Le dioxyde de soufre du Mauna Loa (Hawaii) // Mauna Loa’s sulphur dioxide (Hawaii)

Lorsque le Mauna Loa est entré en éruption en novembre 2022, l’une des principales préoccupations des scientifiques du HVO a été de savoir quelle direction prendrait la lave. Les gaz émis ont été un autre souci pour les scientifiques. Comme cela se passa au cours de toutes les éruptions, des tonnes de gaz ont été émises par les bouches actives pendant l’éruption du Mauna Loa.
En général, les gaz volcaniques émis lors des éruptions comprennent de la vapeur d’eau, du dioxyde de carbone (CO2) et du dioxyde de soufre (SO2). Les quantités de SO2 émis par un volcan sont un paramètre important car elles peuvent donner une idée du débit effusif et de la quantité de vog – brouillard volcanique – susceptible d’affecter les zones sous le vent. Les scientifiques du HVO mesurent les émissions de dioxyde de soufre à l’aide d’un spectromètre ultraviolet monté sur un véhicule qu’ils conduisent jusque sous le panache volcanique.
Sur le Kilauea, les alizés ont tendance à envoyer le panache du sommet dans une seule direction. C’est pourquoi un réseau permanent de spectromètres a été mis en place pour mesurer le SO2 sur le volcan, et il n’est pas nécessaire de beaucoup se déplacer dans un véhicule. Malgré tout, le déplacement avec un véhicule sur la Chain of Craters Road pour l’éruption du Pu’uO’o et sur la route 130 pour l’éruption dans la Lower East Rift Zone en 2018 a permis à l’Observatoire de mesurer le panache émis par les sites éruptifs du Kilauea et poussé par les alizés.
Le Mauna Loa culmine à une altitude beaucoup plus élevée que le Kilauea et connaît des régimes de vent différents. Les vents ont été très variables lors de la dernière éruption. Parfois, les mesures des panaches à haute altitude peuvent être effectuées relativement facilement en dirigeant un avion ou un hélicoptère sous le panache. S’agissant du Mauna Loa, le panache contenait non seulement de fortes concentrations de gaz, mais également des particules, comme les cheveux de Pelé, qui pourraient nuire à un avion volant en dessous.
Au cours de l’éruption de deux semaines du Mauna Loa, les vents ont emporté le panache dans de nombreuses directions, notamment vers la Saddle Road, Ocean View, Pāhala, Puna, Hilo, Kailua-Kona et Captain Cook. Il a donc fallu que l’équipe scientifique parcoure environ 4 800 km ! En fin de compte, tous ces trajets ont porté leurs fruits car les scientifiques ont réussi à obtenir des mesures sur 10 jours. Cela a permis au HVO d’informer le public et aux prévisionnistes d’alerter sur la présence de vog pendant l’éruption.
Le traitement préliminaire des données montre que le Mauna Loa a émis plus de deux millions de tonnes de dioxyde de soufre entre le 28 novembre et le 12 décembre. Cela ne prend pas en compte un important volume de SO2 émis lors l’ouverture de la fissure dans la caldeira sommitale pendant la nuit entre le 27 et le 28 novembre, phénomène montré par les images satellitaires. La lumière ultraviolette est nécessaire pour effectuer ces mesures à partir d’un véhicule, ce qui signifie qu’elles ne peuvent être réalisées que pendant la journée.
On estime que les émissions quotidiennes de SO2 ont varié de 200 000 à 500 000 tonnes par jour au début de l’éruption et ont été légèrement supérieures à 100 000 t/j les jours suivants. Le 8 décembre, les émissions ont chuté de manière significative avec seulement 30 000 t/j. Environ 2 000 t/j étaient émises le 10 décembre et, le 12 décembre les émissions n’étaient pratiquement pas détectables, même au sol, près du cône de la Fissure 3.
Ces valeurs sont semblables à celles enregistrées lors de l’éruption dans la Lower East Rift Zone du Kilauea en 2018, qui a également émis du dioxyde de soufre à raison d’environ 200 000 t/j pendant une partie de l’éruption. Le total de SO2 émis par l’éruption de 2018 était environ cinq fois supérieur à celui émis pendant la dernière éruption du Mauna Loa, en partie à cause de la durée plus longue de l’éruption.
Les émissions de dioxyde de soufre pendant l’éruption du Mauna Loa en 1984 atteignaient environ 100 000 à 200 000 t/j, comme l’ont révélé les données satellitaires. Cependant, la technologie utilisée à l’époque n’était pas aussi performante que les spectromètres modernes et a probablement sous-estimé les émissions. En 1984, elles étaient vraisemblablement semblables à celles de 2022.
Source : USGS / HVO.

——————————————

When Mauna Loa erupted in November 2022, one of the main concerns for HVO scientists was the lava and to know where it would flow. Another concern was the gases. As with all other volcanic eruptions, many tonnes of volcanic gases were emitted from the active vents during the Mauna Loa eruption.

Volcanic gases emitted during eruptions include water vapor, carbon dioxide (CO2) and sulfur dioxide (SO2). SO2 emission rates are a key parameter to measure because they can be used as a proxy for lava effusion rate and they dictate how much vog, or volcanic smog, there is downwind. HVO scientists measure sulfur dioxide emission rates using a vehicle-mounted ultraviolet spectrometer, which they drive beneath the plume.

At Kilauea, the trade winds tend to blow the summit plume in a single direction. This why a permanent array of spectrometers has been set up to measure SO2 on the volcano, and there is no need to drive a lot. Driving on Chain of Craters Road for the Pu’uO’o eruption and on Highway 130 for the 2018 Lower East Rift Zone eruption were the Observatory’s common means of measuring the plume in the trade wind direction for the Kilauea eruptive sites.

Mauna Loa, however, is at a much higher altitude than Kilauea and experiences different wind patterns. Winds were very variable during the eruption. Sometimes measurements of high-altitude plumes can be made relatively easily by flying an airplane or a helicopter beneath the plume instead of driving. But the Mauna Loa plume had not only high concentrations of gases, but also contained particles, like Pele’s hair, which could adversely affect an aircraft flying under it.

Over the course of the two-week eruption, the winds took the plume in many directions, including over Saddle Road, Ocean View, Pāhala, Puna, Hilo, Kailua-Kona and Captain Cook. This meant that the gas team had to drive about 4,800 km ! Ultimately, all the driving paid off and the scientists succeeded in measuring emission rates on 10 days. This allowed HVO to report these emission rates to the public and to vog forecasters during the eruption.

Preliminary data processing suggests that Mauna Loa emitted more than two million tonnes of sulfur dioxide between November 28th and December 12th. This does nott include a large volume of SO2 that satellite images show was emitted with the initial fissure opening between Nov.ember 27th and 28th. Ultraviolet light is needed to make these driving measurements, which means they can only be conducted during daylight hours.

Daily SO2 emission rates are estimated to have ranged from 200,000 to 500,000 tonnes per day early in the eruption and were just over 100,000 t/d lin the following days. By December 8th, emissions dropped significantly to only about 30,000 t/d. Only about 2,000 t/d were emitted on December 10th, and by December 12th emissions were essentially not detectable, even on the ground near the Fissure 3 cone.

These emission rates are very similar to those measured during the 2018 Lower East Rift Zone eruption of Kilauea, which also emitted sulfur dioxide at a rate of nearly 200,000 t/d for a portion of the eruption. The total SO2 emitted by the 2018 eruption was roughly five times more than Mauna Loa’s total, owing in part to the longer eruption duration.

Sulfur dioxide emission rates reported for the 1984 eruption of Mauna Loa were roughly 100,000 to 200,000 t/d, as revealed by satellite data. However, the technology used at the time was not as sophisticated as our modern spectrometers and likely underestimated those emission rates. So Mauna Loa’s 1984 SO2 emissions were probably similar to those in 2022.

Source : USGS / HVO.

Panaches de gaz pendant l’éruption du Mauna Loa en 2022 (Photos: HVO)

Bienvenue sur Io, la lune de Jupiter ! // Welcome to Io, Jupiter’s moon !

J’ai écrit plusieurs notes à propos de Io, l’une des lunes de Jupiter, bien connue pour son intense activité volcanique. Le site space.com invite ses lecteurs à la visiter.
Avec un rayon moyen de 1 821 km, Io est légèrement plus grande que la Lune. Elle présente une forme légèrement elliptique, avec son axe le plus long dirigé vers Jupiter. Parmi les satellites de Jupiter, Io occupe la troisième place tant en masse qu’en volume, derrière Ganymède et Callisto mais devant Europe.
La surface de Io est parsemée de centaines de volcans. Certains émettent des panaches riches en soufre, de plusieurs centaines de kilomètres de hauteur. La surface de la lune évolue et se modifie à une vitesse incroyable. Des fissures laissent échapper de la lave qui remplit les cratères d’impact et inonde de nouvelles étendues sous de la roche liquide. Bien que la composition exacte de Io soit inconnue, il s’agit probablement de soufre fondu et de dioxyde de soufre. La température de surface de la lune est en moyenne d’environ – 130°C. Les volcans, quant à eux, peuvent atteindre 1 649°C.
L’activité volcanique de Io a été découverte pour la première fois par les missions Voyager de la NASA en 1979. La plupart des informations figurant dans l’article de space.com ont été fournies par l’agence américaine.
Comme Io décrit une orbite elliptique autour de Jupiter, la force exercée par la gravité de Jupiter sur la lune varie en fonction de sa proximité avec la planète. Cette fluctuation gravitationnelle crée une poussée et une traction perpétuelles sur l’intérieur de Io dans différentes directions, ce qui fait gonfler sa surface d’une centaine de mètres. Ce mouvement entraîne une compression des roches de Io les unes contre les autres, ce qui génère de grandes quantités de chaleur.
Si Io était la seule lune de Jupiter, son orbite ressemblerait probablement à un cercle, mais les forces exercées par Europe et Ganymède, les lunes voisines de Io, empêchent une telle situation de se produire. Io ne peut pas échapper au jeu perpétuel de tiraillement gravitationnel permanent, ni à l’échauffement planétaire qui s’ensuit.
Io met 1,77 jours terrestres pour orbiter autour de Jupiter et, verrouillée par les forces de marée, montre toujours la même face à Jupiter.
La surface de Io est principalement composée de soufre et de dioxyde de soufre. L’atmosphère de dioxyde de soufre de Io est extrêmement ténue et représente environ un milliardième de la pression de surface de l’atmosphère terrestre.
L’orbite de Io traverse les puissantes lignes de force magnétiques de Jupiter, de sorte que la lune devient un puissant générateur électrique. Selon la NASA, ce courant dissipe une puissance de plus de 1 térawatt avec un potentiel de 400 000 volts, créant à son tour 3 millions d’ampères de courant électrique. Ce courant revient ensuite le long des lignes de champ magnétique de Jupiter et provoque des orages dans la haute atmosphère de la planète.
Pendant la rotation de Jupiter, les forces magnétiques retirent environ une tonne de matériau à Io chaque seconde. Ce matériau devient ionisé et forme un nuage de rayonnement toroïdal appelé tore de plasma. Certains des ions sont attirés dans la haute atmosphère de Jupiter et créent des aurores (voir mon article du 9 mai 2015 à ce sujet). Un exemple de cette activité a été repéré par le télescope spatial Hubble qui a révélé le rôle joué par Io et Ganymède dans les aurores de Jupiter.
Io a également une atmosphère au comportement variable. L’enveloppe de dioxyde de soufre du gaz se fige lorsque la lune passe dans l’ombre de Jupiter. Le dioxyde de soufre se retransforme en gaz lorsque Io revient à la lumière du soleil.

Io a été la première des lunes de Jupiter à être découverte par l’astronome italien Galileo Galilei le 8 janvier 1610. C’était la première fois qu’une lune était observée en orbite autour d’une planète autre que la Terre. La découverte de Galilée a permis de comprendre que les planètes tournent autour du soleil, et non que le système solaire tourne autour de la Terre.
Bien qu’aucune mission dédiée n’ait été envoyée sur Io, plusieurs engins spatiaux ont survolé Jupiter et observé ses lunes : les sondes Pioneer 10 de la NASA en 1973, Pioneer 11 en 1974, Voyager 1 et Voyager 2 en 1979. Entre 1995 et 2002, l’engin spatial Galileo de la NASA a effectué plusieurs survols de Io. ils ont fourni aux scientifiques les vues les plus proches à ce jour de la lune de Jupiter.
Bien qu’il n’y ait pas de mission spécifiquement prévue pour observer Io, d’autres missions passent actuellement à proximité de la lune ou le feront dans les années à venir. La mission JUICE de l’Agence spatiale européenne, dont le lancement est prévu en 2023, se concentrera sur Europe, Ganymède et Callisto. En 2024, les projets de mission Europa Clipper de la NASA s’attarderont sur l’habitabilité d’ Europe.
Vous trouverez plus de détails sur le site space.com.
Source : space.com.

 ———————————————————–

I have written several posts about Io, one of Jupiter’s moons. It is the most volcanically active body in the solar system. The website space.com invites its readers to an exhaustive visit of the celestial body.

With a mean radius of 1,821 km, Io is slightly larger than Earth’s moon. It has a slightly elliptical shape, with its longest axis directed toward Jupiter. Among the Galilean satellites, Io ranks third, behind Ganymede and Callisto but ahead of Europa, in both mass and volume.

Io’s surface is peppered with hundreds of volcanoes, some spewing sulfurous plumes hundreds of kilometers high. This surface is changing at an incredible rate. Volcanic fissures ooze lava that fills impact craters and creates new floodplains of liquid rock. While Io’s exact composition is unknown, it is likely molten sulfur and sulfur dioxide..Io’s surface temperature averages about minus 130°C. Io’s volcanoes can reach 1,649°C degrees C.

Io’s volcanic activity was first discovered by NASA’s Voyager missions in 1979. The American agency has provided most of the information of this article.

As Io orbits Jupiter in an elliptical fashion, the strength of Jupiter’s gravity on Io varies depending on how close the moon is to the planet. This gravitation fluctuation creates a perpetual push and pull on the moon’s interior in different directions, which causes Io’s surface to bulge by as much 100 meters. This movement causes Io’s rocks to grind past each other, generating vast quantities of heat.

If Io were Jupiter’s only moon, its orbit would probably look like a circle, but the ongoing, constant outward tug from Io’s outer neighbours Europa and Ganymede ensure that does not happen. Io cannot escape this perpetual game of gravitational tug-of-war and subsequent planetary heating.

Io takes 1.77 Earth-days to orbit Jupiter. Io is tidally locked, so the same side always faces Jupiter.

Io’s surface is primarily composed of sulfur and sulfur dioxide. Io’s sulfur dioxide atmosphere is extremely thin, about one billionth the surface pressure of Earth’s atmosphere.

Io’s orbit cuts across Jupiter’s powerful magnetic lines of force, turning Io into an electric generator. According to NASA, Io can develop 400,000 volts across itself, in turn creating 3 million amperes of electrical current. This then makes its way back along Jupiter’s magnetic field lines and causes lighting storms in Jupiter’s upper atmosphere.

As Jupiter rotates, the magnetic forces strip away about a ton of Io’s material every second. The material becomes ionized and forms a doughnut-shaped cloud of radiation called a plasma torus. Some of the ions are pulled into Jupiter’s upper atmosphere and create auroras (see my post of May 9th, 2015 about this topic). An example of this activity was spotted by the Hubble Space Telescope, which revealed the influences of Io and Ganymede, in Jupiter’s auroras.

Io also has a collapsible atmosphere. The sulfur dioxide envelope of gas freezes up while Io is in the shadow of Jupiter every day. When Io comes back into the sunlight, the freezing sulfur dioxide converts to gas once more.

Io was the first of Jupiter’s moons discovered by Italian astronomer Galileo Galilei on January 8th, 1610. This discovery, along with the discovery of three other Jovian moons, was the first time a moon was ever found orbiting a planet other than Earth. Galileo’s discovery eventually led to the understanding that planets orbit the sun, instead of our solar system revolving around Earth.

While no dedicated mission has been sent to Io, several spacecraft have flown by Jupiter and observed its moons : NASA’s Pioneer 10 in 1973, Pioneer 11 in 1974, Voyager 1 and Voyager 2 probes in 1979. Between 1995 and 2002, NASA’s Galileo spacecraft made multiple flybys of Io and provided scientists with the closest views to date of the volcanic moon.

While there is no mission specifically planned to look at Io, other missions are now in the vicinity of the moon or will be in future years. The European Space Agency’s JUICE mission, set to launch in 2023, will focus on Europa, Ganymede and Callisto. In 2024, NASA’s Europa Clipper mission plans investigate the habitability of another Galilean moon, Europa.

You will find more details on the space.com website

Source : space.com.

Eruption à la surface de Io

Aurore sur Jupiter (Source; NASA)

Hawaii: Concurrence entre hydrogène sulfuré et dioxyde de soufre // H2S vs. SO2

Au cours des derniers mois, avec l’éruption du Kilauea, les Hawaiiens ont souvent eu l’occasion de sentir le dioxyde de soufre (SO2), un gaz typique émis au moment des éruptions. Il apparaît lorsque le magma se trouve à faible profondeur. Actuellement, le volcan émet moins de 200 tonnes de SO2 chaque jour. C’est plus de 20 fois moins que la moyenne enregistrée au cours des 10 années d’activité du lac de lave dans l’Halema’uma’u et au moins 200 fois moins que le pic des émissions au cours de l’éruption dans la Lower East Rift Zone en 2018.
Depuis la fin de l’éruption, les gens respirent parfois un autre gaz: l’hydrogène sulfuré (H2S), le cousin malodorant du SO2. En ce moment, le magma se trouve à plus grande profondeur, ce qui induit des températures plus basses au niveau des bouches éruptives. Comme il n’y a plus de magma à faible profondeur pour faire évaporer les eaux souterraines, le sous-sol est également beaucoup plus humide. Ces conditions moins chaudes et plus humides sont parfaites pour provoquer la formation de petites quantités de H2S. On sent en général le gaz lorsque les alizés cessent de souffler et dans les endroits sous le vent à proximité du sommet du Kilauea, du Pu’u O’o, et du système de fractures dans la Lower East Rift Zone, site de l’éruption de 2018.
Le SO2, qui a une odeur âcre et piquante, comme celle émise par les feux d’artifice ou lorsqu’on craque une allumette, est perceptible à raison de 0,3 à 1 partie par million (ppm), c’est-à-dire 0,3 à 1 partie de gaz par million de parties d’air.
A côté de cela, les gens perçoivent généralement l’odeur d’œuf pourri du H2S à des concentrations allant de 0,0005 à 0,3 ppm. L’odeur du H2S est bien connue des habitants des sources thermales ou des zones géothermales comme le parc national de Yellowstone. Ce gaz est également produit par la décomposition de matières organiques et on le rencontre dans les égouts et les marécages. Même le corps humain produit une petite quantité de H2S. Au cours des dernières semaines, une forte odeur de H2S a envahi les Caraïbes, provoquant de graves problèmes de santé parmi la population. La cause en était les énormes quantités de sargasses, un type d’algues qui ont atteint les côtes des îles.
L’État d’Hawaï a fixé le «niveau de nuisance» pour le H2S à 0,025 ppm, sur la base du seuil olfactif. Les symptômes négatifs de l’exposition au H2S ne se manifestent que lorsque les concentrations sont bien supérieures au seuil olfactif. Selon l’OSHA (Occupational Safety and Health Administration), une exposition prolongée à des quantités de 2-5 ppm peut provoquer des maux de tête, une irritation des yeux, des nausées ou des problèmes respiratoires chez certains asthmatiques. Les concentrations mesurées dans les zones habitées autour du Kilauea sont inférieures à 1 ppm.
Bien que l’être humain puisse détecter le H2S à de très faibles concentrations, son odorat ne le détecte plus à des concentrations élevées. Par exemple, une exposition de deux à cinq minutes à 100 ppm peut provoquer une adaptation sensorielle appelée «fatigue olfactive». Il est rassurant de noter que les concentrations de H2S mesurées sur le Kilauea, même directement au niveau des bouches éruptives, sont bien inférieures à ce niveau.
Pour les Hawaïens qui vivent depuis des décennies avec l’odeur familière du vog empreinte de SO2, l’arrivée du H2S malodorant peut être quelque peu déconcertante. Quand surviendra la prochaine éruption du Kilauea, avec une remontée du magma vers la surface, il faudra s’attendre à une diminution des émissions de H2S et à un retour à l’odeur plus familière du SO2 et du vog à dominance particulaire.
Source: USGS / HVO.

———————————————————

In the past months, with the eruption of Kilauea Volcano, Hawaiians could often smell sulphur dioxide (SO2), a typical gas emitted during eruptions. It is released when magma is at a shallow depth. Currently, less than 200 tons of SO2 are emitted from the volcano each day. This is more than 20 times less than the average emissions during the 10 years of lava lake activity at Halema’uma’u, and at least 200 times less than peak emissions during the 2018 lower East Rift Zone eruption.

Since the end of the eruption, people have smelled another gas: hydrogen sulphide (H2S), the smelly cousin of SO2. With the current volcanic conditions, deeper magma has led to cooler vent temperatures. Without shallow magma to boil off ground water, the sub-surface environment is also much wetter. These cooler and wetter conditions cause a small amount of H2S to form. H2S is most commonly detected during interruptions in trade wind conditions and in locations downwind of Kilauea’s summit, Pu’u O’o, and the 2018 lower East Rift Zone fissure system.

SO2, which produces a sharp pungent aroma like that emitted when setting off fireworks or striking a kitchen match, is noticeable to most people at 0.3 to 1 parts per million (ppm) – 0.3 to 1 parts gas in 1 million parts of air.

On the other hand, people can usually smell the rotten egg odor of H2S at lower concentrations ranging from 0.0005 to 0.3 ppm. The smell of H2S is a familiar odour to people from hot spring or geothermal areas like in Yellowstone National Park. It is also produced by decaying organic material and is released by sewers and swamps. Even the human body produces a small amount of H2S. During the past weeks, a strong H2S smell invaded the Caribbean which caused severe health problems among the population. The cause lay with the huge amounts of sargassum that had reached the coasts of the islands.

The State of Hawaii has set a “nuisance level” for H2S at 0.025 ppm, based on the odour threshold. Negative symptoms of H2S exposure do not occur until concentrations are well above the odour threshold. According to the Occupational Safety and Health Administration (OSHA), prolonged exposure to 2-5 ppm may cause headaches, eye irritation, nausea or breathing problems in some asthmatics. Measured concentrations in populated areas around Kilauea are less than 1 ppm.

Although H2S can be detected by humans at very low concentrations, a person’s sense of smell to the gas is lost at high concentrations. For instance, two to five minutes of exposure at 100 ppm can cause a sensory adaptation known as “olfactory fatigue.” But concentrations of H2S measured at Kilauea, even directly at volcanic vents, are well below this level.

For Hawaiians who have spent decades living with the familiar aroma of “classic” vog, the introduction of smelly H2S can be curious or even disconcerting. When the next eruption of Kilauea occurs, when magma eventually rises toward the surface,  a decrease in H2S emissions is to be expected, with a return to the more familiar smell of the SO2 and particle-dominated vog.

Source: USGS / HVO.

Panache de gaz riche en SO2 au sommet du Kilauea

L’odeur de H2S est présente aux abords des zones géothermales

(Photos: C. Grandpey)

 

Les gaz de l’éruption islandaise // The gases of the Icelandic eruption

drapeau francaisCela fait maintenant plus de cinq mois que les météorologues islandais et le Scientific Advisory Board (conseil consultatif scientifique) diffusent des mises à jour quotidiennes sur le déplacement des panaches de gaz nocifs émis par l’éruption dans l’Holuhraun. Les gaz majoritaires sont le dioxyde de soufre (SO2) et le dioxyde de carbone (CO2). Les autres gaz représentent des quantités beaucoup plus faibles. Le SO2 – qui provoque des problèmes respiratoires et oculaires, ainsi que des maux de gorge – est responsable de la plupart des problèmes de santé liés à l’éruption. Le CO2 peut représenter un danger pour les scientifiques qui travaillent à proximité du site éruptif.
Les émissions de gaz actuelles sont les plus dangereuses que l’Islande ait connues depuis plus de 200 ans, avec l’éruption du Laki en 1783. Afin d’évaluer ces émissions, les autorités islandaises ont installé 27 capteurs automatiques de SO2 à travers le pays, associés à d’autres appareils de mesure portables, dont certains sont fixés à des véhicules de police. Selon la direction du vent, les panaches de SO2 peuvent affecter n’importe quelle région du pays, avec des pointes dépassant parfois 2000 µg / m3 en différents endroits tout au long de la journée. L’Agence pour l’Environnement a indiqué que 350 µg / m3 pour une période d’une heure et 125 µg / m3 pour une période de 24 heures étaient les limites d’exposition acceptables au dioxyde de soufre. Lorsque la concentration augmente, des alertes sont diffusées via Facebook et par SMS. Les Islandais sont alors invités à éviter les sorties et les activités physiques. Des niveaux supérieurs à 600 µg / m3 sont considérés comme dangereux pour les personnes qui ont des problèmes de santé et sont donc plus susceptibles d’éprouver des problèmes respiratoires. Dans ce cas, elles sont invitées à rester à l’intérieur avec les fenêtres fermées.
Toutefois, la principale préoccupation est sur le long terme avec des effets mal connus de l’exposition à de faibles quantités de SO2. Un aspect inquiétant du SO2 est sa réaction avec l’eau qui le fait se transformer en acide sulfurique (H2SO4), beaucoup plus difficile et plus coûteux à contrôler. L’acide sulfurique persiste sur de plus longues périodes de temps que le SO2, et aussi plus loin du centre éruptif, comme ce fut le cas pendant l’éruption du Laki en 1783, avec quelque 20 000 morts en Grande-Bretagne.
Les panaches de SO2 ont parfois atteint Reykjavik sur la côte ouest, mais c’est la partie orientale de l’Islande qui a été la plus fortement exposée à des concentrations de gaz élevées. Les écoles ont parfois été fermées et les ventes de médicaments contre l’asthme ont grimpé en flèche. Le 11 janvier, un appareil portable a relevé 7,800 µg / m3 à 80 km à l’est de l’éruption.
Les agriculteurs de l’est de l’Islande sont inquiets eux aussi. Leur bétail pourrait se retrouver affecté à long terme car les animaux sont restés confinés pendant longtemps à l’intérieur de structures où la circulation de l’air n’est pas bonne. Il ne serait pas surprenant que les plus jeunes bêtes se retrouvent avec des problèmes de santé, tels que des faiblesses respiratoires. En outre, avec le printemps, d’autres effets secondaires de l’éruption pourraient apparaître. L’acide sulfurique est actuellement mélangé à la neige. C’est seulement au moment de la fonte printanière que l’on saura à quel point le H2SO4 a affecté l’eau, le sol et la végétation.
Source: Al Jazeera.

A noter la présence de nouvelles webcams: http://webcams.mogt.is/

 ———————————————

drapeau anglaisFor the past five months, Icelandic weather forecasters and the Scientific Advisory Board have included daily updates on the movement of noxious gas plumes emitted by the ongoing Holuhraun volcanic eruption. Most of the gas is sulphur dioxide (SO2) and carbon dioxide ((CO2). The other gases occur in much lower quantities. SO2, which causes respiratory, eye and throat problems, is responsible for most of the eruption-related health issues. CO2 can be dangerous to the scientists who work near the volcano itself.

The current gas emissions are the most dangerous the country has experienced in more than 200 years, since the Laki eruption in 1783.With volcanic gas emissions at such high levels, Icelandic authorities have installed 27 automatic monitors around the country that measure SO2, along with portable meters, some of which are attached to police vehicles. Depending on wind conditions, SO2 fumes can get blown around and affect the entire country, sometimes exceeding 2,000 µg/m3 at different points throughout a day. The Environment Agency set 350 µg/m3 for a one-hour period and 125 µg/m3 for a 24-hour period as acceptable exposure limits to sulphur dioxide. When the concentration rises, advisories are posted online, via Facebook and by SMS, and Icelanders are advised to avoid going outdoors and engaging in physical activity. Levels more than 600µg/m3 are considered dangerous for people who have existing health conditions and are more likely to experience respiratory problems. At these levels, such people are advised to stay indoors with the windows closed.

However, the main concern is about the longer-term and lesser-known affects of exposure to low levels of SO2. A worrying aspect of SO2 is when it reacts with water and turns into sulphuric acid (H2SO4) that becomes far harder and more expensive to monitor. H2SO4 becomes apparent over a longer time period than SO2 and typically further from the centre of the eruption, like during 1783 Laki eruption that killed an estimated 20,000 people in Britain.

Occasionally, SO2 plumes have reached Reykjavik on the west coast. But eastern Iceland has been particularly exposed to high gas concentrations. Schools have sometimes been closed and sales of asthma drugs have spiked in the country’s east. On January 11th, a portable meter picked up a reading of  7,800 µg/m3 about 80 km east of the eruption.

Farmers in eastern Iceland are now worried their livestock could wind up with long-term damage, as they have been holed up inside the sheds with poor air circulation. It wouldn’t come as a surprise if the youngest sheep ended up with some health problems, such as weaker lungs. Besides, with springtime, other side effects of the eruption could become apparent. Sulphuric acid is currently stored in the snow. It is only when the snow melts in the spring that H2SO4 will affect the water, soil and vegetation.

Source: Al Jazeera.

New webcams to see the eruption: http://webcams.mogt.is/

Gaz-Islande

Nuages de gaz de l’éruption dans l’Holuhraun  (Crédit photo:  Peter Hartree / Wikipedia)