Spectrogrammes et bruit sismique // Spectrograms and seismic noise

L’un des derniers articles hebdomadaires rédigés par des scientifiques de l’Hawaiian Volcano Observatory (HVO) – géré par l’USGS – traitait du bruit sismique qui apparaît souvent sur les spectrogrammes. Le HVO utilise un grand nombre de sismomètres pour localiser les séismes et identifier les signaux liés aux mouvements de failles et à ceux du magma à l’intérieur des volcans. Cependant, les sismomètres enregistrent également les vibrations générées par de nombreuses autres sources. Certains signaux sont facilement identifiables tandis que d’autres restent un mystère. Les spectrogrammes viennent en complément des formes d’onde généralement associées aux séismes car ils permettent d’identifier facilement des signaux complexes voire multiples. L’heure est affichée sur l’axe horizontal, la fréquence du signal est affichée sur l’axe vertical et l’intensité du signal apparaît en couleur. Plus la couleur est chaude, plus le signal est fort à une heure et à une fréquence spécifiques. Voici un exemple de spectrogramme enregistré dans une station située près de Pu’uO’o:

Une source fréquente de bruit sur les spectrogrammes est causée par le mauvais temps. Le bruit généré par le vent et la pluie se caractérise par un contenu diffus en moyenne ou haute fréquence. Dans le spectrogramme ci-dessus, la station commence à enregistrer une forte averse qui approche. Si un analyste a le moindre doute sur l’origine des signaux, il lui suffit de jeter un œil à l’une des webcams pour s’en assurer.

Ce spectrogramme montre deux signaux couramment observés. Le plus visible est un ensemble de lignes en forme de ruban dans la partie supérieure du spectrogramme. Ce btuit est provoqué par un hélicoptère qui vole à proximité de la station sismique. S’agissant de la récente éruption du Kilauea, le signal à basse fréquence constant que l’on voit au bas du spectrogramme sous forme d’une bande jaune-orange est le tremor éruptif qui a commencé juste après que la lave ait percé la surfacedans l’Halema’uma’u dans la nuit du 20 décembre 2020. Depuis cette époque, presque toutes les stations à proximité du nouveau lac de lave au sommet de Kilauea enregistrent ce signal continu.

L’image ci-dessus montre des téléséismes. Ce sont des séismes observés à au moins 1000 km de distance. Au moment où les télésismes atteignent des stations très éloignées, toutes les fréquences ont été perdues, sauf les plus basses. Le signal basse fréquence qui commence vers 23h19 sur ce spectrogramme du 19 mars est le téléséisme d’un événement de M 7.0 qui s’est produit près d’Ishinomaki (Japon). À titre de comparaison, les pics large fréquence qui apparaissent sous forme de lignes verticales de couleur plus claire tout au long du spectrogramme sont de petits séismes locaux.

Le spectrogramme ci-dessus montre des chutes de pierres ou des éboulements. Ces signaux ont un contenu fréquentiel large et une apparition progressive. De tels événements peuvent durer plusieurs minutes. Afin de les identifier parfaitement, les sismologues recherchent la légère diminution du contenu basse fréquence au fur et à mesure de la progression de l’événement. Cette caractéristique apparaît sous forme d’une hausse superficielle sur le spectrogramme du 25 mars à partir de 2 h 59. La majorité des récents effondrements observés par les sismologues du HVO ont eu lieu sur le Pu’uO’o. Certains ont été précédés par des hélicoptères en train de voler près du cône.

Des sismographes sont utilisés partout dans le monde s pour analyser des événements tels que des ouragans à l’approche, des chants de baleines, des fans qui font la fête lors de grands matchs de football et même des essais nucléaires.

À Hawaï, la météo, le trafic aérien local, les séismes liés aux éruptions et les éboulements font partie des signaux sismiques intéressants que les sismologues du HVO peuvent observer lorsqu’ils surveillent l’activité sismique.

——————————————-

A weekly article written by USGS Hawaiian Volcano Observatory (HVO) scientists dealt with the seismic noise that appears on the spectrograms. HVO uses dozens of seismometers to locate individual earthquakes and identify signals that are related to faulting and magma movement within our volcanoes. However, seismometers also record vibrations caused by a variety of other sources. Some signals are easily identifiable while others remain a mystery.

Spectrograms can be a useful addition to the waveforms typically associated with earthquakes because they allow to easily identify complex or even multiple signals. Time is displayed on the horizontal axis, signal frequency is displayed on the vertical axis, and signal intensity is shown in colour. The warmer the colour, the stronger the signal is at that specific time and frequency. The first spectrogram above was recorded at a station located near Pu’uO’o.

°°°°°°°°°°

A common source of noise seen on spectrograms is cause by the bad weather. Noise from wind and rain is characterized by its diffuse mid- to high-frequency content. In the spectrogram above, the station starts to record an approaching rainstorm. If an analyst has any doubt over whether the signals are actually weather, they just need to have a look at one of the webcams to make sure.

°°°°°°°°°°

 The second spectrogram above shows two commonly observed signals. The most noticeable is the set of ribbon-like lines across the top of the spectrogram. This is caused by a helicopter flying near the seismic station.

Speaking of the recent eruption, the steady low-frequency signal seen on the bottom of this spectrogram as a yellow-orange band is the eruptive tremor that started shortly after lava broke the surface in Halema’uma’u on the night of December 20th, 2020. Since then, nearly all stations in the vicinity of the newly formed lava lake at Kilauea’s summit have been recording this continuous signal.

°°°°°°°°°°

The third image above shows teleseisms. These are earthquakes observed from at least 1000 km away. By the time teleseisms reach very distant stations, all but the lowest frequencies have been lost. The low-frequency signal starting around 11:19 p.m. in this March 19th spectrogram is a teleseism from an M 7.0 earthquake that struck near Ishinomaki (Japan). For comparison, the broad-frequency spikes appearing as lighter-colored vertical lines seen throughout this spectrogram are small local earthquakes.

°°°°°°°°°°

 The fourth spectrogram above shows rockfalls. These signals have a broad frequency content and gradual onset. These types of events can last for minutes at a time. In order to perfectly identify them, seismologists look for the slight decrease in low frequency content as the event progresses. This feature appears as a shallow ramp on the March 25th spectrogram starting at 2:59 a.m. The majority of recent rockfalls observed by HVO seismologists have been on Pu’uO’o, some of which have been preceded by helicopters flying near the cone.

Around the world, seismographs have been used to document events such as impending hurricanes, whale songs, fans celebrating during big football games, and even nuclear testing. In Hawaii, weather, local air traffic, eruptive tremor, and rockfalls are a few of the interesting seismic signals that HVO seismologists can see while monitoring earthquake activity.

Un nouveau laboratoire pour le HVO (Hawaii) // New lab for HVO (Hawaii)

L’Observatoire des Volcans d’Hawaii (HVO), géré par l’USGS, vient d’acquérir un nouveau laboratoire qui permettra aux scientifiques de mieux comprendre les propriétés physiques des téphras. Le mot « tephra » ou « téphra » fait référence à tous les types et toutes les tailles de fragments de roche projetés par un volcan en empruntant une trajectoire aérienne lors d’une éruption. Les téphras incluent les cendres, les bombes, les scories ou même les cheveux et les larmes de Pelé.

Ce nouveau laboratoire d’analyse de téphras permettra au HVO de déterminer la densité, la taille et la forme des particules, ainsi que les différents types de téphras émis par un volcan. En utilisant ces informations, les géologues du HVO seront en mesure d’analyser toute une gamme de phénomènes, depuis l’ascension du magma et le processus éruptif jusqu’aux dépôts de cendres laissés par les  éruptions du passé. Il est important d’obtenir ces mesures aussi précisément et rapidement que possible lors d’une éruption.

Le nouveau laboratoire du HVO est unique par sa capacité à analyser une vaste gamme d’échantillons, de un mètre à un micron (10-6 m). Le traitement des échantillons est non destructif et l’analyse est rapide. Chaque type de mesure ne prend que quelques minutes, et on estime que l’ensemble des mesures prend 1 à 2 heures. La méthode non destructive d’utilisation de ces nouveaux instruments est révolutionnaire ; elle permet aux chercheurs d’effectuer une suite complète d’analyses sur le même échantillon – au lieu d’utiliser différents échantillons du même matériau – pour une compréhension plus complète des éruptions. Cela permet également de préserver dans leur intégrité tous les  échantillons.

La première étape consiste à étudier les composants de l’échantillon afin de comprendre à quel type d’éruption les scientifiques sont confrontés.

Pour les échantillons de téphras prélevés directement sur le terrain, le HVO dispose de deux nouveaux stéréoscopes à lumière réfléchie. Lors de leur utilisation, les géologues peuvent séparer manuellement les différents composants de l’échantillon, tels que la lave juste prélevée, les cristaux, ou les petits morceaux de la paroi du cratère.

Au cours de l’étape suivante, les chercheurs mesurent la densité des échantillons. Pour les échantillons de lave, la mesure de la densité permet de comprendre quelle était la consistance du magma lors de son émission ; cela renseigne sur la dynamique de l’éruption. La densité de l’échantillon est déterminée en mesurant sa masse et son volume. Pour les morceaux de téphra de plus de cinq centimètres, le volume est calculé à l’aide d’un scanner 3D, puis l’échantillon est pesé. Les grains plus petits, depuis les lapilli jusqu’à la poudre de cendre, sont placés dans un pycnomètre à gaz, une machine qui calcule la densité directement en utilisant le principe d’Archimède de déplacement du volume en injectant de l’azote gazeux. Les pycnomètres fonctionnent aussi bien avec des scories et de la pierre ponce qu’avec des cendres ; ils permettent de comprendre la dynamique des éruptions.

La troisième étape est la mesure de la taille des échantillons, ce qui donne des informations sur la façon dont le magma s’est fragmenté pour produire des téphras pendant les épisodes de fontaines de lave et les explosions. Les fragments de plus de 3 centimètres sont tamisés à la main, de manière traditionnelle, tandis que les grains plus petits sont soumis à un Camsizer, un appareil de dernière génération qui photographie chaque fragment et convertit l’image en mesure de la taille. Le flux de particules passe devant une source de lumière stroboscopique LED ultra lumineuse et plane. Les Camsizers peuvent mesurer des dizaines de milliers de fragments en seulement 5 minutes. De plus, ils utilisent les images pour mesurer la forme 2D des fragments en utilisant des paramètres mathématiques établis. Les informations concernant la taille des fragments sont essentielles pour les modèles de fontaines de lave et de cendres.

L’étape finale peut prendre des semaines, voire des mois. Elle consiste à découper les échantillons en fines lamelles et à les étudier au microscope pétrographique. Le HVO possède deux nouveaux microscopes pétrographiques avec différents ensembles de lentilles: l’un peut évaluer la taille des bulles, la texture des bulles ainsi que la texture de mélanges de magmas, tandis que l’autre peut se concentrer sur les cristaux et les inclusions.

Les nouveaux instruments d’analyse de téphras que vient d’acquérir le HVO sont actuellement en cours d’étalonnage. Les échantillons prélevés pendant l’éruption en cours seront les premiers analysés. Ce nouveau laboratoire permet une analyse quasiment en temps réel des produits émis et donc une meilleure surveillance des éruptions.

Source: USGS / HVO.

——————————————

The USGS Hawaiian Volcano Observatory (HVO) has been granted a new laboratory that will allow scientists to better understand the physical properties of tephra.

Tephra is any type and size of rock fragment that is ejected from a volcano and travels an airborne path during an eruption. Examples include ash, bombs, scoria, or Pele’s hair and Pele’s tears.

The tephra lab will help HVO determine the density, size, and shape of individual tephra particles along with types of tephra. Using this information, HVO geologists can analyse a range of topics, from magma ascent and eruption processes to ashfall deposits from past explosive eruptions. It is important to get these measurements as accurately and quickly as possible during an eruption.

HVO’s new lab is unique in its ability to analyze a wide size range of samples, from one metre to one micron (10-6 m). The sample processing is non-destructive and analysis is fast with each type of measurement taking only minutes, and all measurements are estimated to take 1–2 hours total. The non-destructive nature of these new instruments and methods is revolutionary and allows researchers to perform a full suite of analyses on the same sample, instead of different samples of the same material for a more integrated understanding of eruptions. This also allows samples to be fully preserved.

The first step consists in studying the sample components. Componentry helps understand what type of eruption scientists are dealing with.

For tephra samples straight from the field, HVO has two new stereoscopes that use reflected light. Looking through them, geologists can manually separate the different components that might make up the sample, such as fresh glassy lava, crystals, and small pieces of the crater wall.

Next, the researchers measure density. For pieces of lava, measuring density helps understand how frothy the magma was when it erupted, which tells us about eruption dynamics.

Sample density is determined by measuring its mass and volume. For pieces of tephra larger than five centimetres, the volume is calculated using a 3D scanner, and then the sample is weighed. Smaller grains from gravel to powdery ash sizes will be placed in a pycnometer, a machine that calculates density directly using Archimedes principle of volume displacement with nitrogen gas. The pycnometers work with foams (scoria and pumice) as well as ash and helps understand eruption dynamics.

Then, the samples will be measured for size, which give information about how magma gets ripped apart to produce tephra from lava fountains and explosions. Fragments larger than 3 centimetres are sieved in the traditional manual way, while smaller grains will run through one of the new Camsizers ; this is a machine that photographs each fragment and converts the image to a size measurement. The Camsizers can measure tens of thousands of fragments in as little as 5 minutes. Additionally, they use the images to measure the 2D shape of fragments using established mathematical parameters. Size information is essential for models of lava fountaining and ashfall.

A final step that may take weeks to months. It consists in turning pieces into a thin section for final analysis on a petrographic microscope. HVO has two new petrographic microscopes with different sets of lenses: one can assess bubble sizes, bubble textures, and magma-mixing textures, while the other can focus on crystals and melt inclusions within them.

HVO’s new tephra lab instruments currently being calibrated. Samples from the current eruption will be the first analyzed. The HVO tephra lab brings physical volcanology monitoring of eruptions to near-real time analysis.

Source : USGS / HVO.

Photo : C. Grandpey

Hawaii: un mois de sensibilisation aux risques volcaniques // A volcano awareness month

Bien qu’il n’y ait eu aucune éruption à Hawaï en 2020, l’année n’a pas été aussi calme qu’il y parait. Des essaims sismiques ont été détectés sur le Mauna Loa et le niveau de la pièce d’eau  a continué de s’élever au sommet du Kilauea. De tels événements doivent rappeler aux habitants de la Grande Ile qu’ils vivent à proximité de volcans actifs. C’est la raison pour laquelle l’Observatoire des volcans hawaïens (HVO) organisera en janvier 2021 le 12ème «Mois de sensibilisation aux risques volcaniques.» Ce sera l’occasion pour la population d’être mieux informée sur le comportement des volcans hawaïens.

Ce mois de sensibilisation a été créé en 2010 pour « une meilleure connaissance et  sensibilisation aux risques volcaniques et une information sur les mesures de sécurité à adopter avant, pendant et après une éruption volcanique».

Bien que la Grande Ile d’Hawaï se trouve actuellement dans une période de calme après l’éruption du Kilauea en 2018 et celle du Mauna Loa en 1984, l’activité récente sur les deux volcans doit rappeler à la population que d’autres éruptions ne manqueront pas de se produire.

La sismicité récente confirme que les volcans hawaïens sont toujours actifs. La population a déclaré avoir ressenti plus de 100 secousses en 2020. Les instruments indiquent que l’alimentation magmatique se poursuit sur le Kilauea et le Mauna Loa.

Très récemment, entre le 30 novembre et le 2 décembre 2020, plusieurs centaines de séismes se sont produits entre 1 et 4 km de profondeur sous le sommet du Kilauea et le long de la Upper East Rift Zone. Le 2 décembre, un épisode ponctuel de déformation a entraîné un soulèvement d’environ 8 cm du plancher de la caldeira. Les données de surveillance de la zone sommitale du Kilauea ont indiqué qu’une petite intrusion magmatique s’était produite sous la surface du volcan. Bien que le magma n’ait pas atteint la surface, cet événement a confirmé que le réservoir magmatique à l’intérieur du volcan continue à se remplir.

Un séisme de M 4,1 sous le flanc nord-ouest du Mauna Loa le 4 décembre 2020, ainsi que de petits essaims sismiques à proximité, nous rappellent que le volcan est toujours actif. Une hausse de l’activité sismique a entraîné le passage du niveau d’alerte du Mauna Loa à « Advisory » (surveillance conseillée) en juillet 2019.

Le dernier séisme présentant une magnitude et d’une profondeur semblables à celui du mois de décembre 2020 avait été enregistré en novembre 2011 dans cette zone du Mauna Loa, à environ 5 km au nord-ouest de la caldeira de Moku’aweoweo. En 2011, les autres paramètres de surveillance volcanique étaient restés stables et aucune éruption ne s’était produite. L’ensemble des paramètres de surveillance du Mauna Loa reste également stable à l’heure actuelle et n’indique pas d’éruption imminente.

Les événements de 2020 rappellent que le Kilauea et le Mauna Loa sont susceptibles d’entrer à nouveau en éruption. La population doit donc se tenir informée et se préparer aux dangers potentiels associés à un volcan en éruption. Tel sera l’objectif du 12ème «Mois de sensibilisation aux risques volcaniques».

Source: USGS / HVO.

———————————————

Though there has not been any eruption in Hawaii in 2020, the year has hardly been quiet. Seismic swarms have been detected on Mauna Loa, and a growing water lake has been observed on Kilauea. These are reminders that island residents should be aware of Hawaiian active volcanoes. It is the reason why the Hawaiian Volcano Observatory (HVO) will spearhead in January 2021 the 12th annual “Volcano Awareness Month,” during which residents will have an opportunity to learn more about Hawaiian volcanoes.

The Volcano Awareness Month was established in 2010 to encourage “knowledge and awareness of Hawaiian volcanoes and the proper safety measures to follow before, during, and after a volcanic eruption.”

Although Hawaii is currently in the period after Kilauea’s 2018 eruption and Mauna Loa’s 1984 eruption, recent activity at both volcanoes should remind people that more eruptions are likely in the future.

Seismicity confirms that Hawaiian volcanoes are still quite active. Residents have reported over 100 felt earthquakes in 2020. Monitoring data indicate that magma is slowly being supplied to Kilauea and Mauna Loa.

More recently, between November 30th and December 2nd, several hundred earthquakes occurred 1–4 km beneath Kilauea’s summit and upper East Rift Zone. On December 2nd, a transient increase in ground deformation resulted in about 8 cm of uplift of the caldera floor.   Monitoring data from Kilauea’s summit region indicated that a small injection of magma intruded below the surface of the volcano. Although magma didn’t make it to the surface, this event demonstrated that magma continues to refill the storage system within the volcano.

An M 4.1 earthquake beneath the northwest flank of Mauna Loa on December 4th, along with nearby clusters of small earthquakes, reminds us that the volcano continues to show signs of unrest. Elevated seismic activity is one reason why Mauna Loa’s volcano alert-level has been ADVISORY—“volcano is exhibiting signs of elevated unrest above known background activity”—since July 2019.

The last time an earthquake of similar magnitude and depth occurred in this area of Mauna Loa, approximately 5 km northwest of the Moku‘aweoweo caldera, was November 2011, when increased rates of minor seismicity were already occurring. In 2011, other monitoring dataset remained stable and an eruption did not occur. Current dataset on Mauna Loa also remains stable and do not indicate that an eruption is imminent.

These 2020 events are reminders that Kilauea and Mauna Loa will erupt again and that people should be informed and prepared for potential hazards associated with an erupting volcano. This will be the aim of the 12th annual “Volcano Awareness Month.”

Source : USGS / HVO.

Photo : C. Grandpey

Failles et sismicité sur le Kilauea (Hawaii) // Faults and seismicity on Kilauea Volcano (Hawaii)

Outre l’activité volcanique, la sismicité est présente sur la Grande Ile d’Hawaï. En particulier, le flanc sud du Kilauea est l’une des régions les plus sismiquement actives des États-Unis. Chaque année, le HVO enregistre des milliers de secousses dans cette partie de l’île.

Le réseau de failles de Koa’e relie les zones de Rift Est et de Rift Sud-ouest du Kilauea au sud de la caldeira. Cette zone de faille recoupe le Rift Est près du cratère Pauahi et s’étire sur près de 12 km dans une direction est-nord-est vers l’ouest, jusque près du Mauna Iki et la zone de Rift Sud-Ouest (voir carte ci-dessous).
Les failles apparaissent sous forme de petites falaises ou d’escarpements le long de Hilina Pali Road dans le Parc des volcans d’Hawaï. Ces falaises le long des failles glissent lors de séismes majeurs, comme celui du 4 mai 2018, avant le début de l’éruption du Kilauea.
Les mouvements des failles de Koa’e ont fait se déplacer de 1,50 mètre d’anciennes coulées de lave sur une période de plusieurs siècles. Cette zone fournit de bonnes indications sur les mouvements de failles sur le long terme car les coulées de lave ne l’ont pas recouverte, ce qui permet une bonne lisibilité du mouvement du flanc sud du Kilauea. Plus récemment, des failles ont décalé des routes ainsi que sentiers utilisés par les premiers Hawaïens. Il était donc intéressant de savoir si les failles avaient bougé pendant et après l’éruption de 2018.
La géodésie est encore utilisée pour étudier la morphologie des volcans hawaïens, même si les géologues ont souvent recours à des technologies plus modernes, telles que l’interférométrie par satellite et le GPS.
Une approche plus ancienne, le «nivellement», reste une méthode géodésique précieuse quelque 170 ans après son invention. Les scientifiques du HVO l’utilisent depuis des décennies pour étudier les volcans, avec des résultats intéressants.
Depuis l’éruption de 2018, le département de géologie de l’Université d’Hawaï à Hilo a collaboré avec des scientifiques du HVO pour effectuer des opérations de nivellement là où cette technique est la plus adaptée. Le nivellement utilise des théodolites pour mesurer avec précision les différences d’élévation entre des stations marquées par des repères ancrés dans le substrat rocheux. Si les altitudes et les distances entre les stations de mesure ont changé pendant le temps écoulé depuis les mesures précédentes, une répétition du nivellement détecte le changement jusqu’à l’échelle millimétrique. Le nivellement nécessite des équipes de personnes travaillant le long d’une grille établie sur le terrain, ce qui demande beaucoup de temps. Les stations de mesure sont généralement espacées d’environ 90 mètres.
Les scientifiques de l’USGS ont commencé le nivellement le long des failles de Koa’e dans les années 1960, ce qui a permis d’obtenir des mesures sur le long terme. Dans les années 1960, la bande de terre d’environ trois kilomètres au coeur du système de failles de Koa’e s’est élargie d’environ 1,5 cm chaque année. Les failles individuelles ne jouent en général que de quelques millimètres chacune. En revanche, lors des séismes de 2018, on a enregistré le plus important mouvement vertical le long d’une seule faille, avec un déplacement de plus de 40 cm.
Lorsque les failles de Koa’e bougent, elles glissent verticalement ou s’ouvrent en créant de profondes fissures. Un exemple spectaculaire de ce phénomène a été observé au niveau d’Hilina Pali Road en 2018 quand la faille a coupé la route en deux. Peu de temps après la fin de l’éruption de 2018, le nivellement a révélé que les mouvements le long des failles de Koa’e avaient retrouvé leur rythme normal, beaucoup plus lent.
La campagne de nivellement actuelle sur le réseau de failles de Koa’e a révélé que la majeure partie du relief le long de ces falaises est modelée par des événements majeurs. Très peu de nouvelles fissures se sont formées à la suite des grands événements géologiques de 2018. Au lieu de cela, le mouvement a tendance à se poursuivre de manière répétitive le long des fissures existantes ; elles s’ouvrent plus largement et augmentent leurs escarpements avec le temps. Le comportement du réseau de failles de Koa’e est également étroitement lié à ce qui se passe ailleurs sur le volcan, comme les séismes de 2018 sous le flanc sud du Kilauea et l’effondrement à répétition de la caldeira sommitale.
Source: USGS / HVO.

———————————————-

Beside volcanic activity, seismicity is present on Hawaii Big Island. In particular, Kilauea’s south flank is one of the most seismically active regions in the United States. Each year, HVO records thousands of earthquakes occurring beneath the flank.

The Koa‘e fault system connects Kilauea’s East and Southwest Rift Zones south of the caldera. The fault zone intersects the East Rift near the Pauahi Crater and extends nearly 12 km in an east-northeast direction towards the westernmost boundary near Mauna Iki and the Southwest Rift Zone (see map below).

Faults here appear as low cliffs, or “scarps” along Hilina Pali Road in Hawai‘i Volcanoes National Park. These fault-cliffs slip during major earthquakes, such as those of May 4th, 2018, before the beginning of Kilauea’s 2018 eruption.

Koa‘e fault movements have offset ancient lava flows by as much as 1.50 metres over a period of centuries. This area provides an important long-term record of motion due to the lack of recent lava flows covering the faults, which makes it an ideal location to study the motion of Kilauea’s south flank. More recently, faults have offset roads and footpaths used by early Hawaiians. So, it is interesting to know how much fresh offset took place during and after the 2018 eruption.

Geodesy is still used to measure the shape of Hawaiian volcanoes. New technologies, such as satellite interferometry and the Global Positioning System (GPS), depend on satellites to make geodetic measurements.

One older approach, “levelling,” remains a valuable geodetic method some 170 years after it was invented. HVO scientists have used it for decades to study volcanoes, with significant results.

Since the 2018 eruption, the Geology Department at the University of Hawaii at Hilo has collaborated with HVO scientists to perform levelling where it is the best approach available. Levelling uses theodolites to precisely measure elevation differences between stations marked by stainless steel bolts cemented into bedrock. If elevations and distances have changed during the time since the previous measurements, repeat levelling will detect it even down to the millimetre scale. Levelling requires teams of people working along an established grid in the field, and this work demands quite a lot of time. Field stations are commonly set around 90 metres apart.

USGS scientists first began levelling along the Koa‘e faults in the 1960s, providing a long-standing record of data and field stations already in place. In the 1960s, the roughly three-kilometre land strip encompassed by the Koa‘e fault system widened by about 1.5 cm each year. Individual faults move only a few millimetres each.. In contrast, the largest vertical movement recorded during the 2018 earthquakes along a single fault was over 40 cm.

When the Koa‘e faults move, they either slide vertically or open to create a deep crack. A dramatic example of opening occurred at the Hilina Pali Road 2018 faulting which split the road. Shortly after the end of the 2018 eruption, levelling revealed that the rates of change along the Koa‘e faults quickly returned to the much slower normal pace.

The current Koa‘e levelling campaign has revealed that most of the relief along these cliffs is created by large events. Very few new cracks formed as a result of the large geologic events of 2018. Instead, motion tends to continue repeatedly along existing cracks, opening them wider and making their scarps taller over time. The motions along the Koa‘e faults are also sensitively tied to what happens elsewhere on the volcano, such as the 2018 earthquakes underneath Kilauea’s south flank and the repeated collapse of the summit caldera.

Source : USGS / HVO.

Carte géologique de la zone sommitale du Kilauea, avec le système de failles de Koa’e (Source : USGS)