Magma et minerai de fer // Magma and iron ore

Des géologues ont découvert que certains magmas se composent de deux liquides distincts, dont l’un est très riche en fer. Leur étude, parue dans la revue Nature Communications, pourrait contribuer à la découverte de nouveaux gisements de minerai de fer pour l’exploitation minière.
Le minerai de fer est extrait dans quelque 50 pays ; l’Australie, le Brésil et la Chine sont les principaux producteurs. La plupart des gisements de minerai de fer se trouvent dans les roches sédimentaires. D’autres sont extraits dans des complexes volcaniques tels que El Laco dans la région d’Antofagasta au Chili, et Kiruna en Suède. Ces gisements de minerai de fer, appelés gisements de type Kiruna, représentent environ 10% de la production mondiale de fer, mais personne ne sait comment ils se sont formés.
L’équipe internationale de chercheurs appartenant à des institutions telles que KU Leuven (Belgique) , l’Université Leibniz de Hanovre (Allemagne) et l’ULiège (Belgique) explique avec certitude que ces gisements de minerai de fer se forment lorsque le magma se scinde en deux liquides distincts. Des études antérieures se sont attardées sur la texture ou la composition des roches naturelles. Les chercheurs mentionnés ci-dessus ont été les premiers à reproduire en laboratoire des magmas comme ceux d’El Laco. Autrement dit, ils ont reproduit les conditions observées dans les chambres magmatiques où s’accumule la roche en fusion lorsqu’elle ne peut remonter à la surface. C’est également là que se forment les gisements de minerai de fer sous les volcans. Il est donc intéressant de reproduire la température et la pression qui règnent dans les chambres magmatiques.
Dans ce but, l’équipe scientifique a utilisé un mélange d’échantillons de minerai riches en fer et de laves typiques que l’on rencontre autour des gisements de type Kiruna. Cela a donné naissance à une composition en vrac qui, selon les chercheurs, existe dans la chambre magmatique profonde sous les volcans. Ils ont placé le mélange dans un four et ont porté la température à 1000-140°C. Ils ont également augmenté la pression jusqu’à environ 1000 fois la pression atmosphérique terrestre. Ils ont ainsi reproduit les conditions qui règnent dans une chambre magmatique. Les chercheurs ont été surpris de constater que, dans ces conditions, le magma se scindait en deux liquides distincts, processus connu sous le nom d’immiscibilité. L’un de ces liquides contenait beaucoup de silice, tandis que l’autre était extrêmement riche en fer – jusqu’à 40% – et en phosphore. Lorsque le liquide riche en fer commence à se refroidir, on obtient du minerai de fer de type Kiruna riche en phosphore.
Cette expérience montre que l’immiscibilité est la clé de la formation de gisements de minerai de fer, comme celui extrait à El Laco. Si les résultats se vérifient, il pourront aider à trouver de nouveaux gisements de minerai de fer dans le monde.
Sources: Science Daily, KU Leuven.

——————————————

Geologists have discovered that some magmas split into two separate liquids, one of which is very rich in iron. Their findings could help to discover new iron ore deposits for mining.

Iron ore is mined in about 50 countries, with Australia, Brazil and China as the largest producers. Most iron ore deposits are found in sedimentary rocks. Others are mined in volcanic complexes such as El Laco in Chile and Kiruna in Sweden. These iron ore deposits, called Kiruna-type deposits, account for about 10% of the global production of iron, yet nobody knows how they are formed.

In Nature Communications, an international team of researchers from institutions including KU Leuven, Leibniz University Hannover, and ULiège present the first evidence that these iron ore deposits are formed when magma splits into two separate liquids. Previous studies have always focused on the texture or the composition of natural rocks. The researchers were the first to actually reproduce magmas in the lab such as the ones found in El Laco. They wanted to reproduce the conditions found in magma chambers, where molten rock accumulates when it cannot rise to the surface. This is also where the iron ore deposits beneath volcanoes are formed, so reproducing the temperature and pressure of the magma chambers seemed well worth examining.

That’s why the scientific team produced a mixture of iron-rich ore samples and typical lavas surrounding Kiruna-type deposits. This created a bulk magma composition that they believed exists in the deep magma chamber beneath volcanoes. They placed the mixture in a furnace and raised the temperature to 1,000-1,040°C. They also increased the pressure to about 1000 times the atmospheric pressure of Earth, which are the conditions of a magma chamber. The researchers were surprised to find that, under these conditions, the magma split into two separate liquids, a process known as immiscibility. One of these liquids contained a lot of silica, whereas the other was extremely rich in iron – up to 40% – and phosphorus. When this iron-rich liquid starts to cool down, one gets iron-phosphorus Kiruna-type ore deposits.

This is the first evidence that immiscibility is key to the formation of iron ore deposits such as the ones mined in El Laco. If the researchers are right, these findings may help to find new iron ore deposits.

Sources: Science Daily, KU Leuven.

Carte géologique du complexe volcanique d’El Laco

Publicités

2 réflexions au sujet de « Magma et minerai de fer // Magma and iron ore »

  1. Question peut être un peu tordue…
    Sachant que le noyau de la Terre est composé presque uniquement de fer, n’y a-t-il pas possibilité que dans certains cas, un panache mantellique profond puisse extraire une « masse » de fer du noyau et la faire remonter dans le manteau puis dans les couches superficielles de notre planète ???

    J'aime

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion /  Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion /  Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion /  Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion /  Changer )

Connexion à %s