Santorin (Grèce) : pas de quoi s’inquiéter….un peu quand même ! // Santorini (Greece) : nothing to worry about…a little anyway !

Dans ma dernière note sur l’activité volcanique dans le monde, j’ai expliqué qu’une hausse de l’activité sismique à Santorin a suscité des inquiétudes quant à une possible éruption volcanique sur l’île grecque. La Protection civile a convoqué une réunion avec les autorités locales en charge de la gestion des catastrophes. Cette hausse de l’activité sismique concerne l’extrémité nord de la caldeira. Une station a détecté une quarantaine de petites secousses, de magnitude M3,5 ou moins pour la plupart, le 31 janvier 2025.
Tout le monde se souvient de l’éruption minoenne majeure de 1600 avant J.-C. qui a donné à l’île sa forme actuelle. Ce fut l’une des plus puissantes éruptions volcaniques de l’histoire de l’humanité. Elle a peut-être inspiré la légende de l’Atlantide.
Comme je l’ai écrit précédemment, le volcan de Santorin a déjà connu de semblables périodes d’activité sans pour autant entrer en éruption. Entre 2011 et 2012, il y a eu une période d’activité sismique liée au mouvement du magma sous la surface. Elle a été précédée par une phase d’affaissement de la petite île de Nea Kameni, au centre de la caldeira.
Le volcan est entré pour la dernière fois en éruption en 1950. Ce fut une éruption relativement mineure. Elle a donné naissance à un dôme de lave et des nuages ​​de cendres qui se sont élevés à plusieurs centaines de mètres dans le ciel. Une éruption en 726 après J.-C. aurait mis la mer en ébullition et envoyé des morceaux de pierre ponce à 400 kilomètres de distance. Une étude réalisée en 2024 a révélé que le volcan de Santorin est entré en éruption il y a plus de 500 0000 ans ; il a alors émis 90 kilomètres cubes de roche et de cendres. En 2025, les scientifiques ne s’attendent pas à ce que l’activité débouche sur une éruption aussi spectaculaire.
Certains scientifiques ont remarqué que le volcan de Santorin est secoué par de très fortes éruptions tous les 20 000 ans. 3 000 ans se sont écoulés depuis la dernière ; il faudra donc attendre encore longtemps avant la prochaine. J’aimerais ajouter que la notion de cycle éruptif n’a jamais été réellement prouvée.
Source : Médias d’information scientifique.

Image satellite de Santorin (Source: NASA)

°°°°°°°°°°

Dernière minute : Les écoles seront fermées le 3 février 2025 sur l’île de Santorin après la hausse de la sismicité observée ces derniers jours. Les autorités ont également conseillé aux habitants d’éviter les grands rassemblements en intérieur et de se tenir à l’écart de plusieurs ports, dont le vieux port de Fira, juste en dessous de la capitale de l’île. Les écoles seront également fermées dans les îles égéennes voisines d’Anafi, Ios et Amorgos. Les autorités ont également conseillé aux habitants et aux propriétaires d’hôtels de Santorin de vider leurs piscines, par crainte que de grands volumes d’eau puissent déstabiliser les bâtiments en cas de fort séisme. Entre le 31 janvier et le 2 février, plus de 200 séismes ont été détectés entre Santorin et Amorgos, dont un événement de magnitude M4,6, le plus puissant jusqu’à présent.
Un comité d’urgence s’est réuni le 2 février pour évaluer les risques posés par les dernières secousses, tandis qu’une autre réunion est prévue le 3 février. Les autorités ont déclaré que l’activité sismique actuelle est due à des mouvements tectoniques qui ne semblent pas être liés à l’activité volcanique. De même, la hausse de l’activité sismique en 2011 et 2012 n’a entraîné aucune éruption.
Le dernier grand séisme à Santorin a eu lieu le 9 juillet 1956. L’événement de magnitude M7,5 a été suivi d’un tsunami de 25 mètres de hauteur. Au moins 53 personnes ont été tuées et plus de 100 ont été blessées, tandis qu’au moins un tiers des maisons se sont effondrées.
Source : CNN.

 

Cette carte montre la répartition des séismes de magnitude supérieure à M4,0 au cours des derniers jours. Ils se situent pratiquement tous au nord-est de Santorin et du volcan sous-marin Kolumbo (triangle rouge), avec des hypocentres à des profondeurs comprises entre 10 et 41 km.

————————————————–

In my latest post about volcanicactivity around the world, I explained that an increase in seismic activity at Santorini raised concerns about a possible volcanic eruption on the Greek island. The Civil Protection called a meeting with local and disaster response officials. The increase in seismic activity is concentrated on the caldera’s northern end. A seismic station detected at least 39 small earthquakes, mostly magnitude M3.5 or less, on January 31st, 2025

Everybody remembers the major Minoan eruption of 1600 B.C that gave the island its current shape. It was one of the largest volcanic eruptions in human history. It may have inspired tales of the lost city of Atlantis.

As I put it before, the Santorini volcano has experienced similar periods of unrest before without erupting. Between 2011 and 2012, there was a period of seismic activity related to magma movement below the surface. This was preceded by a period of subsidence at the small island of Nea Kameni in the center of the sunken caldera.

The last time the volcano erupted was in 1950. It was a relatively small eruption, producing a lava dome and ash clouds that rose several hundred meters into the sky. An eruption in A.D. 726 reportedly caused the sea to boil and sent pumice chunks flying 400 kilometers away. A 2024 study found that the volcano erupted more than half a million years ago, ejecting 90 cubic kilometers of rock and ash. This time, scientists don’t expect the current unrest to lead to such a dramatic outburst.

Some scientists have noticed that the Santorini volcano produces very large explosions every 20,000 years. It’s been 3,000 years since the last explosion, so there should a very long time ahead of us before the next big explosionexplosion. I would like to add that the notion of eruptive cycles has never been really proved.

Source : Scientific news media.

°°°°°°°°°°

Last minute : Schools will be closed on February 3rd, 2025 on the island of Santorini after an increase in seismicity in recent days. Authorities have also advised residents to avoid large indoor gatherings and steer clear of multiple ports, including the old port of Fira, just below the island’s capital. Schools will also be shut in the nearby Aegean islands of Anafi, Ios and Amorgos. Authorities have also advised residents and hotel owners in Santorini to drain their swimming pools over concerns that large volumes of water could destabilize buildings in case of a strong quake. Between January 31st and February 2nd, more than 200 earthquakes were detected between Santorini and Amorgos, including an M4.6 event, the most powerful so far.

An emergency committee met on February 2nd to assess the risks posed by the latest tremors, while another meeting is scheduled for February 3rd. Authorities said current seismic activity is due to tectonic movements that do not appear related to volcanic activity. Similarly, increased seismic activity in 2011 and 2012 did not result in any eruptions.

The most recent large quake in Santorini struck on July 9th, 1956. The M7.5 event was followed by a 25-meter-high tsunami. At least 53 people were killed and more than 100 injured, while at least one-third of the houses collapsed.

Source : CNN.

Santorin (Grèce) sous la menace d’un volcan sous-marin // Santorini (Greece) under threat from an underwater volcano

L’éruption du Hunga Tonga-Hunga Ha’apai le 15 janvier 2022 a montré à quel point l’éruption d’un volcan sous-marin peut être puissante. Elle a également confirmé que nous en savons très peu sur ces volcans et que davantage d’études devraient être entreprises.
Le Kolumbo est un bon exemple des volcans sous-marins potentiellement dangereux. Il est situé à une dizaine de kilomètres de l’île de Santorin en Grèce. Le volcan, dont le cratère mesure 1,5 km de diamètre, est connu pour ses éruptions explosives. La plus récente a eu lieu en l’an 1650 de notre ère. Quelque 70 personnes et plusieurs animaux ont été tués. Le Kolumbo est situé à la frontière entre deux plaques tectoniques, là où la plaque africaine est en subduction sous la plaque égéenne. Aujourd’hui, le sommet du Kolumbo se trouve à une dizaine de mètres sous le niveau de la mer et la base à environ 500 m de profondeur..
Une nouvelle étude publiée dans la section Geochemistry, Geophysics, Geosystems de l’American Geophysical Union (AGU) a révélé l’existence d’une chambre magmatique sous le Kolumbo, entre 2 et 4 km sous le plancher. A l’aide d’une technologie haute résolution, les chercheurs ont découvert que la chambre magmatique présente une grave menace car elle pourrait produire une éruption hautement explosive, accompagnée d’un tsunami, dans un proche avenir.
Les chercheurs ont détecté un corps magmatique qui s’est développé à un rythme moyen de 4 millions de mètres cubes par an depuis son éruption en 1650. La chambre contient maintenant environ 1,4 kilomètre cube de magma. Ce volume pourrait atteindre environ 2 kilomètres cubes dans les 150 prochaines années, ce qui correspond à la quantité estimée de magma que Kolumbo a éjecté il y a près de 400 ans.
Le volcan est situé sur l’Arc Hellénique. Les volcans de ce type, à la frontière courbe entre des plaques tectoniques convergentes, sont le siège des événements les plus explosifs sur Terre. Le risque dépend de la quantité de magma présente sous un volcan. Les méthodes tomographiques classiques utilisées jusqu’à présent ont une résolution relativement faible et ne donnent qu’une image floue des plus gros corps magmatiques.
L’étude montre également que des réservoirs magmatiques semblables pourraient ne pas avoir été détectés sur d’autres volcans actifs. Le Kolumbo représente une menace sérieuse et un système de surveillance en temps réel serait le bienvenu.
Compte tenu de l’impact sociétal potentiellement élevé d’une éruption explosive du Kolumbo, les auteurs de l’étude conseillent de mettre en place un observatoire permanent avec une surveillance continue de la sismicité,. Cet observatoire assurerait la surveillance de toute activité potentielle et permettrait de prendre les précautions nécessaires pour protéger la population locale.

Source : Magma Chamber Detected Beneath an Arc Volcano With Full-Waveform Inversion of Active-Source Seismic Data – AGU Geochemistry, Geophysics, Geosystems – October 2022, via The Watchers.

A lire aussi : A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc – AGU – 2026.

—————————————-

The eruption of Hunga Tonga-Hunga Ha’apai on January 15th, 2022 showed how powerful the eruption of underwater volcanoes can be. It also confirmed that we know very little about these volcanoes and that more studies should be undertaken.

Kolumbo is a good example of the potentially dangerous submarine volcanoes. It is located about 10 km from the island of Santorini in Greece. The volcano, with a 1.5-km crater, is known for its explosive eruptions, with the most recent one occurring in 1650 CE. About 70 persons and several animals were killed. The volcano is situated on the boundary between two tectonic plates, where the African plate is subducting beneath the Aegean plate. Today, the summit of Kolumbo lies about 10 meters beneath the surface of the sea while the base is about 500 m deep.

A new study published in AGU’s Geochemistry, Geophysics, Geosystems has revealed the existence of a magma chamber beneath Kolumbo, 2-4 km beneath the seafloor. Using a high-resolution technology, the study found that the magma chamber poses a serious hazard as it could produce a highly explosive, tsunamigenic eruption in the near future.

Researchers were able to detect a body of mobile magma that has been growing at a rate of 4 million cubic meters per year ever since its eruption in 1650. The chamber now holds roughly 1.4 cubic km of magma. It could reach roughly 2 cubic km within the next 150 years, which was the estimated amount of magma Kolumbo ejected nearly 400 years ago.

The volcano is located on the Helleneic Arc. Arc volcanoes, which mark the curved boundaries between converging tectonic plates, host the most explosive events on Earth. The associated hazard depends on how much mobile magma is currently present beneath a volcano. Standard tomographic methods used so far have relatively low resolution and give a blurred picture of only the largest magma bodies.

The study also suggests that similar reservoirs may have gone undetected at other active volcanoes and suggests that Kolumbo poses a serious threat and deserves a real-time monitoring facility.

Given the potentially high societal impact of an explosive eruption at Kolumbo, the authors of the study suggest establishing a permanent observatory involving continuous earthquake monitoring, to ensure that any future activity is closely monitored, and the necessary precautions can be taken to mitigate the risk to the local population.

Source : Magma Chamber Detected Beneath an Arc Volcano With Full-Waveform Inversion of Active-Source Seismic Data – AGU Geochemistry, Geophysics, Geosystems – October 2022, via The Watchers.

A distinct source and differentiation history for Kolumbo submarine volcano, Santorini volcanic field, Aegean arc – AGU – 2026.

 

Source : AGU

Âge du Bronze : refroidissement causé par une éruption en Alaska // Bronze Age : cooling caused by an eruption in Alaska

En 1627 avant notre ère, au cours de l’Âge du Bronze, le climat s’est soudain refroidi. On présumait jusqu’à présent que ce refroidissement global était une conséquence de l’éruption qui a détruit l’île de Théra en mer Égée, et qui correspond aujourd’hui à Santorin. Une nouvelle étude publiée dans les Proceedings de l’Académie Nationale des Sciences et dirigée par une scientifique de l’université de l’Arizona vient remettre en cause cette hypothèse.

Suite à l’analyse des cendres volcaniques et du soufre présents dans des carottes de glace prélevées au Groenland et en Antarctique, il ressort que le principal responsable de ce refroidissement serait le volcan Aniakchak qui se trouve dans l’arc des Aléoutiennes en Alaska. Il présente aujourd’hui une caldeira de 10 km de large qui s’est formée il y a environ 3 400 ans lors d’une éruption volumineuse au cours de laquelle des coulées pyroclastiques ont parcouru plus de 50 km au nord de la mer de Béring et ont également atteint l’océan Pacifique au sud. Au moins 40 éruptions explosives ont été documentées au cours des 10 000 dernières années, ce qui en fait le volcan le plus actif des Aléoutiennes orientales.Son éruption en 1628 avant notre ère, est celle qui a eu le plus fort impact sur le climat au cours des quatre derniers millénaires.

Ce n’est donc pas l’éruption de Santorin, mais bien celle de l’Aniakchak, qui serait à l’origine du refroidissement global de l’Âge du Bronze

Si l’on connaît assez bien l’activité volcanique et son impact sur le climat au cours des 2500 dernières années, ce n’est pas le cas pour les périodes antérieures. Ainsi, celle du Théra (Santorin) en mer Égée, qui fut l’une des plus explosives de l’Holocène. On ne connaît pas sa date précise, si ce n’est qu’elle a eu lieu au cours d’une période comprise entre 1680 et 1500 avant notre ère.

Pour dater les éruptions volcaniques, les scientifiques s’appuient sur deux types de preuves : la présence de sulfates volcaniques dans les carottes de glace et les anomalies de croissance dans les cernes des arbres. C’est en étudiant des carottes de glace prélevées au Groenland et en Antarctique et en les faisant correspondre aux anomalies de formation de croissance d’arbres du sud-ouest des États-Unis et d’Irlande, que les chercheurs ont réussi à déduire les datations, mais aussi la latitude, les dimensions et l’impact climatique de sept éruptions détectées entre 1680 et 1500 avant notre ère.

Source: Science et Avenir, Yahoo News, Smithsonian Institution.

—————————————–

In 1627 BCE, during the Bronze Age, the climate suddenly cooled. It was assumed until now that this global cooling was a consequence of the eruption that destroyed the island of Thera in the Aegean Sea, and which today corresponds to Santorini. A new study published in the Proceedings of the National Academy of Sciences and led by a scientist from the University of Arizona challenges this hypothesis.
Following the analysis of volcanic ash and sulfur present in ice cores taken from Greenland and Antarctica, it appears that the main culprit for this cooling was the Aniakchak volcano, in the Aleutian arc (Alaska). It now features a 10 km wide caldera that formed about 3,400 years ago in a large eruption in which pyroclastic flows traveled more than 50 km north of the Bering Sea and also reached the Pacific Ocean to the south. At least 40 explosive eruptions have been documented over the past 10,000 years, making it the most active volcano in the eastern Aleutians. Its eruption in 1628 BCE was the one with the greatest impact on climate in the over the past four millennia.
Therefore, it was the eruption of Aniakchak, not Santorini, which was the cause of the global cooling of the Bronze Age.
We know quite well the volcanic activity and its impact on the climate during the last 2500 years, but not during the previous periods. This is the case of the eruption of Thera (Santorini) which was one of the most explosive of the Holocene. However, we do not know its precise date, except that it took place during a period between 1680 and 1500 BC.
To date volcanic eruptions, scientists rely on two types of evidence: the presence of volcanic sulfates in ice cores and growth anomalies in tree rings. By studying ice cores taken from Greenland and Antarctica and matching them with growth formation anomalies of trees in the southwestern United States and Ireland, the researchers were able to deduce the datings, but also the latitude, dimensions and climatic impact of seven eruptions detected between 1680 and 1500 BC.
Source: Science and Future, Yahoo News, Smithsonian Institution.

Vue de la caldeira de l’Aniakchak (Source: AVO)

Eruptions sous-marines et rebond isostatique // Submarine eruptions and isostatic rebound

Lorsqu’une crue glaciaire s’est produite sur le Grimsvötn, volcan islandais sous la calotte glaciaire du Vatnajökull, les volcanologues locaux se sont demandé si l’événement serait suivi d’une éruption volcanique. Elle pourrait être provoquée par le relâchement de pression dû à l’énorme évacuation de l’eau de fonte contenue dans le lac sous-glaciaire. De telles éruptions se sont produites plusieurs fois dans le passé, en 2004 pour la dernière fois.
Lors de ma conférence « Glaciers en péril », j’explique que la fonte des calottes glaciaires au-dessus des volcans pourrait provoquer un rebond isostatique avec un relâchement de pression qui pourrait provoquer une éruption. Cependant, aucune éruption de ce type n’a été, jusqu’à présent, clairement liée à la fonte directe d’une calotte glaciaire. S’agissant du Grimsvötn, c’est plutôt la vidange d’un lac d’eau de fonte sous-glaciaire qui est susceptible de déclencher une éruption.
Une récente étude menée par des scientifiques du Royaume-Uni et de Suède et publiée dans la revue Nature Geoscience, a examiné les 360 000 ans d’histoire de l’activité volcanique à Santorin en Grèce. L’île se trouve au sud de la Mer Égée, à environ 200 km au sud-est de la Grèce continentale.
Il y a environ 3 600 ans, Santorin a connu l’une des plus grandes éruptions historiques. Le cataclysme est responsable de la disparition de la civilisation minoenne en Crète, à seulement 100 km au sud, où elle a été ensevelie par d’épaisses couches de matériaux volcaniques.
Les chercheurs ont analysé les enregistrements des éruptions préservés dans les carottes de sédiments marins à proximité. Les couches de cendres ont été datées avec précision à l’aide de méthodes radiométriques, et les chercheurs sont arrivés à la conclusion que l’activité volcanique océanique peut varier selon que le niveau de la mer monte et descend. En d’autres termes, le poids de l’eau peut supprimer ou donner naissance à l’activité volcanique.
Des modélisations numériques ont déjà indiqué que le poids de l’eau peut supprimer ou déclencher l’activité volcanique. Lorsque le niveau de la mer baisse de plus de 40 mètres, la lave commence à remonter dans les roches au-dessus de la chambre magmatique. Lorsque le niveau de la mer descend à moins 70 ou 80 mètres, des éruptions sont probables. Au fur et à mesure que le niveau de la mer remonte, l’activité volcanique diminue : 208 des 211 éruptions se sont produites lorsque le niveau de la mer a baissé.
Il faut toutefois beaucoup de temps pour que les variations de pression se propagent à travers la roche solide, de sorte que les changements d’activité volcanique ne sont pas instantanés. Il y a un décalage d’environ 30 000 ans entre le moment où niveau de la mer descend en dessous de 40 mètres et le début des éruptions. De plus, comme le niveau de la mer remonte beaucoup plus vite qu’il ne baisse, il n’y a qu’un décalage plus court, d’environ 11 000 ans, entre le moment où le niveau de la mer s’élève à plus de 40 mètres et la cessation des éruptions.
Selon l’étude, Santorin est probablement entrée dans une phase calme. La chambre magmatique qui alimente le volcan est peu profonde, à seulement quatre kilomètres environ sous le plancher marin. D’autres volcans ont des chambres magmatiques plus profondes, donc l’effet de la pression devrait changer plus lentement, tout en continuant, malgré tout, à réagir aux variations du niveau de la mer. Cette hypothèse est importante car 57% des volcans dans le monde sont des îles ou se trouvent le long des côtes où ils sont, soumis à la pression générée par la montée et la descente du niveau des mers.
Source : Yahoo News.

———————————————-

When a glacial outburst flood occurred at Grimsvötn, an Icelandic volcano beneath the Vatnajökull icecap, local volcanologists wondered whether the event would be followed by a volcanic eruption. It would be caused by the release of pressure due to the huge evacuation of the meltwater in the subglacial lake. Such eruptions occured several times in the past, in 2004 for the last time.

During my conference « Glaciers at risk », I explain that the melting of icecaps above volcanoes might cause an isostatic rebound with a release of pressure which, in turn, might cause an eruption. However, no such eruption has benn clearly linked so far to the direct melting of an icecap. As far as Grimsvötn is concerned, it is rather the drainage of a subglacial meltwater lake that may trigger an eruption.

A recent bit of research by scientists from the United Kingdom and Sweden, published in the journal Nature Geoscience, examined the 360,000 year history of volcanic activity at Santorini in Grece. The island lies in the south Aegean Sea, about 200 km southeast of the Greek mainland.

Around 3,600 years ago, Santorini exploded in one of the largest eruptions in recorded history.The cataclysm is blamed for the demise of the Minoan civilization, based on the island of Crete, just 100 km to the south, which was buried by huge l ayers of volcanic debris.

Looking at the record of eruptions in cores obtained by drilling in nearby marine sediments, whose ash layers can be precisely dated using radiometric methods, the researchers came to the conclusion that ocean volcanic activity may vary when sea levels rise and fall; the weight of the water can suppress or release volcanic activity.

Numerical modeling had already indicated the weight of water could suppress or release volcanic activity. When sea level fell by more than 40 meters, lava started working its way up into the rocks above the chamber. When sea level fell to minus 70 or 80 meters, eruptions occurred. As sea level rose again, volcanic activity decreased: 208 of 211 eruptions occurred when sea level dropped.

It takes time for the changes in stress to propagate through solid rock, so the changes are not instantaneous. There is a time lag of about 30,000 years between sea level dropping below minus-40 meters and the start of eruptions. Also, because sea level rises much faster than it falls, there is a time lag of only about 11,000 years between sea level rising above the minus-40 meter mark and the cessation of eruptions.

The study suggests that Santorini might be entering a quiet phase. The magma chamber feeding Santorini is shallow, only about four kilometers below the sea bottom. Other volcanoes have deeper magma chambers, so the stress should change more slowly, but still react to changes in sea level. That is significant because 57% of the world’s volcanoes are islands or along the coast, subject to pressure produced by rising and falling seas.

Source: Yahoo News.

Processus du rebond isostatique (Source: Wikipedia)