2025, nouvelle année catastrophique pour l’Arctique // 2025, another disastrous year for the Arctic

  Dans son rapport annuel sur l’Arctique, avec référence à des données remontant à 1900, la NOAA vient d’informer le public qu’en 2025 l’Arctique a connu son année la plus chaude jamais enregistrée, avec des conséquences en cascade : fonte des glaciers et de la banquise, verdissement des paysages et perturbations du climat mondial.
Entre octobre 2024 et septembre 2025, les températures ont dépassé de 1,60°C la moyenne de la période 1991-2020, un réchauffement « forcément alarmant » sur une période aussi courte.
L’année 2025 a connu dans l’Arctique l’automne le plus chaud, le deuxième hiver le plus chaud et le troisième été le plus chaud depuis 1900. Sous l’effet de la combustion des énergies fossiles par l’Homme, l’Arctique se réchauffe beaucoup plus vite que la moyenne mondiale, un phénomène connu sous le nom d’« amplification arctique ».

On a des conséquences en chaîne : la hausse des températures augmente la quantité de vapeur d’eau dans l’atmosphère, qui elle-même se transforme en une couverture absorbant la chaleur et l’empêchant de s’échapper dans l’espace. Parallèlement, la disparition de la banquise réduit l’albédo ; elle expose des eaux océaniques plus sombres qui absorbent davantage la chaleur du Soleil.
Au printemps, période où la banquise arctique atteint son maximum annuel, on a observé en mars 2025 le plus faible pic jamais enregistré en 47 années de relevés satellitaires. Il s’agit d’un problème pour les ours polaires, les phoques et les morses, qui utilisent la glace comme plateforme pour se déplacer, chasser et mettre bas.
Les modélisations montrent que l’Arctique pourrait connaître son premier été pratiquement sans banquise d’ici 2040, voire plus tôt. La fonte de la banquise arctique perturbe la circulation océanique en injectant de l’eau douce dans l’Atlantique Nord par la fonte des glaces et l’augmentation des précipitations. Les eaux de surface deviennent ainsi moins denses et moins salées, ce qui entrave leur capacité à plonger et à alimenter la circulation méridienne de retournement atlantique (AMOC), notamment le Gulf Stream, qui contribue à la douceur des hivers en Europe. Voir également ma note du 2 novembre 2024 à ce sujet :

https://claudegrandpeyvolcansetglaciers.com/2024/06/27/rechauffement-climatique-des-rivieres-virent-a-lorange-en-alaska-global-warming-some-rivers-are-turning-orange-in-alaska/

La fonte continue de la calotte glaciaire du Groenland apporte également de l’eau douce à l’océan Atlantique Nord, stimulant la productivité du plancton mais créant aussi des décalages entre la disponibilité de nourriture et les périodes où les espèces qui en dépendent peuvent s’en nourrir.

La fonte des glaces terrestres du Groenland contribue de manière significative à l’élévation du niveau de la mer, exacerbant l’érosion côtière et les inondations provoquées par les tempêtes.
Par ailleurs, le réchauffement plus rapide de l’Arctique que du reste de la planète affaiblit le contraste de température qui contribue à maintenir l’air froid confiné près du pôle. Cette fragilisation du vortex polaire permet aux vagues de froid de se propager plus fréquemment vers les latitudes plus basses.
Le cycle hydrologique de l’Arctique s’intensifie lui aussi. La période d’octobre 2024 à septembre 2025, aussi connue sous le nom d’« année hydrologique » 2024/25, a enregistré des précipitations printanières record et figure parmi les cinq années les plus humides pour les autres saisons, selon les relevés remontant à 1950.
Des conditions plus chaudes et plus humides favorisent la « boréalisation », ou le verdissement, de vastes étendues de toundra arctique. En 2025, ce verdissement de la toundra circumpolaire était le troisième plus élevé des 26 années de relevés satellitaires. Les cinq valeurs les plus élevées ont toutes été observées au cours des six dernières années.
Parallèlement, le dégel du pergélisol provoque des changements biogéochimiques, tels que le phénomène des « rivières couleur de rouille », causé par le fer libéré par le dégel des sols. Les images satellitaires ont permis d’identifier plus de 200 cours d’eau de couleur orangée, ce qui dégrade la qualité de l’eau par une hausse de l’acidité et des concentrations de métaux, et contribue à la perte de biodiversité aquatique. J’ai consacré une note à ce phénomène le 27 juin 2024 :

https://claudegrandpeyvolcansetglaciers.com/2024/06/27/rechauffement-climatique-des-rivieres-virent-a-lorange-en-alaska-global-warming-some-rivers-are-turning-orange-in-alaska/

Source : NOAA.

Vue aérienne de la Kutuk, dans le nord de l’Alaska, où la belle couleur bleue de la rivière doit cohabiter avec l’eau orange due au dégel du pergélisol (Crédit photo : National Park Service)

————————————————

In its annual Arctic Report Card, which draws on data going back to 1900, the National Oceanic and Atmospheric Administration ‘NOAA) informs the public that in 2025 the Arctic experienced its hottest year since records began, with cascading impacts from melting glaciers and sea ice to greening landscapes and disruptions to global weather.

Between October 2024 and September 2025, temperatures were 1.60 degrees Celsius above the 1991–2020 mean, a « certainly alarming » warming over so short a timespan.

2025 included the Arctic’s warmest autumn, second-warmest winter, and third-warmest summer since 1900. Driven by human-caused burning of fossil fuels, the Arctic is warming significantly far faster than the global average, with a number of reinforcing feedback loops : a phenomenon known as « Arctic Amplification. »

For example, rising temperatures increase water vapor in the atmosphere, which acts like a blanket absorbing heat and preventing it from escaping into space. At the same time, the loss of bright, reflective sea ice exposes darker ocean waters that absorb more heat from the Sun.

Springtime – when Arctic sea ice reaches its annual maximum – saw the smallest peak in the 47-year satellite record in March 2025. This is an immediate issue for polar bears and for seals and for walrus, that they use the ice as a platform for transportation, for hunting, for birthing pups.

Modeling suggests the Arctic could see its first summer with virtually no sea ice by 2040 or even sooner. The loss of Arctic sea ice also disrupts ocean circulation by injecting freshwater into the North Atlantic through melting ice and increased rainfall. This makes surface waters less dense and salty, hindering their ability to sink and drive the Atlantic Meridional Overturning Circulation (AMOC), including the Gulf Stream, which help keep Europe’s winters milder. See my post of 2 November 2024 on this topic :

https://claudegrandpeyvolcansetglaciers.com/2024/06/27/rechauffement-climatique-des-rivieres-virent-a-lorange-en-alaska-global-warming-some-rivers-are-turning-orange-in-alaska/

Ongoing melt of the Greenland Ice Sheet also adds freshwater to the North Atlantic Ocean, boosting plankton productivity but also creating mismatches between when food is available and when the species that depend on it are able to feed.

Greenland’s land-based ice loss is also a major contributor to global sea-level rise, exacerbating coastal erosion and storm-driven flooding.

And as the Arctic warms faster than the rest of the planet, it weakens the temperature contrast that helps keep cold air bottled up near the pole, allowing outbreaks of frigid weather to spill more frequently into lower latitudes.

The Arctic’s hydrological cycle is also intensifying. The October 2024 – September 2025 period – also known as the 2024/25 « water year » – saw record-high spring precipitation and ranked among the five wettest years for other seasons in records going back to 1950.

Warmer, wetter conditions are driving the « borealization, » or greening, of large swaths of Arctic tundra. In 2025, circumpolar mean maximum tundra greenness was the third highest in the 26-year modern satellite record, with the five highest values all occurring in the past six years.

Permafrost thaw, meanwhile, is triggering biogeochemical changes, such as the « rusting rivers » phenomenon caused by iron released from thawing soils. Satellite images allowed to identify more than 200 discolored streams and rivers that appeared visibly orange, degrading water quality through increased acidity and metal concentrations and contributing to the loss of aquatic biodiversity. I dedicated a post to this phenomenon on June 27th, 2024 :

https://claudegrandpeyvolcansetglaciers.com/2024/06/27/rechauffement-climatique-des-rivieres-virent-a-lorange-en-alaska-global-warming-some-rivers-are-turning-orange-in-alaska/

Source : NOAA.

Les glaciers antarctiques sous la menace de tourbillons sous-marins // Underwater eddies threaten Antarctic glaciers

En Antarctique de l’ouest, le Thwaites est un vaste glacier qui se jette dans la baie de Pine Island à une vitesse de surface dépassant les 2 kilomètres par an près de sa ligne d’échouage. Il est fortement affecté par le réchauffement climatique et constitue l’un des exemples les plus frappants du recul glaciaire. Le glacier Thwaites fait l’objet d’une surveillance étroite en raison de son potentiel d’élévation du niveau de la mer.

Une nouvelle étude, publiée en novembre 2025 dans Nature Geoscience, nous apprend que des « tempêtes sous-marines tourbillonnantes » provoquent « une fonte agressive des plateformes glaciaires » devant les glaciers Pine Island et Thwaites, avec des conséquences potentiellement importantes sur l’élévation du niveau de la mer à l’échelle mondiale.

Source : Antarctic Glaciers

Au cours des dernières décennies, ces immenses glaciers ont connu une fonte rapide, accélérée par le réchauffement des eaux océaniques, notamment à l’endroit où ils remontent des fonds marins et forment des plateformes glaciaires. La nouvelle étude est la première à analyser systématiquement la fonte des plateformes glaciaires sur une échelle de temps de quelques heures ou quelques jours, et non en fonction des saisons ou des années.
Les auteurs expliquent que ces tourbillons sous-marins se comportent, un peu comme lorsqu’on remue de l’eau dans une tasse. Cependant, dans l’océan, ils sont beaucoup plus vastes et peuvent couvrir une dizaine de kilomètres. On peut lire dans l’étude : « Ils se forment lorsque des eaux chaudes et froides se rencontrent. Pour reprendre l’analogie de la tasse, c’est le même principe que lorsqu’on verse du lait dans une tasse de café et qu’on observe de minuscules tourbillons qui mélangent le tout. » Ce phénomène ressemble également à la formation des tempêtes atmosphériques qui résultent de la collision d’air chaud et d’air froid ; comme les tempêtes atmosphériques, ces tourbillons peuvent être très dangereux.

Source : Antarcyic Glaciers

Les tourbillons se forment en haute mer et s’engouffrent sous les plateformes glaciaires. Pris en étau entre la base de la plateforme et le fond marin, ils font remonter à la surface des eaux plus chaudes, ce qui accélère la fonte lorsqu’elles rencontrent la glace de la plateforme..
Les scientifiques ont utilisé des modèles informatiques ainsi que des données provenant d’instruments océanographiques pour analyser l’impact de ces tempêtes sous-marines. Ils ont constaté que, combinées à d’autres processus de courte durée, elles ont causé 20 % de la fonte du Thwaites et du Pine Island sur une période de neuf mois.
Les chercheurs ont également mis en évidence une boucle de rétroaction positive inquiétante. Lorsque ces tempêtes sous-marines font fondre la glace, elles augmentent la quantité d’eau froide et douce qui se déverse dans l’océan. Cette eau se mélange à l’eau plus chaude et plus salée située en dessous, ce qui génère davantage de turbulence océanique et accélère ainsi la fonte de la glace. Les chercheurs ajoutent que cette boucle de rétroaction positive pourrait s’intensifier avec le réchauffement climatique.
Les conséquences de ce phénomène pourraient être dramatiques car les plateformes glaciaires jouent un rôle de rempart essentiel en retenant les glaciers en amont et en ralentissant leur écoulement vers l’océan. Le glacier Thwaites, à lui seul, contient suffisamment d’eau pour faire monter le niveau de la mer de plus de 60 centimètres. Mais, comme il retient également l’immense calotte glaciaire antarctique, sa fonte pourrait à terme entraîner une élévation du niveau de la mer d’environ 3 mètres. Comme je l’ai expliqué dans une note précédente, les différents systèmes glaciaires de l’Antarctique occidental sont interconnectés.

Source: BAS

De grandes incertitudes persistent autour des causes du réchauffement de l’Antarctique occidental. Les plateformes glaciaires antarctiques figurent parmi les endroits les moins accessibles de la planète, ce qui oblige les scientifiques à s’appuyer la plupart du temps sur des simulations. Des études comme celle-ci reposent en grande partie sur des modèles informatiques. Il faudra beaucoup plus de données réelles, récoltées sur le terrain, pour bien comprendre l’impact de ces tourbillons, ainsi que d’autres phénomènes météorologiques océaniques.
Source : CNN via Yahoo News.

————————————————

In West Antarctica, Thwaites is a broad and vast glacier that flows into Pine Island Bay at surface speeds which exceed 2 kilometres per year near its grounding line. It is adversely affected by global warming, and provides one of the more notable examples of the retreat of glaciers.Thwaites Glacier is closely monitored for its potential to elevate sea levels.

A new study, published in November 2025 in Nature Geosciences explains that swirling underwater “storms” are aggressively melting the ice shelves of both Pine Island and Thwaites glaciers, with potentially “far-reaching implications” for global sea level rise.

Over the past few decades, these huge glaciers have experienced rapid melting driven by warming ocean water, especially at the point where they rise from the seabed and come afloat as ice shelves.

The new study is the first to systematically analyze how the ocean is melting ice shelves over just hours and days, rather than seasons or years.

The authors of the study explain that swirling underwater “storms” – or eddies – are « like little water twirls that spin around really fast, kind of like when you stir water in a cup.” However, in the ocean, these eddies are much larger and can span up to around 10 kilometers. « They form when warm and cold water meet. To return to the cup analogy, it’s the same principle as when you pour milk into a cup of coffee and see tiny swirls spinning around, mixing everything together. »

The phenomenon is similar to how storms form in the atmosphere, when warm and cold air collide ; like atmospheric storms, they can be very dangerous.

The eddies spin up in the open ocean and race underneath ice shelves. Sandwiched between the, rough base of the ice shelf and the seafloor, the eddies churn up warmer water from deeper in the ocean, which enhances melting when it “hits” vulnerable ice.

The scientists used computer models as well as data from ocean instruments to analyze the impact of these underwater storms. They found that, together with other short-lived processes, the storms caused 20% of the melting at the two glaciers over a nine-month period.

The researchers also highlighted a worrying feedback loop. As the storms melt the ice, they increase the amount of cold, fresh water entering the ocean. This mixes with warmer, saltier water beneath, generating more ocean turbulence, which in turn increases ice melting.They add that this positive feedback loop could gain intensity in a warming climate.

The consequences could be grave as the ice shelves play a vital role holding back the glaciers, slowing their flow into the ocean. Thwaites Glacier alone holds enough water to raise sea levels by more than 60 centimeters. But, because it also acts as a cork holding back the vast Antarctic ice sheet, its collapse could ultimately lead to around 3 meters of sea level rise. As I explained in a previous post, the different glacial systems in West Antarctica are interconnected.

There are still huge uncertainties. Antarctic ice shelves are among the least accessible places on Earth, meaning scientists have to rely heavily on simulations. Studies like this one largely rely on computer models. Much more real-world data will be needed to really understand the impact of these eddies, along with other ocean weather features.

Source : CNN via Yahoo News.

Un robot sous l’Est Antarctique // A robot beneath East Antarctica

Grâce à un robot d’exploration sous-marine, les océanographes de l’Organisation de recherche scientifique et industrielle du Commonwealth (CSIRO) ont obtenu les toutes premières données recueillies sous les vastes plateformes glaciaires de l’Antarctique oriental.
Dans le cadre du projet Argo, le robot autonome a passé plus de deux ans et demi à dériver sur environ 300 km dans les courants océaniques qui bordent le Continent Blanc. Durant cette période, il a effectué près de 200 missions qui ont permis d’accumuler des données sur la température, la pression et la salinité de l’eau, ainsi que sur les niveaux d’oxygène, de pH et de nitrates. Le robot s’est également aventuré sous les plateformes glaciaires Denman et Shackleton, où il a passé huit mois à collecter des données dans cette région de la planète jusqu’alors inexplorée.
L’équipe scientifique qui a piloté la mission Argo affirme que « ces observations sans précédent apportent un nouvel éclairage sur la vulnérabilité des plateformes glaciaires ».
Les conclusions de l’équipe scientifique ont été publiées dans la revue Science Advances ; elles apportent des éléments nouveau à notre compréhension de l’état de santé des plateformes glaciaires. La plateforme Shackleton (Shackleton Ice Shelf), la plus septentrionale de l’Antarctique oriental, reste à l’abri des eaux plus chaudes susceptibles de la faire fondre par en dessous, comme cela se passe dans l’Antarctique occidental. En revanche, le glacier Denman est dans une situation bien plus précaire. Sa disparition à elle seule contribuerait à une élévation du niveau des mers de près de 1,50 mètre. Malheureusement, le glacier Denman est désormais exposé à des eaux plus chaudes, ce qui pourrait accélérer sa fonte et engendrer un recul glaciaire significatif.
La fonte des plateformes glaciaires de l’Est Antarctique dépend largement du comportement de l’océan au sein d’une couche limite d’environ 10 mètres d’épaisseur située directement sous la plateforme glaciaire. Le robot Argo est conçu pour mesurer différents éléments à l’intérieur de cette couche limite. Jusqu’à présent, aucun robot n’avait passé autant de temps à proximité d’une plateforme glaciaire. Dans des conditions extrêmement difficiles, il a fourni une mine d’informations précieuses.
Les chercheurs espèrent que le robot du projet Argo ne sera pas le dernier à explorer les plateformes glaciaires de l’Est Antarctique et d’autres régions du continent. Ce type de robot fournit des données essentielles qui contribuent à améliorer les modèles informatiques climatiques et à réduire les incertitudes liées à l’élévation du niveau de la mer. Un chercheur a déclaré : « Le déploiement de davantage de robots le long de la banquise antarctique ferait avancer notre compréhension de la vulnérabilité des plateformes glaciaires aux changements océaniques.»
Source : Popular Science via Yahoo News.

Carte montrant le parcours du robot en Antarctique oriental (Source : CSIRO)

————————————————

Thanks to Argo, an underwater survey robot, oceanographers at the Commonwealth Scientific and Industrial Research Organisation (CSIRO) are getting the first-ever readings collected from underneath East Antarctic’s vast ice shelves.

Part of the ongoing Argo survey project, the autonomous device has spent over two-and-a-half years drifting through roughly 300 km of frigid ocean currents. In that time, the device has amassed almost 200 reports containing data on water temperature, pressure, and salinity, as well as oxygen, pH, and nitrate levels. The robot also journeyed underneath the Denman and Shackleton Ice Shelves, where it spent eight months collecting readings from a never-accessed region of the planet.

The scientific team that piloted thethe Argo mission say that « these unprecedented observations provide new insights into the vulnerability of the ice shelves. »

The team’s findings, detailed in a study published in the journal Science Advances, both reinforce and update our current understanding of icy shelf health. The Shackleton Ice Shelf is the furthest north in the East Antarctic and remains unexposed to warmer waters that might melt it from below. However, the Denman Glacier is in a more precarious state. Denman’s disappearance alone would contribute to a nearly 1.50 meter rise in global sea levels. Unfortunately, Denman is now exposed to some warmer waters, which could accelerate melt rates and facilitate a more unstable ice retreat.

This melting is largely dependent on the ocean’s state within a nearly 10-meter-thick boundary layer that exists directly underneath the ice shelf itself. The Argo robot is designed to measure various elements inside this boundary layer. Until now, no robot had spent such an extensive amount of time near one. Under incredibly hard conditions, the tiny instrument has delivered a wealth of invaluable information.

Researchers hope Argo won’t be the last to visit these and other ice shelves. These types of robots offer vital data that helps improve climate computer models and reduce uncertainties about sea level rise. Said one researcher : “Deploying more robots along the Antarctic continental shelf would transform our understanding of the vulnerability of ice shelves to changes in the ocean.”

Source : Popular Science via Yahoo News.

Des été plus longs ? Pas forcément une bonne nouvelle ! // Longer summers? Not necessarily good news!

La plupart des gens apprécient l’été pour ses journées chaudes et ensoleillées. Ils seront ravis de lire une étude publiée par une équipe internationale de chercheurs en novembre 2025 dans la revue Nature Communications. Ses auteurs nous informent que le réchauffement climatique, principalement dû aux activités humaines telles que la combustion des énergies fossiles, pourrait allonger les étés en Europe de 42 jours d’ici 2100. La raison ? Le gradient de température latitudinal (GTL), ou différence de température entre le pôle Nord et l’équateur, est actuellement en baisse. Un GTL élevé influence les régimes de vents à travers l’océan Atlantique, ce qui entraîne des variations de température saisonnières en Europe. Avec un GTL plus faible, les conditions météorologiques estivales et les vagues de chaleur dureront plus longtemps sur le vieux continent. Les chercheurs expliquent que ce phénomène n’est pas nouveau ; il fait partie du système climatique terrestre. Cependant, ce qui change aujourd’hui, c’est la vitesse et l’intensité de ce changement.
Pour étudier l’histoire climatique de la Terre en Europe, les chercheurs ont analysé les couches de sédiments au fond des lacs. Déposés de façon saisonnière, ces sédiments dressent un tableau précis des hivers et des étés jusqu’à il y a 10 000 ans. Il y a environ 6 000 ans, les étés en Europe duraient environ huit mois en raison des fluctuations naturelles du gradient thermique intertropical (GTI). Mais aujourd’hui, l’Arctique se réchauffe jusqu’à quatre fois plus vite que la moyenne mondiale, notamment à cause des émissions de gaz à effet de serre. L’étude montre, en prenant en compte des simulations climatiques du passé, qu’une baisse de 1 °C du gradient thermique entre l’équateur et le pôle Nord pourrait allonger l’été d’environ six jours. En extrapolant avec les projections climatiques actuelles, on s’aperçoit que l’Europe bénéficiera de 42 jours d’été supplémentaires d’ici 2100.
Un tel contexte climatique pourrait remodeler le rythme saisonnier en Europe, ce qui pourrait avoir de profondes conséquences sur les écosystèmes, les ressources en eau, l’agriculture et la santé publique. Un tel bouleversement pourrait transformer une grande partie de l’environnement et de l’économie européens. L’allongement des saisons pourrait profiter à certaines cultures et aux régions septentrionales, mais les vagues de chaleur extrêmes et les pénuries d’eau pourraient rapidement annuler ces avantages. Les écosystèmes adaptés à des conditions plus fraîches et plus humides pourraient être fragilisés, et les risques d’incendies de forêt, de sécheresses et de crises sanitaires liées à la chaleur augmenteraient inévitablement.
Pour les scientifiques à l’origine de cette étude, les archives lacustres anciennes représentent bien plus qu’une simple fenêtre sur le passé. Elles montrent que le climat terrestre a toujours réagi aux variations atmosphériques, mais qu’aujourd’hui, nous repoussons ces limites vers des extrêmes et nous nous dirigeons vers un avenir imprévisible et incertain.
Les conclusions de cette nouvelle étude soulignent à quel point le climat européen est étroitement lié à la dynamique climatique mondiale et comment la compréhension du passé peut nous aider à relever les défis d’une planète en pleine mutation.
Source : Université de Turku (Finlande).

Le réchauffement rapide de l’Arctique, avec le dégel du permafrost, aura de profondes répercussions sur le climat de la Terre (Photo : C. Grandpey)

———————————————

Most people summer with its hot and sunny days. They swill be all the happier if they read a study published by an international team of researchers in November 2025 in the journal Nature Communications. Its authors inform us that global warming, primarily driven by human activities like the burning of fossil fuels, could lengthen summers in Europe by 42 days by the year 2100.

The reason is that the « latitudinal temperature gradient » (LTG), or the temperature difference between the North Pole and the equator, is currently decreasing. A higher LTG drives wind patterns across the Atlantic Ocean, bringing about seasonal temperature changes in Europe. With a lower LTG, summer weather patterns and heat waves will last longer across the continent. The researchers explain that the phenomenon is not new; it is a recurring feature of Earth’s climate system. However, what is different today is the speed, cause and intensity of the change.

To study Earth’s climate history in Europe, researchers analyzed layers of mud at the bottom of lakes. Deposited seasonally, these sediments paint a clear timeline of winters and summers as far back as 10,000 years ago. Around 6,000 years ago, European summers were about eight months long due to natural fluctuations in the LTG. But now, the Arctic is warming up to four times faster than the global average, in part due to greenhouse gas emissions. The study shows, through comparison with climate simulations of the past, that a 1°C decrease in the temperature gradient between the equator and the North Pole could lengthen summer by about six days. Thus, according to current climate projections, Europe will have 42 extra days of summer by 2100.

On top of that, changes in industrial aerosol emissions and internal feedback loops of the Earth’s climate system could also contribute to reshaping Europe’s seasonal rhythm in ways that scientists say could have profound consequences for ecosystems, water resources, agriculture, and public health.

Such a shift could transform much of Europe’s environment and economy. Longer growing seasons might initially benefit some crops and northern regions, but extreme heat and water shortages could quickly outweigh those gains. Ecosystems adapted to cooler, wetter conditions may struggle, and the risks of wildfires, droughts, and heat-related health crises are expected to rise.

For the scientists behind the study, the ancient lake record is more than just a window into the past. It shows that Earth’s climate has always responded to shifts in the atmosphere, but today, we are pushing those boundaries faster toward a more unpredictable future.

The findings of the news research underscore how deeply connected Europe’s weather is to global climate dynamics and how understanding the past can help us navigate the challenges of a rapidly changing planet.

Source :  University of Turku (Finland).