Nouveau site web sur les glaciers islandais // New website about Icelandic glaciers

Un nouveau site web, islenskirjoklar.is, contenant des informations sur les glaciers islandais a été lancé à Perlan, le dôme de verre de Reykjavík, le 20 mars 2022. Il offre des informations sur les études effectuées et les changements survenus sur les glaciers islandais au cours des dernières décennies.
Malheureusement, les informations sont en islandais (espérons qu’elles le seront bientôt en anglais !), mais ses créateurs affirment que même si les visiteurs ne parlent pas islandais, le site est utile à tous ceux qui souhaitent accéder à une carte de tous les glaciers et regarder les nombreuses photos. Il sera possible de comparer la morphologie des glaciers il y a des décennies avec les paysages d’aujourd’hui.
On peut également voir les contours des glaciers à différents moments. Ce travail a été effectué par des scientifiques en se référant à des photos aériennes, des images satellites ou des cartes.
La collection de photos est censée être unique en son genre. Elle comprend des panoramas, avec des vues d’avion de presque tous les glaciers d’Islande, à l’exception des plus petits.
Le site web devrait intéresser à la fois la communauté scientifique et le grand public. Vous pouvez y accéder en cliquant sur ce lien :
https://islenskirjoklar.is/#/page/map
Source : Iceland Monitor.

———————————————–

A new website, , islenskirjoklar.is, with information about Iceland’s glaciers was introduced at Perlan, Reykjavík’s glass dome, on March 20th, 2022. It offers information about research and changes that have occurred in Icelandic glaciers in recent decades.

Unfortunately, the information is in Icelandic (let’s hope it will be in English soon!), but its creators say that even if visitors don’t speak Icelandic, the website is useful to anyone who wants to access a map of all the glaciers and take a look at the numerous quality photos provided. In many cases, you can compare what the glaciers used to look like decades ago to what they look like now.

One can see the outlines of glaciers at different points in time. Those have been drawn by scientists, based on aerial photos, satellite pictures, or maps.

The photo collection is said to be unique. It includes panoramas, taken from airplanes, of almost every single glacier in Iceland, except for the very smallest ones.

The website is expected to be useful to the scientific community, as well as to the public. You can access it by clicking on this link :

https://islenskirjoklar.is/#/page/map

Source : Iceland Monitor.

Vue du Vatnajökull (Photo : C. Grandpey)

Un gravimètre quantique absolu (AQG) sur le Kilauea (Hawaii) // An Absolute Quantum Gravimeter on Kilauea Volcano (Hawaii)

La dernière rubrique Volcano Watch publiée par le l’Observatoire des Volcans d’Hawaii, le HVO est consacrée à l’Absolute Quantum Gravimeter AQG) – gravimètre quantique absolu – un nouvel instrument de haute technologie que vient d’acquérir l’observatoire. Il est en cours d’installation, de test et d’étalonnage avant d’être installé au sommet du Kilauea. L’AQG a la capacité de mesurer d’infimes variations de masse sous la surface du sol et peut donc aider à détecter les processus volcaniques en profondeur.
Tous les objets ont une masse et donc un champ de gravité. L’attraction gravitationnelle de la Terre est légèrement plus forte dans les zones qui ont plus de masse et légèrement plus faible dans les zones avec moins de masse. Le rôle des gravimètres est donc de mesurer l’attraction gravitationnelle. S’agissant des volcans, les gravimètres permettent aux scientifiques de détecter les changements subtils de gravité causés par les mouvements du magma. Une gravité plus forte peut indiquer la présence d’un plus importante quantité de magma sous la surface du sol.
Il existe deux principaux types de gravimètres : relatif et absolu.
Les gravimètres relatifs sont les plus courants. Ils contiennent un poids attaché à un ressort vertical sensible. La gravité étire le ressort et la quantité d’étirement est proportionnelle aux variations de g, la gravité locale. Le gravimètre relatif mesure la différence de gravité entre différents emplacements. Malheureusement, ces instruments souffrent d’un effet de « dérive », qui ajoute du bruit aux mesures effectuées sur plus de quelques semaines à quelques mois, et leur précision diminue progressivement.
Les gravimètres absolus mesurent directement l’accélération de la pesanteur. Les gravimètres absolus à chute libre, le type le plus courant, utilisent des lasers pour mesurer l’accélération en chute libre d’un réflecteur en coin de cube relâché à maintes reprises dans une chambre sous vide. Contrairement aux gravimètres relatifs, les gravimètres absolus n’ont pas d’effet de dérive et ne se dégradent pas en précision avec le temps. Cependant, ils sont de grande taille, ont des éléments mécaniques fragiles, nécessitent une alimentation électrique suffisante et ne sont pas conçus pour être utilisés dans des conditions difficiles sur le terrain, les volcans par exemple. Les gravimètres absolus portables ne peuvent pas effectuer des mesures continues sur le long terme et ne sont pas suffisamment sensibles pour détecter les petits changements nécessaires à la surveillance des volcans.
Semblable aux gravimètres absolus à chute libre, le nouvel AQG du HVO mesure l’accélération d’une petite masse d’épreuve dans le vide. Cependant, l’AQG surmonte les limites des gravimètres absolus à chute libre classiques et se caractérise par la chute d’un nuage d’atomes à très basse température. Des atomes de rubidium, piégés par des lasers, sont refroidis à une température proche du zéro absolu. Cela permet des mesures continues précises et à long terme. L’AQG est également compact et peut être déployé sur des volcans actifs et fonctionner en continu sans effet de «dérive».
Un tel modèle d’AQG a été installé sur le flanc nord du volcan de l’Etna, un volcan qui entre fréquemment en éruption. L’instrument a enregistré avec succès, et sur plusieurs mois, des données de haute qualité, malgré des vibrations parasites.
À la suite de la spectaculaire éruption du Kilauea en 2018, le HVO a commencé à reconstruire le réseau gravitaire continu. Un gravimètre a été réinstallé sur le plancher du cratère de l’Halema’uma’u en juin 2021. En avril 2022, il est prévu d’installer deux gravimètres relatifs sur d’autres sites du Kilauea.
La combinaison du nouveau gravimètre quantique absolu (AQG), de nouveaux gravimètres continus et des mesures habituelles sur le terrain devrait faire progresser l’utilisation des mesures de gravité pour surveiller le comportement des volcans hawaïens.
Source : USGS / HVO.

——————————————

The latest Volcano Watch released by the Hawaiian Volcano Observatory (HVO) is dedicated to the

Absolute Quantum Gravimeter AQG), a new high tech instrument acquired by the observatory. It is undergoing set up, testing and calibration before installation at the summit of Kilauea. The AQG has the ability to measure very small mass changes beneath the ground surface, which can help detect underground volcanic processes.

All objects have a mass and therefore a gravity field. Earth’s gravitational pull is slightly stronger in areas with more mass and slightly weaker in areas with less mass. Gravimeters measure gravitational attraction. As far as volcanoes are concerned, gravimeters help scientists detect subtle changes in gravity caused by magma movements. The measurement of stronger gravity can indicate more magma below the ground surface.

There are two main types of gravimeters: relative and absolute.

Relative gravimeters are the most common. They contain a weight attached to a sensitive vertical spring. Gravity stretches the spring, and the amount of stretch is proportional to the measurement of local gravity. The relative gravimeter measures the difference of gravity between various locations. Unfortunately, these instruments suffer from “drift,” which adds noise to measurements conducted over more than a few weeks-to-months, and their accuracy gradually decreases.

Absolute gravimeters directly measure the acceleration of gravity. Free-fall absolute gravimeters, the most common type, use lasers to measure the free-fall acceleration of a small reflecting prism in a vacuum. Unlike relative gravimeters, absolute gravimeters do not drift nor degrade in accuracy over time. However, they are large in size, have delicate mechanical parts, require an ample power supply, and are not designed for use in harsh field conditions such as volcanoes. Those that are field portable are not capable of long-term continuous measurements or sensitive enough to detect the small changes needed for volcano monitoring.

Similar to the free-fall absolute gravimeters, HVO’s new AQG measures the acceleration of a small test mass in a vacuum. However, the AQG overcomes the limitations of classical free-fall absolute gravimeters by dropping clouds of laser-cooled rubidium atoms instead of small prisms. This allows for accurate and long-term continuous measurements. The AQG is also compact in size and can be deployed in the field at active volcanoes and run continuously without “drift.”

The same model of AQG has been installed on the north flank of Mount Etna volcano in Italy, which frequently erupts. The instrument has successfully recorded many months of high-quality data despite high vibration noise levels.

Following the 2018 Kīlauea events, HVO started rebuilding the continuous gravity network. One gravimeter was reinstalled on Halemaʻumaʻu crater floor in June 2021. In April 2022, there are plans to install two additional continuous relative gravimeters at other locations on Kilauea.

The combination of the new Absolute Quantum Gravimeter, new continuous gravimeters, and ongoing campaign measurements makes the future of using gravity measurements to monitor hazards of Hawaiian volcanoes quite promising.

Source : USGS / HVO.

Vue du gravimètre quantique absolu (Source : HVO)

Une autre conséquence du réchauffement climatique // Another consequence of global warming

Voici une autre conséquence inattendue, mais assez logique, du réchauffement climatique. Selon une nouvelle étude publiée dans Scientific Reports, la hausse des températures entraînera une augmentation du nombre de personnes souffrant de calculs rénaux, une affection douloureuse provoquée par la chaleur et la déshydratation.
Des chercheurs se sont appuyés sur deux scénarios climatiques pour estimer le risque de calculs rénaux liés à la chaleur et à l’humidité d’ici la fin du siècle en Caroline du Sud, un État du sud-est des États-Unis qui a actuellement un taux de lithiase urinaire plus élevé que la moyenne aux États-Unis. Dans le pays, environ une personne sur 10 souffre de calculs rénaux à un moment donné, et ce nombre augmente en allant vers le sud.
Selon des chercheurs du Children’s Hospital de Philadelphie, le nombre de cas de calculs rénaux augmentera entre 2,2% et 3,9% selon que les émissions de gaz à effet de serre se poursuivent au rythme actuel ou sont ramenées à un niveau intermédiaire.
Les calculs rénaux sont causés par des dépôts de minéraux (principalement du calcium) qui se développent dans l’urine. Ils sont extrêmement douloureux lors du passage dans les voies urinaires. L’incidence de la maladie a augmenté au cours des deux dernières décennies, en particulier chez les personnes de couleur, les femmes et les adolescents.
Les changements de régime alimentaire et de mode de vie ont contribué au développement de la maladie, mais des recherches antérieures ont démontré que des températures ambiantes élevées augmentent le risque. Le nombre de personnes sollicitant une aide médicale pour des calculs rénaux augmente après les journées très chaudes où le risque de déshydratation est davantage présent.
On ne parle pas beaucoup de l’impact du changement climatique sur la santé humaine, en particulier lorsqu’il s’agit des enfants, mais avec le réchauffement de la planète de plus en plus de personnes seront malades et hospitalisées.
Source : Yahoo News.

———————————————-

Here is another unexpected but fairly logical consequence of global warming on our planet. According to a new study published in Scientific Reports, rising temperatures will lead to a rise in people suffering from kidney stones, a painful medical condition exacerbated by heat and dehydration.

Researchers used d two climate scenarios to estimate the burden of heat and humidity related kidney stone disease by the end of the century in South Carolina, a state in the south-east US which currently has a higher than average incidence rate. In the US, about one in 10 people suffers from kidney stones at some point, and the incidence increases from north to south.

According to researchers at the Children’s Hospital of Philadelphia, the number of cases will increase between 2.2% and 3.9% depending on whether greenhouse gas emissions continue at the current rate or are cut to an intermediate level.

Kidney stones are caused by hard deposits of minerals (mostly calcium) that develop in concentrated urine which are extremely painful when passing through the urinary tract. The incidence of the condition has escalated over the past two decades, particularly among people of colour, women and adolescents.

Diet and lifestyle changes have contributed to the rise in the condition, but prior research has demonstrated that high ambient temperatures increase the risk. The number of people seeking medical help for kidney stones escalates following very hot days when the risk of dehydration multiplies.

With climate change, there is not much talk about the impact on human health, particularly when it comes to children, but a warming planet will have significant effects on human health,

Source: Yahoo News.

 

Source: Wikipedia

Nouvelle approche du processus éruptif au Kamchatka // New approach to the eruptive process in Kamchatka

Quoiqu’en disent certains, la prévision éruptive reste à un niveau très bas, comme le montrent les bilans humains des dernières éruptions majeures. La mise en place du principe de précaution permet aujourd’hui d’éviter le pire. Il est préférable d’évacuer les populations menacées, parfois pour rien, plutôt que de déplorer des centaines, voire des milliers, de victimes.

Malgré des progrès techniques significatifs, nous ne savons que très peu de choses sur le processus éruptif, autrement dit comment fonctionne un volcan. La classification élémentaire en volcans rouges et volcans gris montre que tous les volcans ne se manifestent pas de la même façon Aucune éruption ne ressemble à une autre. Un article publié sur le site Futura nous explique qu’une nouvelle étude montre la complexité du réseau de conduits d’alimentation sous les volcans du Kamchatka (Russie).

Tous les volcans ont un point commun : c’est l’ascension du magma issu de la fusion partielle du manteau supérieur qui gère le processus éruptif, mais la suite est plus complexe. Le style et la fréquence des éruptions peuvent être très variables, non seulement entre les différents volcans du globe, mais également sur un même édifice volcanique. Cette variabilité est avant tout due à la façon dont le magma progresse vers la surface. Le processus d’ascension du magma dépend notamment de l’épaisseur et de la composition de la croûte, facteurs qui vont influencer la capacité de stockage du magma à des niveaux intermédiaires, sa cristallisation, son dégazage, sa différenciation ainsi que les interactions chimiques avec les roches encaissantes.

Auparavant, on considérait généralement que le magma était stocké dans des réservoirs stables situés à faible profondeur. Toutefois, de plus en plus d’études expliquent que l’on a affaire à des mécanismes plus complexes. Les réservoirs magmatiques sembleraient plutôt échelonnés sur toute l’épaisseur de la croûte, avec une distribution du magma hétérogène. Ces différents réservoirs seraient reliés entre eux de manière intermittente. La variabilité des éruptions dépendrait donc de l’évolution et de l’interaction avec le temps de ces différentes zones de stockage du magma au sein de la croûte terrestre. Le conditionnel est de rigueur car il s’agit d’une hypothèse avec de nombreuses inconnues

Des scientifiques de l’Institut des Sciences de la Terre de Grenoble, ainsi que leurs collègues russes viennent de caractériser le système magmatique profond du groupe volcanique Klyuchevskov au Kamchatka. Pour ce faire, les chercheurs ont utilisé l’activité sismique – en particulier les trémors – générée par les volcans.

La pression exercée par le magma au sein du système magmatique varie avec le temps. Ces variations de contrainte engendrent une activité sismique qui peut être mesurée. Il peut s’agir de signaux transitoires ou de petites secousses, les trémors, qui durent sur de longues périodes de temps. Leur analyse permet de définir la dynamique du système volcanique dans l’espace, mais également de suivre son évolution dans le temps.

Les chercheurs ont analysé l’évolution de l’activité sismique sur certains volcans situés sur la péninsule du Kamchatka. Le volcanisme de la région est le résultat de la subduction de la plaque Pacifique sous la péninsule. Les résultats de l’étude, publiée dans la revue Science Advances, montrent que le système magmatique s’étage sur toute l’épaisseur de la croûte. Il prendrait sa source à la base de la croûte, au niveau du Moho (environ 30 kilomètres de profondeur) et se ramifierait vers le haut pour alimenter plusieurs volcans par le biais de différents conduits. Le système magmatique pourrait ainsi s’étendre horizontalement sur de grandes distances. Grâce à l’analyse des trémors, les chercheurs ont pu définir les zones actives du système et suivre leur évolution dans le temps. L’existence de « bouchons » pourrait empêcher temporairement le magma de progresser, faisant localement augmenter la pression jusqu’à la rupture. Ce processus mènerait à l’activation transitoire des différentes zones. Là encore, le conditionnel est de rigueur.

Cette étude montre que nous progressons dans notre approche du processus éruptif, mais que de nombreuses questions restent aussi sans réponse.

Source: Futura (autrefois Futura-Sciences).

——————————————–

Despite what some people say, eruptive prediction remains at a very low level, as shown by the human tolls of the last major eruptions. The implementation of the precautionary principle now makes it possible to avoid the worst. It is better to evacuate threatened populations, sometimes for nothing, than to deplore hundreds, even thousands, of victims.
Despite significant technical progress, we know very little about the eruptive process, in other words how a volcano works. The basic classification into red volcanoes and grey volcanoes shows that all volcanoes do not work in the same way No eruption looks like another. An article published on the Futura website explains that a new study shows the complexity of the network of supply conduits beneath the volcanoes of Kamchatka (Russia).
All volcanoes have one thing in common: it is the ascent of magma resulting from the partial melting of the upper mantle that manages the eruptive process, but what follows is more complex. The style and frequency of eruptions can vary greatly, not only between different volcanoes around the globe, but also on the same volcanic edifice. This variability is mainly due to the way magma is transported from the depth to the surface. The characteristics of magma ascent depend, among others, on the thickness and composition of the continental crust, which will influence the storage capacity of magma at intermediate levels, its crystallization, its degassing, its differentiation as well as the chemical interactions with the surrounding rocks.
Previously, magma was generally considered to be stored in stable reservoirs located at shallow depths. However, more and more studies explain that we are dealing with more complex mechanisms. The magmatic reservoirs would seem rather staggered over the entire thickness of the crust, with a heterogeneous distribution of magma. These different reservoirs would be interconnected intermittently. The variability of eruptions would therefore depend on the evolution and interaction over time of these different magma storage zones within the Earth’s crust. The conditional is required because it is a hypothesis with many unknowns
Scientists from the Institute of Earth Sciences in Grenoble, together with their Russian colleagues, have just characterized the deep magmatic system of the Klyuchevskov volcanic group in Kamchatka. The researchers used the seismic activity – in particular the tremors – produced by the volcanoes.
The pressure exerted by magma within the magma system varies with time. These stress variations generate seismic activity that can be measured. These can be transient signals or tremors that last over long periods of time. Their analysis makes it possible to define the dynamics of the volcanic system in space, but also to follow its evolution over time.
The researchers analyzed the evolution of seismic activity on some volcanoes located on the Kamchatka Peninsula, a result of the subduction of the Pacific plate which plunges under the peninsula. The results of the study, published in the journal Science Advances, show that the magmatic system is staggering through the entire thickness of the crust. The system would take its source at the base of the crust, at the level of the Moho (about 30 kilometers deep) and would branch upwards to feed several volcanoes through different conduits. The magmatic system could thus extend horizontally over large distances. Thanks to the analysis of tremors, the researchers were able to define the active zones of the system and follow their evolution over time. The existence of « plugs » could temporarily prevent magma from progressing, locally increasing the pressure until rupture. This process would lead to the transient activation of the different zones. Again, the conditional is required.
This study shows that we are progressing in our approach to the eruptive process, but that many questions also remain unanswered.
Source: Futura (formerly Futura-Sciences).

Carte montrant la fosse Kourile-Kamchatka, résultat de la subduction de la plaque Pacifique sous la péninsule. On notera, dans la partie septentrionale de la zone, la jonction avec l’arc aléoutien (Source: Wikipedia)

Volcan Klyuchevskoy (Source : KVERT)