Séisme et tsunami au Groenland ! // Earthquake and tsunami in Greenland !

Un séisme peu profond, de magnitude M 4.0, a secoué la côte ouest du Groenland à 28 km au nord du village de Nuugaatsiaq à 23h00 (heure locale) le 17 juin 2017. Le séisme a généré de fortes vagues de tsunami qui ont balayé 11 maisons et ont tué au moins 4 personnes. Sept habitants ont subi des blessures mineures alors que deux autres ont été gravement blessés.
Selon les médias locaux, les quatre personnes mortes étaient dans leur maison à Nuugaatsiaq lorsque de fortes vagues l’ont emportée dans l’océan.78 personnes ont été évacuées vers la ville d’Uummannaq et 23 autres ont refusé de partir.
Le tsunami a également frappé les localités d’Uummannaq, Illorsuit et Upernavik.
Quelques vidéos de mauvaise qualité ont été mise en ligne sur Internet. Voici l’une d’elles où l’on peut voir les vagues du tsunami:
https://www.youtube.com/watch?v=UypXiIkPmdU

Un sismologue canadien a déclaré: «Au vu de l’ampleur du tsunami, on pense que ce n’est pas le séisme proprement dit qui l’a déclenché. Le séisme a vraisemblablement provoqué un glissement de terrain sous-marin, et c’est ce glissement de terrain qui a déclenché le tsunami. Les tsunamis déclenchés par des glissements de terrain ont tendance à être très locaux. Ils sont différents de ceux qui traversent l’océan.»
Les séismes ne sont pas fréquents au Groenland. Voici un lien qui montre les événements au cours des dernières années. La plupart d’entre eux ont une magnitude moyenne de M 4,0, à des profondeurs de 10 à 15 km.
http://earthquaketrack.com/p/greenland/recent

Il convient de noter que la plupart des séismes au Groenland sont provoqués par le vêlage d’énormes blocs de glace sur le front des glaciers. Les scientifiques ont constaté que le nombre annuel de tels séismes a considérablement augmenté au cours des deux dernières décennies, passant d’une dizaine à une quarantaine par an.  Il n’est pas impossible que le dernier séisme et le tsunami soient une conséquence de la fonte des glaciers et de ses effets sur le plancher océanique.
Actuellement, les scientifiques estiment que la calotte glaciaire du Groenland perd entre 300 et 400 gigatonnes de glace par an. Cette perte n’entraîne qu’une petite élévation du niveau de la mer dans le monde, mais si toute la couche de glace du Groenland venait à fondre, le niveau de la mer augmenterait de 7 mètres à l’échelle mondiale. Une hausse du niveau de la mer due à la fonte de la glace du Groenland et de l’Antarctique, événement qui pourrait se produire avant la fin du 2100, dévasterait les villes côtières du monde entier.
Source: Presse internationale.

————————————

A shallow M 4.0 earthquake hit 28 km north of the village of Nuugaatsiaq, western coast of Greenland at 23:00 (local time) on June 17th, 2017. The quake caused large tsunami waves that swept away 11 houses and left at least 4 people dead. Seven people sustained minor injuries while two were seriously injured.

According to local media reports, the four dead persons were inside their home in Nuugaatsiaq when big waves struck and swept it into the ocean.78 people have been evacuated to the town of Uummannaq while 23 refused to leave.

Damaging waves have also struck the communities of Uummannaq, Illorsuit and Upernavik.

A few poor quality videos have been posted on the Internet. Here is one of them in which one can clearly see the tsunami waves:

https://www.youtube.com/watch?v=UypXiIkPmdU

A Canadian seismologist has declared: « Based on the magnitude, we suspect it wasn’t the earthquake itself that triggered the tsunami, but in all likelihood, the earthquake triggered an underwater landslide, and that is what triggered the tsunami. Tsunamis that are triggered by landslides tend to be very local. They’re not the ones that cross the ocean. »

Earthquakes are not frequent in Greenland. Here is a link that shows the events in the past years. Most of them average M 4.0, at depths of 10-15 km. *

http://earthquaketrack.com/p/greenland/recent

It should be noted that most earthquakes in Greenland are glacial earthquakes caused by the release of huge blocks of ice at the front of glaciers. Scientists have found that the annual tally of earthquakes increased significantly in the last two decades, from about 10 quakes per year initially to about 40 quakes per year most recently. It is not impossible that the last earthquake and tsunami were a consequence of glacial melting and its effects on the ocean floor.

Currently, scientists estimate that Greenland’s ice sheet loses between 300 and 400 gigatons of ice per year. That loss causes only a tiny sea level rise around the world, but if the whole Greenland ice sheet melted at once, sea level would rise 7 meters globally. Even a 2-meter rise from melting of the Greenland and Antarctic ice sheets, an amount some scientists say could happen by the end of 2100, would devastate coastal cities around the world.

Source: Presse internationale.

Photo: C. Grandpey

Modernisation du réseau sismique sur le Kilauea (Hawaii) // Upgrading of Kilauea’s seismic network (Hawaii)

Grâce à plusieurs années de travail, les techniciens du HVO ont récemment terminé la modernisation des stations sismiques au sommet du Kilauea. À partir de 2014, chacune de ces stations a été progressivement remise à niveau avec un sismomètre large bande de nouvelle génération, des panneaux  solaires, une radio, une antenne, un caisson de protection et un nouveau câblage. Les nouveaux caissons sont conçus avec de meilleures propriétés d’isolation afin de mieux supporter les variations de température tout au long de la journée. L’équipement est dissimulé pour minimiser son impact visuel sur l’environnement naturel. La modernisation du réseau sismique représente une étape importante pour le HVO. Elle permettra de mieux comprendre l’alimentation magmatique complexe sous le sommet du volcan.
Les premiers sismomètres gérés par le HVO ont été installés en 1994. Il était prévu qu’ils restent en place pendant un an. Il s’agissait de sismomètres « large bande », autrement dit des capteurs numériques plus sensibles sur une gamme de fréquences beaucoup plus élevée que les anciens sismomètres analogiques à courte période qui étaient les plus utilisés jusqu’à cette époque. Malgré tout, les sismos large bande de 1994 ont été conservés au-delà de la période d’essai d’un an car ils se sont montrés très utiles pour l’enregistrement de nombreux types de séismes et de signaux volcaniques que les scientifiques ont pu analyser en utilisant de nouvelles techniques.
La fréquence revient à décrire le nombre d’oscillations contenues dans un signal sismique. Elle est généralement mesurée en cycles par seconde, ou Hertz (Hz). En volcanologie, la fréquence dominante d’un signal sismique est liée à différents processus à l’intérieur du volcan. Par exemple, les ondes haute fréquence (supérieures à 1 Hz) enregistrées pour les séismes classiques sont généralement liées à un glissement sur une faille. Les ondes basse fréquence (moins de 1 Hz) sont souvent liées au mouvement du magma ou des fluides et des gaz qui s’échappent par des fractures. Les sismomètres large bande fournissent des enregistrements complets des ondes à haute et basse fréquence en provenance du volcan. Les sismomètres courte période les plus répandus sont calibrés pour enregistrer uniquement les ondes haute fréquence.
Le mouvement du magma sous le Kilauea génère une variété de séismes basse fréquence (souvent appelés Long-Period-LP) et Very Long Period (VLP) avec des fréquences de pointe de 0,17 Hz ou 60 secondes. Ces derniers séismes, qui ne peuvent être détectés qu’avec des sismomètres large bande, étaient pratiquement absents du réseau sismique existant. La nécessité d’un bon réseau large bande est devenue évidente au début de l’éruption sommitale de l’Halema’uma’u en 2008.
En 2009, l’American Recovery and Reinvestment Act (ARRA), un plan de relance économique aux Etats Unis, a permis au HVO de recueillir des fonds pour transformer le réseau mixte de surveillance – analogique et numérique – en un réseau entièrement numérique, le premier pour un observatoire volcanologique américain. Avec le financement de l’ARRA, le HVO a acheté de nouveaux ordinateurs de terrain qui enregistrent des signaux sismiques sur place, et des radios numériques pour transmettre les données en temps réel au HVO. Les derniers ordinateurs ont considérablement élargi la gamme dynamique utile de l’ancien réseau large bande. Cette capacité supplémentaire est importante pour caractériser le mécanisme qui génère des signaux sismiques associés à des effondrements dans le lac de lave sommital. Les scientifiques utilisent également les signaux sismiques pour développer des modèles de hausse et de baisse de la surface du lac de lave liées à l’accumulation et à la libération des gaz dans sa partie supérieure.
On s’est rendu compte en 2011 que les conditions environnementales adverses dans la caldeira sommitale du Kilauea posaient des problèmes aux sismomètres vieillissants. Les instruments étaient victimes de la corrosion à l’intérieur et à l’extérieur, ce qui entraînait des erreurs dans les mesures. Certains capteurs tombaient en panne. C’est pourquoi, à partir de 2014, le HVO a donné la priorité à l’amélioration du réseau large bande au sommet du volcan. Les stations sismiques ont été modernisées par étapes, en fonction de l’arrivée des financements.
Ce nouveau réseau de surveillance sismique est à la pointe de la technologie et offre aux sismologues un outil performant pour étudier les processus qui provoquent la sismicité sur le Kilauea. Il permet également de mieux comprendre le système d’alimentation magmatique du volcan, l’activité éruptive et les dangers qui l’accompagnent.

Source : USGS / HVO.

—————————————–

HVO field engineers recently completed a multi-year effort to upgrade a subset of seismic stations at the summit of Kilauea Volcano. Starting in 2014, each of the stations was progressively upgraded with a new-generation broadband seismometer, solar-power system, radio, antenna, enclosure, and cabling. The new enclosures for the seismometers are designed with better insulation properties to buffer the effects of changing temperatures throughout the day. The equipment is camouflaged to minimize its visual impact on the natural environment. The latest upgrades are an important milestone for HVO. It will improve the understanding of the complex magma plumbing system beneath volcano’s summit area.

HVO’s original seismometers were installed in 1994 as a year-long field test of “broadband” seismometers, digital sensors that are more sensitive over a much greater frequency range than are the short-period analog seismometers that were widely used at the time. But the 1994 broadband instruments were kept past the one-year test period, because they proved crucial for recording many types of earthquake and volcanic signals that scientists were able to analyze in new ways.

Frequency is one way of describing the number of oscillations of a seismic signal, typically measured in cycles per second, or Hertz (Hz). In volcano seismology, the dominant frequency of a seismic signal is related to different processes within the volcano. For example, high frequency waves (greater than 1 Hz) recorded for normal earthquakes are typically related to slip on a fault. Low frequency waves (less than 1 Hz) for some earthquakes are related to the movement of magma or fluids and gases through fractures. Broadband seismometers provide complete recordings of both high and low frequency waves coming from the volcano. The more commonly used short-period seismometers are tuned to record only high frequency waves.

The movement of magma under Kilauea generates a variety of low-frequency (often called Long-Period – LP) and Very Long Period (VLP) earthquakes with peak frequencies of 0.17 Hz or 60 seconds. The latter earthquakes, which can only be detected with broadband seismometers, were virtually invisible to the existing seismic network. The value of the dense broadband network became even more apparent when the summit eruption within Halema‘uma‘u began in 2008.

In 2009, the American Recovery and Reinvestment Act (ARRA) provided resources for HVO to convert the mixed analog and digital monitoring network to an all-digital network, a first for a U.S. volcano observatory.With ARRA funding, HVO purchased new field-hardened computers called digitizers to record seismic signals on-site and digital radios to transmit the data in real time to HVO. The digitizers significantly expanded the useful dynamic range of the original broadband network. This added capability was important for characterizing the mechanism that generates seismic signals associated with large rockfalls into the summit lava lake. Scientists also are using the expanded seismic signals to develop models of the short-term rise and fall of the lava lake surface related to the accumulation and release of volcanic gas in the uppermost part of the lava lake.

It became clear in about 2011 that the harsh environmental conditions in Kilauea’s summit caldera were taking a toll on the aging seismometers. The instruments were corroding inside and outside, leading to inconsistent measurements of ground shaking. Some sensors were failing. So, starting in 2014, HVO placed a high priority on improving the summit broadband network, and the stations were upgraded in phases as resources allowed.

This upgraded network reflects state-of-the-art earthquake monitoring, and offers volcano seismologists a more powerful tool to investigate processes that cause ground shaking at Kilauea. This in turn supports advances in the understanding of the volcano’s magma plumbing system, eruptive activity, and hazards.

Source: USGS / HVO.

Les sismos à tambour en vitrine sur le Kilauea montrent aux touristes les frémissements du volcan. Les scientifiques utilisent aujourd’hui des instruments numériques beaucoup plus modernes et performants. (Photo: C. Grandpey)