Rebond isostatique et éruptions en Antarctique ? // Isostatic rebound and eruptions in Antarctica ?

À la fin du documentaire consacré au « Réveil des volcans d’Europe » (France 5 le 7 avril 2025), Jamy Gourmaud aborde le sujet du rebond isostatique en Antarctique.

Le rebond isostatique est un phénomène que l’on peut rapprocher du bradyséisme qui affecte les Champs Phlégréens en Italie. À Pouzolles, le sol subit des variations de niveau au gré des phases de gonflement et de dégonflement de la chambre magmatique qui se trouve sous cette région. S’agissant des glaciers, avec leur fonte leur masse diminue, ce qui pourrait favoriser la poussée du magma qui sommeille sous la surface de la Terre ; on aurait affaire à une sorte de bradyséisme glaciaire.

Traces du bradyséisme sur le temple de Sérapis à Pouzzoles (Photo: C. Grandpey)

Plusieurs scientifiques ont évoqué le rebond isostatique à propos de l’Islande. Le documentaire diffusé le 7 avril nous explique que le soulèvement du substrat rocheux pourrait également se produire en Antarctique et favoriser le déclenchement d’éruptions sur le Continent blanc.
En étudiant l’interaction entre le volcanisme et la glaciation au cours des 150 000 dernières années, des scientifiques américains et allemands ont déterminé – dans une étude publiée début 2025 – que que le rebond isostatique pourrait augmenter la fréquence et l’intensité de l’activité volcanique dans le système de rift antarctique occidental (West Antarctic Rift System – WARS). Les résultats de l’étude ont été publiés dans la revue Geochemistry, Geophysics, Geosystems.
Comme l’a précisé Jamy Gourmaud, l’une des zones volcaniques les plus actives au monde, la région de WARS abrite plus de 130 volcans, dont beaucoup sont situés le long de la côte ouest de l’Antarctique. Si certains de ces volcans, comme le mont Erebus, sont visibles, beaucoup d’autres se cachent sous une épaisse couche de glace, une couche qui s’amincit et recule lentement.

Sommet de l’Erebus (Crédit photo: Wikipedia)

Les auteurs de l’étude ont analysé la « dynamique interne » du système d’alimentation magmatique dans la région en concevant un modèle de chambre magmatique thermomécanique et en simulant diverses baisses de pression causées par la déglaciation. L’étude a également examiné comment ce changement de pression faisait augmenter la taille de la chambre magmatique tout en impactant l’émission des substances volatiles. Après avoir effectué plus de 4 000 simulations, ils ont découvert que plus la chambre magmatique était grande, plus elle était impactée par le retrait des glaciers qui la surmontent.
Pour tester leurs conclusions, les chercheurs ont également exploré l’impact de la déglaciation dans les Andes, qui s’est produite il y a environ 18 000 à 35 000 ans. Ils ont trouvé des preuves d’une augmentation du volcanisme pendant la déglaciation au cours du dernier maximum glaciaire. La réduction de poids due à la fonte de la glace au-dessus permet également à l’eau dissoute et au dioxyde de carbone de former des bulles de gaz, ce qui provoque une accumulation de pression dans la chambre magmatique et peut éventuellement déclencher une éruption. »
Source : Populatr Mechanics via Yahoo News.

Comme je l’explique au cours de ma conférence « Volcans et Risques volcaniques », cette approche du rebond isostatique en milieu glaciaire est intéressante, mais nous ne disposons pas de suffisamment de recul dans le temps pour la valider. Le réchauffement climatique a vraiment commencé à s’accélérer dans les années 1970 et depuis cette époque, aucune éruption n’a été provoquée par un rebond isostatique. Les prochaines générations continueront ces observations et pourront affirmer si oui ou non la fonte des glaciers en milieu volcanique peut contribuer au déclenchement des éruptions.

La prochaine éruption du Katla (Islande) sera-t-elle provoquée par le rebond isostatique (Photo: C. Grandpey)

——————————————–

At the end of the documentary about « The Awakening of Europe’s Volcanoes, » Jamy Gourmaud tackles the topic of isostatic rebound in Antarctica.
Isostatic rebound is a phenomenon similar to the bradyseism that affects the Phlegraean Fields in Italy. In Pouzolles, the ground undergoes fluctuations according to the swelling and deflation of the magma chamber beneath the region. As glaciers melt, their mass decreases, which could promote the upwelling of magma lying dormant beneath the Earth’s surface; this would be a kind of glacial bradyseism.
Several scientists have mentioned isostatic rebound in connection with Iceland. The documentary released on April 7 explains that the uplift of the bedrock could also occur in Antarctica and trigger eruptions on the White Continent.

Studying the interplay between volcanism and glaciation over the past 150 thousand years, scientists from the U.S. and Germany determined that the isostatic rebound could increase the frequency and intensity of volcanoes in the West Antarctic Rift System (WARS). The results of the study were published in the journal Geochemistry, Geophysics, Geosystems.

One of the most volcanically active areas of the world, WARS is home to more than an estimated 130 volcanoes, many of which are located along Antarctica’s western coast. While some of these volcanoes, such as Mount Erebus, are visible, many more are hidden away beneath a deep sheet of ice, a sheet that is slowly thinning and retreating.

The authors of the study analyzed the“internal dynamics” of the magma plumbing system in the region by designing a thermomechanical magma chamber model and simulated various pressure decreases caused by deglaciation. The study also investigated how this change in pressure increased the size of the magma chamber while also impacting the expulsion of volatiles. After running more than 4,000 simulations, they found that the larger the magma chamber, the more impacted it was by retreating glaciers overhead.

To test their findings, the researchers also explored the impact of deglaciation in the Andes Mountains, which occurred around 18,000 to 35,000 years ago. They found evidence of increased volcanism during deglaciation during the Last Glacial Maximum. The reduced weight from the melting ice above also allows dissolved water and carbon dioxide to form gas bubbles, which causes pressure to build up in the magma chamber and may eventually trigger an eruption.”

Source : Populatr Mechanics via Yahoo News.

As I explain in my lecture « Volcanoes and Volcanic Risks, » this approach to isostatic rebound in a glacial environment is interesting, but we don’t have enough time to validate it. Global warming really started to accelerate in the 1970s, and since then, no eruption has been triggered by isostatic rebound. Future generations will continue these observations and will be able to determine whether or not the melting of glaciers in a volcanic environment can contribute to triggering eruptions.

Mars 2025 toujours trop chaud // March 2025 was still too hot

Selon l’Agence Européenne Copernicus, mars 2025 a été le deuxième mois de mars le plus chaud au niveau mondial, avec une température moyenne de 14,06°C, soit 0,65°C de plus que la moyenne 1991-2020 et 1,6°C de plus que le niveau préindustriel. Mars 2025 a également été le mois de mars le plus chaud pour l’Europe. Mars 2025 est seulement 0,08°C plus froid que le record de mars 2024 et à peine plus chaud qu’en 2016. Il faut toutefois noter que ces deux extrêmes précédents avaient été observés lors d’un fort épisode d’El Niño tandis que 2025 flirte avec La Niña, la phase inverse du cycle, synonyme d’influence rafraîchissante.

Les températures ont été majoritairement supérieures à la moyenne sur l’ensemble de l’Europe, les anomalies chaudes les plus importantes ayant été enregistrées sur l’Europe de l’Est et le sud-ouest de la Russie. En France, on à observé des températures légèrement supérieures aux normales avec un excédent de +0,65°C à l’échelle nationale.

En dehors de l’Europe, les températures ont été plus élevées que la moyenne sur une grande partie de l’Arctique, en particulier sur l’archipel canadien et la baie de Baffin. Elles ont également été supérieures à la moyenne aux États-Unis, au Mexique, dans certaines parties de l’Asie et en Australie. Les températures ont été très inférieures à la moyenne sur le nord du Canada, la baie d’Hudson et l’est de la Russie, y compris la péninsule du Kamtchatka.

La température moyenne de la surface de la mer en mars 2025 arrive en 2ème position, 0,12°C en dessous du record de mars 2024.

La glace de mer arctique a atteint en mars son étendue mensuelle la plus faible en 47 ans d’enregistrement par satellite, soit 6 % de moins que la moyenne. Il s’agit du quatrième mois consécutif au cours duquel l’étendue de la glace de mer a atteint un niveau record pour cette période de l’année.

La glace de mer de l’Antarctique a enregistré sa quatrième étendue mensuelle la plus faible pour le mois de mars, avec un niveau inférieur de 24 % à la moyenne.

Source : Météo France.

Anomalies de températures dans le monde en mars 2025
—————————————————–

According to the European agency Copernicus, March 2025 was the second warmest March on record, with an average temperature of 14.06°C, 0.65°C higher than the 1991-2020 average and 1.60°C higher than the pre-industrial level. March 2025 was also the warmest March on record for Europe. March 2025 is only 0.08°C colder than the record of March 2024 and barely warmer than 2016. It should be noted, however, that these two previous extremes were observed during a strong El Niño episode, while 2025 is flirting with La Niña, the reverse phase of the cycle, synonymous with a cooling influence. Temperatures were mostly above average across Europe, with the most significant warm anomalies recorded over Eastern Europe and southwestern Russia. In France, temperatures were slightly above average, with a national excess of +0.65°C.
Outside Europe, temperatures were above average over much of the Arctic, particularly over the Canadian Archipelago and Baffin Bay. They were also above average in the United States, Mexico, parts of Asia, and Australia. Temperatures were well below average over northern Canada, Hudson Bay, and eastern Russia, including the Kamchatka Peninsula.

The average sea surface temperature in March 2025 ranks second, 0.12°C below the March 2024 record.
Arctic sea ice reached its lowest monthly extent in 47 years of satellite recording in March, 6% below average. This is the fourth consecutive month in which sea ice extent has reached a record low for this time of year.
Antarctic sea ice recorded its fourth lowest monthly extent for March, with a level 24% below average.
Source: Météo France.

À propos des volcans sur Vénus // About Venus’ volcanoes

Dans une note diffusée le 4 juin 2024, j’expliquais qu’une étude publiée dans la revue Nature Astronomy présentait une nouvelle analyse des données recueillies en seulement huit mois au début des années 1990 par la sonde Magellan. Les images qui accompagnent cette étude révèlent des changements à la surface de Vénus attribuables au volcanisme survenu pendant la mission Magellan. L’étude montre que l’activité volcanique est non seulement continue sur Vénus, mais se produit également à grande échelle.

https://claudegrandpeyvolcansetglaciers.com/2024/06/04/activite-volcanique-sur-venus-volcanic-activity-on-venus/

Aujourd’hui, des scientifiques de l’Université de Washington à Saint-Louis pourraient ont PEUT-ÊTRE découvert la force motrice à l’intérieur des volcans vénusiens. IL SE POURRAIT que des processus de convection sous la surface très chaude de Vénus permettent d’expliquer l’activité des quelque 85 000 volcans de la planète, estimation basée sur des images radar de la mission Magellan de la NASA en 1989.

Source: NASA

Grâce à une nouvelle modélisation de la dynamique des fluides, les chercheurs montrent aujourd’hui que la croûte vénusienne POURRAIT favoriser la convection. Ceci POURRAIT expliquer comment la chaleur interne de Vénus est transférée vers la surface, là où les températures atteignent 466 °C et où les volcans et autres formations géologiques présentent des signes évidents de fusion.

Source: NASA

Jusqu’à présent, personne n’avait réellement évoqué la possibilité de convection dans la croûte vénusienne. Dans la nouvelle étude, les calculs des chercheurs montrent que la convection est PEUT-ÊTRE PROBABLE. Si cette hypothèse est confirmée, elle apportera aux scientifiques de nouvelles perspectives sur l’évolution de la planète.
La convection est bien connue dans le manteau terrestre. C’est le processus par lequel la matière chaude monte vers la surface d’une planète tandis que la matière plus froide s’enfonce. Sur Terre, les courants de convection provoquent le déplacement des plaques tectoniques à la surface de la planète et déclenchent des phénomènes géologiques comme le volcanisme.
Des courants de convection ont également été observés par la mission New Horizons de la NASA sur Pluton dont la surface présente des caractéristiques polygonales ressemblant aux limites des plaques sur Terre.
Source : Space.com via Yahoo News.
NDLR : J’ai écrit plusieurs mots en majuscules. Ils montrent que les scientifiques de l’Université Washington de Saint-Louis émettent des hypothèses qui demandent à être vérifiées pour être confirmées.

Source: NASA

————————————————

In a post published on June 4th, 2025, I explained that a research published in the journal Nature Astronomy presented a new analysis of data collected over the space of just eight months in the early 1990s by the Magellan orbiter. The images that accompany this study show changes in the Venusian surface that can best be attributed to volcanism that took place during the Magellan mission. The study suggested that volcanic activity was not only ongoing on Venus, but widespread.

https://claudegrandpeyvolcansetglaciers.com/2024/06/04/activite-volcanique-sur-venus-volcanic-activity-on-venus/

Today, scientists at Washington University in St. Louis MAY have just found the driving force behind Venus’ volcanoes Convection processes beneath Venus’ very hot surface MAY help explain the activity of the planet’s 85,000 volcanoes, an estimation based on radar images from NASA’s 1989 Magellan mission.

Using new fluid dynamic modeling, researchers show that Venus’ crust COULD support convection. This, in turn, COULD help explain how heat from Venus’ interior COULD be transferred to the surface, where temperatures reach 466 degrees Celsius and volcanoes and other geological features show clear signs of melting.

Up to now, nobody has really considered the possibility of convection in the crust of Venus. The researchers’ calculations suggest that convection is possible and PERHAPS LIKELY. If true, it will give scientists new insight into the evolution of the planet.

Convection is well known about Earth’s mantle. It is the process by which heated material rises toward a planet’s surface and cooler materials sink. On Earth, convection currents cause tectonic plates to move around the planet’s surface and trigger geological activity like volcanism.

Convection currents have also been observed by NASA’s New Horizons mission on Pluto which exhibits polygonal surface features resembling plate boundaries on Earth.

Source : Space.com via Yahoo News.

Editor’s note : I have written several wordsib capital letters. They show that the scientists at Washington University in St. Louis have just set forth hypotheses that need to be verified to be confirmed.

Sismicité et inflation sur la péninsule de Reykjanes (Islande) // Seismicity and inflation on the Reykjanes Peninsula (Iceland)

La sismicité reste relativement importante sur la péninsule de Reykjanes, même si elle a diminué depuis la crise des 2 et 3 avril, comme le montrent ces histogrammes.

Le Met Office indique qu’au cours des dernières 24 heures, environ 550 séismes ont été enregistrés sur la péninsule et jusqu’à la dorsale de Reykjanes. Les quatre secousses les plus intenses, d’une magnitude d’environ M3,0, ont été localisés au nord-ouest de Kleifarvatn et à Reykjanestá. Comme je l’ai indiqué précédemment, il est difficile de déterminer si elles sont d’origine tectonique ou si elles sont la conséquence de l’intrusion magmatique observée ces derniers jours. En effet, l’activité sismique la plus significative n’est plus observée le long de la chaîne de cratères de Sundhnúkur.
Les mesures GPS montrent assez clairement que l’inflation a repris sous Svartsengi. Selon le Met Office, « il est actuellement difficile d’évaluer la vitesse d’accumulation du magma et il faudra attendre quelques jours pour évaluer son évolution sous Svartsengi.» Le graphique d’inflation ci-dessous montre qu’elle a chuté lorsque la lave a percé la surface pendant quelques heures le 1er avril 2025. Elle a ensuite repris. Cependant, il semble que tout le magma contenu dans le dyke ne soit pas évacué. Les prochaines semaines nous diront comment la situation évoluera. Pour l’instant, toute prévision est impossible.

——————————————–

Seismicity is still significant on the Reykjanes Peninsula, although it has decreased since the criisis of April 2nd and 3rd, as shown on the histograms above.

The Met Office indicates that in the last 24 hours, about 550 earthquakes have been recorded on the peninsula and out to the Reykjanes Ridge. The four largest earthquakes were about magnitude M3.0, located NW of Kleifarvatn and on the Reykjanestá. As I put it before, it is difficult to determine whether thay have a tectonic origin or whether they are a consequance of the magma intrusion observed in the past days. Indeed, the most intense seismic activity is no longer observed along the Sundhnúkur crater row .

GPS measurements show fairly clear signs that inflation has begun under Svartsengi. Accorging to the Met Office, « at present, it is difficult to assess the speed of magma accumulation and it may be necessary to wait a few days to assess further development of magma accumulation under Svartsengi. » Looking at the inflation graph, one can see that inflation dropped when lava pierced the surface for a few hours on April 1st, 2025. Inflation later started again. However, it seems that all the magma that was in the dike has not erupted. The next weenks will tell us how the situation will evolve. For the moment, all predictions are impossible.