Le HVO et les épisodes éruptifs du Kilauea (Hawaï) // HVO and Kilauea’s eruptive episodes (Hawaii)

Les épisodes éruptifs avec leurs puissantes fontaines de lave dans le cratère de l’Halemaʻumaʻu, au coeur de la caldeira sommitale du Kilauea, ont débuté le 23 décembre 2024. Ces événements posent de nouveaux défis au personnel du HVO qui s’efforce de maintenir opérationnel le réseau de surveillance à proximité des deux bouches éruptives nord et sud.
L’Épisode 28 a fait jaillir de hautes fontaines de lave pouvant atteindre une hauteur d’environ 365 mètres. Une fois l’épisode terminé, les scientifiques du HVO ont chaussé des raquettes pour pouvoir se déplacer sur le site de l’éruption. À chaque pas, le sol crissait sous leurs pieds qui s’enfonçaient légèrement dans la couche de téphra, mais les raquettes les maintenaient à la surface.

Crédit photo: HVO

Les scientifiques portent des masques pour se protéger des poussières s’élevant des téphras déposés par les fontaines de lave. Sur la lèvre du cratère la plus proche des bouches éruptives, la couche de téphras atteint une épaisseur de 24 mètres. Les coulées de lave générées par les 28 épisodes éruptifs ont recouvert près de 3,5 km² du plancher du cratère de l’Halemaʻumaʻu, avec une épaisseur de 70 mètres par endroits.
Les instruments du HVO ont souffert des éruptions. Par exemple, la caméra B2 au fond du cratère a carrément fondu, mais son alimentation solaire a survécu et a été transportée par hélicoptère jusqu’à la lèvre sud pour alimenter la nouvelle caméra V3 qui fournit des images en direct. Plusieurs autres stations de surveillance, situées à bonne distance des bouches éruptives, mais ont tout de même été impactées par l’éruption.

Téphras sur les panneaux solaires (Crédit photo: HVO)

Les instruments de mesure des émission de SO2, qui permettent à l’Observatoire de suivre l’évolution de l’activité éruptive, sont menacés et pourraient vite ne plus être opérationnels. C’est pourquoi les scientifiques du HVO explorent d’autres méthodes pour garantir les mesures de ces émissions qui atteignent environ 1 200 à 1 500 tonnes par jour entre les épisodes éruptifs et jusqu’à 75 000 tonnes par jour pendant ces épisodes.
La zone au sud-ouest des bouches éruptives peut être difficile d’accès. Selon la direction du vent pendant les épisodes de fontaines de lave, d’importantes quantités de téphras peuvent recouvrir le paysage ainsi que la route d’accès au sud-ouest. Le personnel du HVO évalue la possibilité de visiter les sites où sont installés les instruments de de surveillance, en sachant que la sécurité du personnel est la priorité absolue. Une petite partie du réseau de surveillance du Kīlauea est affectée par l’éruption sommitale, mais l’Observatoire est toujours en mesure de contrôler correctement le volcan.

Je pense que nous pouvons remercier l’Observatoire pour la qualité des images fournies par les webcams. Elles permettent à des dizaines de milliers de personnes à travers le monde d’admirer le spectacle offert par les épisodes éruptifs et leurs spectaculaires fontaines de lave.
Source : USGS / HVO.

Image webcam de l’Épisode 28

—————————————————-

The high lava fountain episodes of the ongoing episodic eruption in Halemaʻumaʻu Crater, within the volcano’s summit caldera, that started on December 23rd, 2024, present the Hawaiian Volcano Observatory (HVO) new challenges to maintaining parts of the Kīlauea summit monitoring network near the two eruptive vents.

Episode 28 triggered high lava fountains, reaching a maximum height of about 365 meters. When the episode was over, HVO scientists strapped on snowshoes as they prepared to work on the eruption site. With each step, the ground crunched and their feet sunk a little.

The scientists wore full-face respirators for protection from the tephra left by the lava fountains of the eruption. On the crater rim closest to the vents, the tephra is as thick as 24 meters. Lava flows fed by the 28 fountaining episodes have covered nearly 3.5 km2 of the Halemaʻumaʻu Crater floor, up to 70 meters thick in some areas.

HVO instruments suffered from the eruptions. For instance, the B2cam on the crater floor underwent a full melt down, but its solar power supply survived and was airlifted to the south rim to power the new V3 livestream camera. Several other monitoring stations are located farther away from the vents but still impacted by the eruption.

SO2 emission rates, which the observatory measures to help track eruptive activity, may no longer be operational because of the current eruption. HVO scientists are exploring other methods for obtaining SO2 emission rates.  They were measured at about 1,200 to 1,500 tonnes per day between the different eruptive episodes and up to 75,000 tonnes per day during the episodes.

The area southwest of the eruptive vents can be difficult to access. Depending on wind direction during fountaining episodes, more tephra can blanket the landscape and the access road to the southwest. HVO staff assess the feasibility of visiting monitoring sites after each eruptive episode, with staff safety being the primary priority. A small portion of the Kīlauea monitoring network is being impacted by the ongoing summit eruption, but the observatory is still able to adequately monitor the volcano.

I think we can thank the Observatory for the quality of the webcam images that allow tens of thousands of people around the world to enjoy the show offered by the eruptive episodes and their dramatic lava fountains.

Source : USGS / HVO.

Surveillance volcanique à Mayotte

Avant toute chose, il est bon de rappeler que Mayotte est un département français, au même titre que la Gironde ou la Haute Vienne. Il doit donc être traité de la même façon par le gouvernement français.

Pour surveiller l’activité du volcan sous-marin Fani Maoré, entré en éruption entre 2018 et 2020, une plateforme de surveillance vient d’être installée sur le lac Dziani à Petite-Terre. Son but est d’étudier les gaz d’origine volcanique qui ont fortement augmenté depuis l’éruption du Fani Maore, à une cinquantaine de kilomètres au large de Mayotte et à 3.500 mètres sous le niveau de la mer, A noter que la quantité de gaz émis reste toutefois stable depuis 2021.

Une caméra a été installée sur la plateforme par une équipe du réseau de surveillance volcanologique et sismologique de Mayotte (Revosima) créé en 2019 suite à la découverte du Fani Maore. La plateforme a été pensée et conçue par l’OVPF à La Réunion spécialement pour le lac Dziani où on peut voir des zones de bullages dues à des remontées de gaz volcanique, principalement du CO2. Le gaz s’échappe en continu des zones de stockage de magma présentes à plusieurs kilomètres ou dizaines de kilomètres de profondeur.

Outre la caméra, la plateforme se compose de capteurs immergés pour suivre les paramètres physico-chimiques de l’eau et des gaz, ainsi que d’une station météorologique et d’un GPS RTK pour suivre le niveau de l’eau. Ces équipements permettront d’analyser en temps réel l’activité du lac. Ils sont en permanence connectés à l’OVPF. Le réseau, financé par l’État, est chapeauté par l’IPGP.

En plus des données sur les bullages, les instruments permettront d’en savoir plus sur le lac Dziani au sens large. Le bon fonctionnement de la plateforme reste un défi, car l’intervention des équipes qui ne sont pas sur zone reste difficile. De plus, les conditions météorologiques peuvent impacter le matériel, tout comme la salinité de l’eau du lac qui est 1,5 à deux fois plus salée que l’eau de mer.

Les premiers résultats fournis par la plateforme seront publiés dans un an au minimum dans les bulletins mensuels du Revosima.

En parallèle du lac Dziani, la mission scientifique a installé trois stations sismiques supplémentaires sur les îlots d’Handréma, Mogné Amiri et M’bouini. Les informations ainsi obtenues sont numérisées et transmises à l’OVPF à La Réunion.

Vue du lac Dziani (Crédit photo : Wikipedia)

À côté du lac Dziani, au début du mois de novembre 2024, des stations de surveillance ont par ailleurs été installées sur Mayotte par le REVOSIMA pour un meilleur suivi à long-terme de l’activité sismo-volcanique du Fani Maoré. Le Réseau a déployé des stations de mesure des paramètres géophysiques et chimiques à Mayotte et sur l’île Grande Glorieuse. Les données de ces stations sont transmises chaque jour, 24h/24, et sont analysées par les scientifiques du Réseau. À chaque alerte, le Revosima informera la Préfecture de Mayotte dans les plus brefs délais.

Pour traquer le moindre frémissement du Fani Maoré, les scientifiques utilisent 8 sismomètres et 2 accéléromètres. Les déplacements du sol sont surveillés par 10 stations GPS. Les émanations de gaz sont enregistrées par un point de mesure du dégazage diffus de CO2 par le sol. En plus de ces instruments, trois stations magnéto-telluriques permettent de fournir une image mensuelle de certaines caractéristiques des profondeurs du sous-sol notamment en relation aux zones profondes de stockage des magmas localisées jusqu’à plusieurs dizaines de kilomètres.

Malgré tous ces instruments, une scientifique reconnaît qu’« on ne peut pas prédire une éruption, c’est impossible. Le volcan fait ce qu’il veut quand il veut. » En revanche, « il est possible de détecter plusieurs signes annonciateurs. »

Source : Mayotte la 1ère.

Image du Fani Maoré

Islande : dernières informations du Met Office // Iceland : Met Office’s latest update

Dans sa dernière mise à jour (14 novembre 2023), le Met Office indique que la plupart des séismes se produisent actuellement le long de l’intrusion magmatique, la majorité étant des micro-séismes, généralement à des profondeurs de 3 à 5 km.
Les mesures de déformation du sol révèlent la poursuite des mouvements causés par l’intrusion magmatique. Ces observations sont cohérentes avec l’arrivée de magma dans la région, bien que l’intrusion ait ralenti au cours des dernières heures. Entre le 12 et le 13 novembre, elle a été estimée à 75 m3/s et, comme précédemment, la profondeur moyenne de la partie supérieure du dyke est estimée à environ 800 m.
Afin d’augmenter les capacités de surveillance de la sismicité et de la déformation du sol dans la région de Grindavík – Svartsengi, le Met Office a installé des stations GPS supplémentaires. Les dernières mesures fournies par ces stations montrent que la formation d’un graben est toujours en cours et reste active. En outre, des détecteurs de SO2 au sol ont été installés dans le secteur de Grindavík et au sud de Sundhnúkur.
En conclusion, le Met Office écrit que la probabilité d’une éruption reste élevée. Si une éruption se produit, ce sera probablement quelque part au niveau de l’intrusion magmatique. Le Met Office n’est pas en mesure d’indiquer d’autres sites d’éruption potentiels.

————————————————-

In its latest update (November 14th, 2023), the Met Office indicates that most of the current earthquakes are occurring along the magma intrusion, with the majority being micro-earthquakes, commonly at depths of 3 to 5 km.

Deformation measurements reveal continued, ongoing ground movements due to the ongoing magma intrusion. These results are consistent with the magma inflow to the region, although it has slowed down in the past hours. Between 12 and 13 November, the inflow was estimated at 75 m3 / s and, like previously, the average depth to the top of the magma intrusion is estimated at around 800 m.

In order to oncrease the monitoring capabilities of seismicity and ground deformation in the Grindavík – Svartsengi region, the Met Office has installed additional GPS stations. The latest measurements from these stations show that the graben-like formation is still forming and mechanically active. Furthermore, ground-based SO2 detectors have been installed in the Grindavík and south of Sundhnúkur areas.

As a conclusion, the Met Office writes that the likelihood of an eruption remains high. If an eruption occurs, the most likely location will be on the magma intrusion. The Met Office is not able to indicate any other potential eruption sites.

Estimation des déplacements verticaux provoqués par le dyke lors de sa propagation entre le 10 novembre après-midi et le 11 novembre au matin. Source : Met Office)

Amélioration de la surveillance sismique et volcanique à Yellowstone // Better seismic and volcanic monitoring at Yellowstone

Starlink est un fournisseur d’accès à Internet par satellite géré par la société SpaceX (dont le PDG est Elon Musk) qui s’appuie sur une constellation comportant des milliers de satellites de télécommunications placés sur une orbite terrestre basse. Starlink est le premier fournisseur d’internet par satellite à choisir cette orbite plutôt que l’orbite géostationnaire, car elle permet de diminuer la latence en la faisant passer de 600 ms à environ 20 ms. La constellation satellitaire est en cours de déploiement depuis 2019 et reposait sur environ 3 200 satellites opérationnels fin février 2023.

Le système Starlink par satellite d’Elon Musk va permettre de surveiller l’activité sismique et volcanique dans le Parc national de Yellowstone. La capacité de Starlink à fournir une connexion Internet stable aux régions éloignées sera précieuse pour Yellowstone car un bon nombre de GPS, sismomètres, inclinomètres et capteurs de température sont installés dans des endroits éloignés pour minimiser leur impact sur l’environnement et les visiteurs. Pour fonctionner de manière optimale, ces capteurs et équipements doivent bénéficier de solides connexions.
Le consortium EarthScope gère actuellement un réseau de balises GPS, de jauges de contraintes pour trous de sondage et de sismomètres dans le Parc. Ces instruments dépendent d’un réseau de communication fiable pour assurer la diffusion des données et contribuer à la surveillance des activités sismiques, volcaniques et hydrothermales dans la région de Yellowstone.
Les communications radio et cellulaire pour les stations de surveillance à Yellowstone ont des inconvénients. Le service cellulaire, par exemple, est susceptible d’être moins performant pendant la haute saison touristique. Les solutions satellitaires proposées par Starlink n’ont pas ce point faible ; elles fonctionnent bien à condition d’avoir un ciel bien dégagé. C’est dans cet esprit que Starlink est actuellement testé pour permettre de réduire l’utilisation des réseaux cellulaires.
Le système Starlink a été installé en mai dans l’un des trous de sondage entre Mammoth Hot Springs et Norris Geyser Basin. Jusqu’à présent, les tests indiquent que le système fonctionne bien. Si les tests restent positifs, d’autres systèmes Starlink seront probablement ajoutés avant les mois d’hiver. Ce serait vraiment un plus car les régions éloignées autour de Yellowstone sont difficiles à atteindre dans des conditions météorologiques extrêmes.
Avec plus de 4 000 satellites dans son réseau, Starlink est le plus grand système satellitaire au monde. Grâce aux optimisations du système proprement dit et au lancement continu de plus de satellites Starlink, la constellation ne fera probablement que s’améliorer avec le temps.
Source : Tesla.

————————————————-

Starlink is a satellite Internet service provider from the company SpaceX (whose CEO is Elon Musk) which relies on a constellation comprising thousands of telecommunications satellites placed in low Earth orbit. Starlink is the first satellite internet provider to choose this orbit over geostationary orbit, as it lowers latency from 600ms to around 20ms. The constellation has been rolling out since 2019 and was based on around 3,200 operational satellites at the end of February 2023.

Elon Musk’s Starlink satellite internet system is being used to help monitor seismic and volcanic activity at Yellowstone National Park. Starlink’s capability to provide stable internet connection to remote areas would be invaluable to Yellowstone, as a good number of the GPS, seismometers, tiltmeters and temperature sensors in the area are placed in remote locations to minimize their impact on the environment and visitors. To perform optimally, these sensors and equipment need to maintain strong connections.

EarthScope Consortium administers a network of GPS and borehole strainmeter and seismometer instruments within the Park. These instruments depend on a strong communications network to keep data streaming and contribute to monitoring of earthquake, volcanic, and hydrothermal activity in the Yellowstone region..

Radio and cellular communication options for monitoring stations at Yellowstone have downsides. Cellular service, for example, could slow down during peak tourist seasons. Satellite-based solutions such as Starlink do not have this weakness, as they function well as long as they have access to the open sky. With this in mind, Starlink is now being tested to help decrease the use of cellular networks.

A Starlink system was set up in May at one of the borehole stations between Mammoth Hot Springs and Norris Geyser Basin. So far, tests indicate that the system is performing well. If tests continue to be successful, more Starlink satellite internet systems will likely be added before the winter months. It would be great as remote areas around Yellowstone tend to be difficult to reach during extreme weather conditions.

With over 4,000 satellites in its network, Starlink is the largest satellite system in the world. And thanks to optimizations to the system itself and the continuous launch of more Starlink satellites, the constellation will likely only get better with time.

Source : Tesla.

Norris Geyser Basin

Mammoth Hot Springs

(Photos : C. Grandpey)