se forment en général par refroidissement des matériaux pyroclastiques lors d’une éruption explosive. Les matériaux pyroclastiques forment des couches épaisses et, si la température est suffisamment élevée (supérieure à 535°C), ils peuvent se souder entre eux et former une roche solide.

———————————

drapeau anglaisA new study on the Campanian Ignimbrite* super-eruption which took place some 39,000 years ago provides a detailed reconstruction of this natural phenomenon. For the first time, researchers have reconstructed the two phases of the super-eruption which deposited an enormous amount of ash between southern Italy and the Siberian plains. The study entitled “Reconstructing the plinian and co-ignimbrite 1 sources of large volcanic eruptions: A novel approach for the Campanian Ignimbrite,” is being published by Nature Scientific Reports. It can be fully read at this address: www.nature.com/articles/srep21220

Researchers at the Barcelona Supercomputing Center and at the Istituto Nazionale de Geofísica e Vulcanología (INGV) have reconstructed the phenomenon using hundreds of simulations carried out on the MareNostrum supercomputer.
These simulations have allowed them to establish that in the first (Plinian) phase, the super-eruption generated a 44-kilometre high column and dispersed 54 km3 of deposits in what is now southern Italy.
During the second (co-ignimbrite) phase, 154 km3 of finer particles were dispersed.
The total deposits that accumulated over the two phases is approximately equivalent to eight times the visible part of Mount Everest.
In total, the super-eruption of the Campanian Ignimbrite covered with ash an area of more than three million square kilometres, from the Mediterranean to what is now Siberia. The largest accumulations were in modern Macedonia, Bulgaria and Romania, while in areas of the eastern Mediterranean layers up to 10 centimetres thick accumulated.
Another impact of the Campanian Ignimbrite eruption was that the release of ash and aerosols into the stratosphere caused a ‘volcanic winter.’ Various studies have shown that this phenomenon caused global temperatures to drop by two degrees the following year, while the temperature in Western Europe dropped up by up to five degrees.
In addition to the effects on the natural environment, the Campanian Ignimbrite eruption has been identified as having a significant impact on the evolution of the human species in Europe, as it took place when Modern Humans had begun to advance on the continent from the Middle East, displacing the Neanderthals. The super-eruption, together with the events of the last ice age, significantly reduced the habitable area in Europe and would have contributed to slowing the transition from the Middle Paleolithic to the Upper Paleolithic, delaying the entry of Modern Humans and reducing the population which had settled in the area devastated by its ash deposits. Years later, however, this same area would become a remarkably fertile area for new settlers.
Source : Scientific Computing : http://www.scientificcomputing.com/

*Ignimbrite : Ignimbrite is a pumice-dominated pyroclastic flow deposit formed from the cooling of pyroclastic material ejected from an explosive volcanic eruption. As the pyroclastic material settles it can build up thick layers, and if the temperature is sufficiently high (above 535°C) it can weld into rock.

Tephra
drapeau-francaisLes retombées de téphra (avec leur épaisseur révélée par les nuances de rouge), venant s’ajouter à l’épisode calotte glaciaire fenno-scandienne et à l’avancée de la toundra (marquée par la ligne en pointillés) ont entraîné une réduction de la surface habitable en Europe.

drapeau anglaisTephra fallout (with various shades of red), together with the attendant episode of Fenno-Scandinavian ice cap and peripheral tundra advance on land (top dashed line), suggests a reduction of the area available for human settlement in Europe of up to 30%