Une éruption enfin à la Réunion ? Ben non ! // An eruption at last on Reunion Island ? Not yet !

Depuis 4h47 le 1er janvier 2026, l’OVPF relève une crise sismique sur le Piton de la Fournaise, ce qui signifie que le magma se propage vers la surface. Par conséquent et en raison d’une éruption probable ou imminente, le préfet de La Réunion a activé l’alerte 1 et ordonné la fermeture de l’Enclos dès 6h le 1er janvier.

°°°°°°°°°°

Dans un nouveau bulletin, l’OVPF indique que la crise sismique débutée le 1er janvier 2026 aux alentours de 4h45 (heure locale) a fortement ralenti et peut être désormais considérée comme arrêtée. La sismicité avait été localisée sous le cratère Dolomieu, à des profondeurs comprises entre 1,6 et 2,3 km sous la surface.

Cette hausse de la sismicité s’est accompagnée de déformations rapides de faible ampleur au niveau de la zone sommitale du volcan. C’était la preuve d’une intrusion de magma en profondeur, mais qui n’a pas atteint la surface, probablement à cause d’une pression insuffisante à sa propagation.

La sismicité reste toutefois présente, ce qui montre que le réservoir magmatique reste sous pression.

L’OVPF ajoute q’à ce stade, pour les prochaines heures, aucune hypothèse n’est écartée :arrêt définitif de l’intrusion ? Reprise de l’intrusion ? Nouvelle intrusion ? Éruption ? Par le passé de telles intrusions ont parfois précédé de quelques jours l’injection finale de magma conduisant à l’éruption, comme cela a été observé récemment en septembre 2022 et décembre 2020.

Le volcan reste en Alerte 1 et l’Enclos reste donc fermé au public.

Schéma montrant le système d’alimentation magmatique du Piton de la Fournaise avec les principales phases de réactivations observées depuis mi-septembre 2025. Les étoiles en blanc représentent les localisations schématiques des séismes. (Source : OVPF)

°°°°°°°°°°

La nouvelle méthode « Jerk » (voir ma note du 28 décembre 2025), censée permettre d’accélérer l’alerte précoce des éruptions volcaniques n’a pas été d’une efficacité redoutable dans le cas présent. L’OVPF indique dans son dernier bulletin qu’ « un petit signal Jerk (transitoire à très basse fréquence observé dans les mouvements horizontaux du sol sur la station sismologique de Rivière de l’Est, à la fois en accélération et en inclinaison) a été émis (seulement 0,1 nm/s3), confirmant qu’une intrusion de magma avait bien eu lieu. » C’est bien, mais au final, la lave n’a pas percé la surface !

Une situation identique s’est produite le 5 décembre 2025, « associé à de faibles déformations et anomalies de gaz, un petit signal Jerk a été émis (seulement 0,1 nm/s3), confirmant qu’une intrusion de magma avait bien eu lieu. » Là encore, la pression semble avoir été insuffisante pour permettre la propagation du magma vers la surface.

—————————————

Since 4:47 AM on January 1, 2026, the OVPF has recorded a seismic crisis at Piton de la Fournaise, meaning that magma is rising towards the surface. Consequently, and due to a probable or imminent eruption, the Préfet of Réunion has activated alert level 1 and ordered the closure of the Enclos starting at 6:00 AM on January 1.

°°°°°°°°°°

In a new update, the OVPF indicates that the seismic crisis that began on January 1, 2026, at around 4:45 a.m. (local time) has slowed considerably and can now be considered over. The seismic activity was located beneath the Dolomieu crater, at depths between 1.6 and 2.3 km below the surface.
This increase in seismicity was accompanied by rapid, low-amplitude deformations in the summit area of ​​the volcano. This was evidence of a deep magma intrusion that did not reach the surface, probably due to insufficient pressure for propagation.
However, seismic activity is still observed, indicating that the magma reservoir remains under pressure.
The OVPF adds that, at this stage, for the coming hours, no hypothesis is being ruled out: definitive cessation of the intrusion? Resumption of the intrusion? New intrusion? Eruption? In the past, such intrusions have sometimes preceded the final magma injection leading to the eruption by a few days, as was observed recently in September 2022 and December 2020.

The volcano remains on Alert 1 and the Enclos therefore remains closed to the public.

°°°°°°°°°°

The new « Jerk » method (see my post of December 28, 2025), intended to accelerate early warning of volcanic eruptions, was not remarkably effective in this instance. The OVPF indicates in its latest bulletin that « a small Jerk signal (a very low-frequency transient observed in horizontal ground movements at the Rivière de l’Est seismological station, both in acceleration and inclination) was emitted (only 0.1 nm/s³), confirming that a magma intrusion had indeed occurred. » That’s all well and good, but ultimately, the lava didn’t break through the surface!
An identical situation occurred on December 5, 2025 : « Associated with slight deformations and gas anomalies, a small Jerk signal was emitted (only 0.1 nm/s³), confirming that a magma intrusion had indeed occurred. » « Here again, the pressure seems to have been insufficient to allow the magma to propagate towards the surface.

 

 

Sismicité, fluides hydrothermaux et systèmes de failles dans le Parc national de Yellowstone // Seismicity, hydrothermal fluids and fault systems in Yellowstone National Park

Une étude d’une durée de 15 ans menée par l’Observatoire Volcanologique de Yellowstone et l’USGS sur les données sismiques dans le Parc, et publiée dans Science Advances en juillet 2025, montre comment des milliers de petits séismes se regroupent dans le temps et l’espace. Elle met ainsi en évidence des interactions complexes entre les fluides hydrothermaux et les systèmes de failles sous la caldeira de Yellowstone. Grâce à l’intelligence artificielle, les chercheurs ont pu démontrer que le sous-sol du Parc national de Yellowstone est bien plus dynamique qu’on ne le pensait jusqu’à présent.

Photo: C. Grandpey

De 2008 à 2022, les scientifiques ont analysé les mesures en continu des mouvements du sol, fournies par le réseau sismique qui détecte les vibrations les plus infimes à travers le Parc. En appliquant les derniers modèles d’apprentissage automatique à cet immense ensemble de données, les chercheurs ont détecté plus de 86 000 séismes, ainsi qu’une multitude de petits événements auparavant inconnus. Ces données confirment que le sous-sol de Yellowstone est un paysage en perpétuel mouvement. Les séismes ne sont pas répartis uniformément, mais se regroupent en essaims, où des centaines, voire des milliers d’événements se produisent en quelques jours ou semaines. Certains de ces essaims sont liés au mouvement de fluides hydrothermaux, d’autres au lent réajustement des zones de failles, et quelques-uns à des processus volcaniques profonds. Ce catalogue, réalisé à l’aide de l’intelligence artificielle, révèle que nombre de ces épisodes sont interconnectés sur plusieurs années, voire des décennies, et racontent ainsi une période bien plus longue de l’évolution de la croûte de Yellowstone.

Réseau sismique de Yellowstone (Source: YVO)

Cette étude démontre comment une surveillance sur le long terme et en haute résolution, combinée à l’intelligence artificielle, peut éclairer des processus allant bien au-delà de la portée de l’observation directe.
Le nouveau catalogue sismique offre un aperçu inédit de la façon dont les séismes dessinent l’anatomie de la caldeira de Yellowstone. La plupart des 86 000 séismes enregistrés se sont produits à des profondeurs comprises entre 1 et 4 km, formant des groupes denses et linéaires qui suivent les systèmes de failles sous le Parc. À environ 8 km de profondeur, l’activité sismique disparaît presque complètement, ce qui indique probablement la présence de roches partiellement fondues qui absorbent l’énergie au lieu de se fracturer. Les chercheurs ont obtenu cette précision grâce à un modèle tridimensionnel des vitesses des ondes sismiques sous Yellowstone. Ce modèle montre comment différents types de roches, avec des températures différentes, modifient la vitesse des ondes sismiques, ce qui permet aux scientifiques de localiser les séismes avec exactitude.
Les résultats affinés révèlent des couloirs de failles complexes, certains orientés nord-est à travers la caldeira et d’autres longeant sa lèvre ouest. Au sein de ces structures, les scientifiques ont observé des différences marquées entre les zones situées à l’intérieur et à l’extérieur de la caldeira. À l’intérieur, les séismes ont tendance à se propager verticalement le long de failles grossières et encore mal définies. Ce mouvement vertical reflète la remontée de fluides sous pression, principalement de l’eau chaude et des gaz, au sein du système hydrothermal actif de Yellowstone. À l’extérieur de la caldeira, en revanche, les failles apparaissent plus stables et les séismes présentent une faible migration verticale. Ces zones représentent probablement des failles plus anciennes et plus matures, réagissant aux variations latérales des contraintes crustales.

Histogramme montrant le nombre de séismes par période de trois mois dans la région du Parc national de Yellowstone, de 1973 à 2023. Les barres rouges représentent tous les séismes survenus dans la région de Yellowstone, et les barres bleues indiquent une sismicité en essaim. (Source : YVO)

L’utilisation d’outils d’apprentissage profond tels qu’EQTransformer et PhaseLink a permis aux auteurs de l’étude de détecter des phases sismiques subtiles souvent négligées par les méthodes traditionnelles. Les chercheurs ont relocalisé 67 000 événements avec une précision remarquable. Ils ont pu ainsi cartographier une croûte complexe et finement stratifiée qui fait le lien entre tectonique et volcanisme. Ce niveau de détail offre une nouvelle base pour l’étude du sous-sol de Yellowstone. Les données révèlent non seulement la localisation des séismes, mais aussi l’évolution de leur profondeur et de leur direction au fil du temps. Chaque essaim sismique témoigne d’un mouvement, illustrant l’évolution continue du réseau hydrographique interne du Parc. L’une des découvertes les plus remarquables est le lien à long terme entre différents essaims sismiques. Alors que chaque essaim ne dure généralement que quelques semaines, la nouvelle analyse montre que des essaims séparés par des années se produisent souvent quasiment au même endroit.
Par exemple, l’essaim de 2020-2021, survenu près de l’extrémité nord du lac Yellowstone, s’est produit immédiatement au sud de la séquence de 2008-2009, après plus d’une décennie de calme. Un tel comportement laisse supposer l’existence d’un système dynamique de réservoirs souterrains où l’eau et le gaz migrent lentement à travers les fractures de la roche. Lorsque ces fluides rencontrent des zones étanches ou de faible perméabilité, la pression augmente jusqu’à provoquer la fissuration de la roche, engendrant des salves de sismicité. Une fois la pression relâchée, le système retrouve son calme lorsque les conduits de fluides se referment. Ce processus d’arrêts et de reprises crée un rythme d’essaims sismiques spatialement liés mais temporellement séparés. Ces essaims sont particulièrement fréquents près des zones hydrothermales comme le Yellowstone Lake et le Norris Geyser Basin, où l’eau chaude circule à travers des fractures superficielles.

Norris Geyser Basin (Photo: C. Grandpey)

La récurrence de ces essaims illustre comment la croûte de Yellowstone emmagasine et libère de l’énergie sur des échelles de temps bien plus longues que celles de chaque épisode individuel. La reprise d’activité dans les mêmes zones de failles après des années de repos révèle un lent cycle d’accumulation et de libération de pression qui façonne l’évolution continue du Parc.
Source : Observatoire Volcanologique de Yellowstone.

————————————————–

A 15-year study of Yellowstone’s seismic record by the Yellowstone Volcano Observatory and the U.S. Geological Survey (USGS), published in Science Advances in Jult 2025, reveals how thousands of small earthquakes cluster in time and space. It thus shows complex interactions between hydrothermal fluids and fault systems beneath the caldera. By using artificial intelligence, the researchers demonstrate that the ground beneath Yellowstone National Park is far more dynamic than previously understood.

From 2008 to 2022, scientists analyzed continuous ground motion recordings collected from the seismic network which surrounds the park and detects even the faintest vibrations. By applying advanced machine learning models to this enormous dataset, the researchers detected over 86 000 earthquakes, with countless small events that were previously invisible. Through this data, Yellowstone’s subsurface appears as a restless landscape in constant motion. Earthquakes are not distributed evenly but instead cluster in swarms, where hundreds or thousands of events occur over days or weeks. Some of these swarms have been linked to the movement of hydrothermal fluids, others to the slow readjustment of fault zones, and a few to deeper volcanic processes. The AI-based catalog now shows that many of these bursts are connected across years or even decades, telling a much longer story of Yellowstone’s evolving crust.

This study demonstrates how long-term, high-resolution monitoring combined with artificial intelligence can illuminate processes far below the reach of direct observation.

The new seismic catalog provides an unprecedented look at how earthquakes outline the anatomy of the Yellowstone Caldera. Most of the 86 000 recorded earthquakes occurred at depths between 1 and 4 km, forming dense, linear clusters that trace fault systems beneath the park. Beneath about 8 km, seismic activity nearly disappears, suggesting the presence of partially molten rock that absorbs energy rather than fracturing. Researchers achieved this precision using a three-dimensional model of seismic wave velocities beneath Yellowstone. This model shows how different rock types and temperatures alter the speed of seismic waves, allowing scientists to locate earthquakes with accuracy.

The refined results reveal intricate fault corridors, some trending northeast across the caldera and others running along its western rim. Within these structures, scientists observed distinct differences between areas inside and outside the caldera boundary. Inside, earthquakes tend to migrate upward through rough, immature faults. This vertical movement reflects the rising motion of pressurized fluids, primarily hot water and gases, within Yellowstone’s active hydrothermal system. Outside the caldera, by contrast, the faults appear more stable, with earthquakes showing little vertical migration. These zones likely represent older, more mature faults responding to lateral shifts in crustal stress.

The use of deep learning tools such as EQTransformer and PhaseLink enabled the detection of subtle seismic phases that traditional methods often miss. The researchers relocated 67 000 events with remarkable precision, mapping a complex and finely layered crust that bridges the worlds of tectonics and volcanism. This level of detail provides a new foundation for studying Yellowstone’s subsurface. The data reveal not just where earthquakes happen, but how their patterns shift in depth and direction through time. Each cluster becomes a trace of movement, showing how the park’s internal plumbing continues to evolve.

One of the most remarkable findings is the long-term connection between separate earthquake swarms. While individual swarms typically last only a few weeks, the new analysis shows that swarms years apart often occur in nearly the same place.

For example, the 2020–2021 swarm near the northern end of Yellowstone Lake occurred immediately south of the 2008–2009 sequence, separated by more than a decade of quiet. Such behavior hints at a dynamic system of underground reservoirs where water and gas migrate slowly through fractures in the rock. When these fluids encounter sealed zones of lower permeability, pressure builds until it forces the rock to crack, producing bursts of seismicity. Once released, the system quiets again as the fluid pathways reseal. This stop-and-go process creates a rhythmic pattern of swarms that are spatially linked but temporally separated. Swarms are especially common near hydrothermal areas such as Yellowstone Lake and Norris Geyser Basin, where hot water circulates through shallow fractures. These recurring swarm patterns demonstrate how Yellowstone’s crust stores and releases energy on timescales much longer than any individual episode. The return of activity to the same fault zones after years of rest suggests a slow cycle of pressure accumulation and release that shapes the park’s ongoing evolution.

Source : Yellowstone Volcano Observatory.

Pas d’inquiétude pour le mont Rainier (États Unis) // No cause for concern regarding Mount Rainier (United States)

Ces derniers jours, les réseaux sociaux ont été le théâtre de nombreuses spéculations concernant un possible réveil du mont Rainier, dans l’État de Washington. Beaucoup de personnes ont cru que les tracés sismiques montraient un tremor volcanique. Cependant, les scientifiques ont tenu à rassurer le public. En effet, les tracés sismiques en question étaient très différents de ceux observés à l’approche d’une éruption. En particulier, rien n’indique une hausse de la sismicité volcanique ; il n’y a aucun gonflement du sol et donc aucune modification du niveau d’alerte pour le mont Rainier. Le Réseau sismique du Pacifique Nord-Ouest (PNSN) a expliqué que l’anomalie provenait de la station de St. Andrews Rock (STAR), l’un des plus anciens capteurs installés sur le volcan. Le capteur a semblé indiquer une activité sismique intense et continue pendant plusieurs jours alors que les instruments situés à proximité ne montraient rien de semblable.
Le PNSN ajoute que la station a probablement subi des interférences radio ou connu un problème matériel, comme une batterie défectueuse. Les équipes tenteront une réinitialisation à distance, mais en raison des conditions hivernales, une réparation physique ne sera probablement pas possible avant la fin de la saison.

La dernière éruption mineure du mont Rainier a été enregistrée en 1884, et sa dernière période éruptive majeure remonte à environ mille ans.
Source : PNSN.

Photo: C. Grandpey

—————————————————

There has been a lot of speculation in the past days on the social networks about a possible reawakening of Mount Rainer in Washington State. To viewers monitoring the public data feed, the readings looked like volcanic tremor. However, experts say the reading looks very different than how seismic activity would show up. There has been no increase in volcanic earthquakes, no ground swelling, and no change in the official alert level. The Pacific Northwest Seismic Network (PNSN) explained that the anomaly came from the St. Andrews Rock (STAR) station, one of the network’s oldest sensors on the volcano. While its display appeared to show nonstop, high-energy tremor activity for days, nearby instruments showed no similar behavior.

PNSN adds that the station likely experienced radio interference or a hardware issue such as a faulty battery. Crews will attempt a remote reset, but because of harsh winter conditions, a physical repair likely won’t be possible until after the season passes.

Rainier’s last minor eruption was recorded in 1884, with its last major eruptive period occurring roughly a thousand years ago.

Source : PNSN.

Islande : nouvelle éruption à l’approche ? // Iceland : is a new eruption getting closer ?

Dans un entretien accordé aux médias islandais, le Met Office explique que des dizaines de petits séismes ont été enregistrés à l’est de Sýlingafell le 11 octobre 2025 au soir. L’essaim sismique a débuté vers 20 heures et a duré environ une heure avant de disparaître peu à peu. Cela laisse supposer que la prochaine éruption sur la péninsule de Reykjanes ne devrait pas tarder et que « le magma devrait bientôt percer la surface ».
Les volcanologues du Met Office expliquent avoir déjà observé ce type d’activité, généralement quelques semaines avant le début d’une éruption. Selon eux, cela signifie que le magma s’approche d’une fracture ou d’une faiblesse de la croûte.
La pression à l’intérieur de la chambre magmatique continue de monter, mais la question est toujours de savoir quand cette pression deviendra suffisamment élevée pour déclencher une intrusion magmatique et, à terme, une éruption. « Il est difficile de déterminer précisément le moment où cela se produira. » Cependant, selon le Met Office, « d’après l’expérience passée, on peut s’attendre à une éruption dans deux à trois semaines, voire un mois. Le même phénomène s’est produit avant l’éruption de novembre dernier : un petit essaim sismique a été observé vers le 4 novembre, et l’éruption a commencé le 20 ou le 21. En mai 2024, un essaim semblable s’est produit dans la nuit du 10 mai et a été suivi de l’éruption du 29. Reste à savoir si ce schéma se reproduira, mais nous devons nous y préparer.»
Il convient de noter qu’il n’y a eu pratiquement aucune activité sismique dans la région depuis la fin de l’éruption à l’été 2025, de sotye que l’essaim du 11 octobre au soir a immédiatement donné l’alerte sur les systèmes de surveillance internes du Met Office. L’essaim sismique a cessé progressivement et n’a pas été suivi d’autres événements. De plus, aucune déformation mesurable du sol n’a été observée.
Source : Met Office.

Image webcam de la dernière éruption

————————————————–

In an interview with the Icelandic news media, the Icelandic Met Office explains that dozens of small earthquakes east of Sýlingafell were recorded on 11 October 2025 in the evening. The seismic swarm began around eight o’clock and lasted for about an hour before it subsided, It suggestd that the wait for the next eruption on the Reykjanes Peninsula may be nearing its end and that “the magma is approaching a breaking point”

Volcanologists at the Met Office say they have seen this kind of activity before, typically a few weeks before an eruption begins. It means that the magma is nearing some kind of fracture or weakness in the crust.

Pressure inside the magma chamber continues to build, but the question is always when that pressure becomes high enough to trigger a magma intrusion and ultimately an eruption. “It’s difficult to pinpoint exactly when that happens.”

However, according to the Met Office, “based on past experience, one might expect an eruption in two to three weeks, maybe a month. The same thing happened before the eruption last November — there was a small swarm around November 4th, and the eruption began on the 20th or 21st. In May2024, a similar swarm occurred on the night of May 10th, and the eruption followed on the 29th. Whether this is the same pattern remains to be seen, but it’s something we have to be prepared for.”

It should be noted that there has been virtually no seismic activity in the area since the eruption ended in the summer 2025, which made last night’s swarm stand out and immediately alert the Met Office’s internal monitoring systems. The seismic swarm died down and was not followed by other events. Besides, there was no measurable ground deformation.

Source : Met Office.