L’onde de choc du Tavurvur : Approche scientifique // Tavurvur’s shock wave: A scientific approach

drapeau-francaisA l’issue de la diffusion de ma note sur l’éruption spectaculaire du Tavurvur en 2014 et l’apparition d’une puissante onde de choc, j’avais sollicité l’aide d’un physicien pour obtenir des explications plus précises. Voici les remarques de Philippe Thoré à qui j’adresse mes très sincères remerciements.

Elles se situent à plusieurs niveaux :

1 – Sur le phénomène « supersonique » :

L’apparition – vraiment très fugace – d’un nuage conique (de vapeur d’eau) lors du passage de l’onde de choc avec le nuage éruptif évoque vraiment le phénomène observé parfois autour d’un avion en vol supersonique :  apparition d’un cône très évasé (comme ici) dans le cas d’une vitesse peu supérieure à la célérité du son (le cône serait beaucoup plus « pointu » en cas de vitesse très élevée). Cela tend bien à confirmer que les matériaux ont été éjectés à vitesse supersonique !

2 – Sur la célérité de propagation de l’onde de choc :

Concernant la « terminologie », on fait habituellement une distinction entre le terme « vitesse », qui désigne la rapidité de déplacement d’un objet matériel (par exemple un avion ou un projectile), et le terme « célérité », qui désigne la rapidité de déplacement d’une « perturbation », objet immatériel qui peut être par exemple la lumière, la houle, une onde de choc ou le son. Les expressions « vitesse du son » ou « vitesse de la lumière » font donc systématiquement sourciller les physiciens…

Concernant l’expression classique « a franchi le mur du son » : on l’utilise habituellement pour exprimer qu’un objet matériel (avion, projectile) a atteint une vitesse supérieure à la célérité du son, étant entendu que l’on parle de la célérité du son dans la zone où se déplace l’objet.

Concernant la célérité de l’onde de choc observée ici, on peut naturellement décomposer très grossièrement l’événement en deux phases : les tout premiers instants suivant la libération de la poche de gaz, où le phénomène est « extrême » (surpression énorme), et la suite de l’événement, où l’onde de choc atténuée par la dispersion spatiale a une amplitude « modérée » ; bien entendu, la transition entre les deux phases est progressive. Dans la deuxième phase, l’onde de choc se propage essentiellement sous la forme d’un son, sans déplacement significatif de l’air « traversé » : la célérité de l’onde est la même que celle du son. Dans la première phase en revanche, les lois habituelles de propagation ne sont pas applicables : tout en se propageant, l’onde de choc s’accompagne d’un déplacement significatif de matériaux (gaz divers, cendre, voire roches et débris de toutes sortes) : sa célérité propre vient se superposer partiellement à la vitesse de projection des gaz ; il n’est donc pas étonnant que la célérité « apparente » de l’onde de choc soit légèrement plus élevée que celle du son.

Néanmoins, l’onde de choc n’étant pas « matérielle », on ne peut pas dire qu’elle a « franchi le mur du son », elle a simplement été momentanément plus rapide que le son « ordinaire ».

Concernant maintenant la vidéo, plusieurs réflexions me viennent :

 – le début de l’événement se situe entre les secondes 11 et 12 de la vidéo, du fait que la zone où se produit la libération de la poche gazeuse est sous la ligne d’horizon, à l’intérieur du cratère et donc invisible ; corroborant ce fait, il semble bien qu’une ombre très légère apparaît quelques dixièmes de seconde avant la montée bien visible du nuage éruptif, ce qui allonge le temps de propagation à prendre en compte : la durée réelle de propagation serait alors nettement au-dessus des 13 secondes, tout en restant inférieure à 14 secondes ;

– la célérité du son doit être très proche des 350 m/s, voire les dépasser, si l’air est proche de la saturation en vapeur d’eau (ce qui manifestement le cas ici) et si sa température approche les 30 °C ; or, avec 350 m/s, on obtient un peu moins de 14,3 secondes.

– l’écart entre le temps théorique et le temps réel est donc très inférieur aux 2 secondes, voire légèrement inférieur à une seconde ; en prenant un exemple, s’il y avait une seconde d’écart par rapport au temps de référence de l’ordre de 14 secondes, cela correspondrait à une erreur de l’ordre de 7 % ; …et une erreur de 7 % sur la distance de 5 km ne donne que 350 mètres d’erreur sur cette distance, ce qui ne me paraît pas vraiment significatif.

Il serait donc très difficile de s’appuyer sur l’aspect « sonore » du phénomène pour confirmer le caractère supersonique de l’éjection des matériaux !

————————————-

drapeau-anglaisAfter releasing my post on the dramatic eruption of Tavurvur in 2014 and the appearance of a powerful shock wave, I solicited the help of a physicist to obtain more precise explanations. Here are the remarks of Philippe Thoré to whom I extend my sincere thanks.
They include several levels:

1 – On the « supersonic » phenomenon:
The very fleeting apparition of a conical cloud (of water vapour) during the passage of the shock wave with the eruptive cloud evokes the phenomenon observed sometimes around a plane in supersonic flight: apparition of a cone in the case of a speed slightly greater than the speed of the sound (the cone would be much « sharper » in case of very high speed). This tends to confirm that the materials have been ejected at supersonic speed!

2 – On the propagation velocity of the shock wave:
As far as the « terminology » is concerned, a distinction is usually made between the term « speed », which refers to the speed of movement of a physical object (eg an aircraft or a projectile), and the term « velocity »which refers to the speed of movement of a « perturbation », an immaterial object which may be, for example, light, swell, shock wave or sound. The expressions « speed of sound » or « speed of light » are therefore not appreciated by physicists …

Concerning the classic expression « has crossed the sound barrier »: it is usually used to express that a material object (plane, projectile) has reached a speed superior to the velocity of sound, i.e. the velocity of sound in the area where the object is moving.

Concerning the velocity of the shock wave observed here, one can decompose the event very roughly into two phases: the very first moments following the release of the gas pocket, where the phenomenon is « extreme » (due to the huge overpressure), and the rest of the event, when the shock wave, attenuated by the spatial dispersion, has a « moderate » amplitude; Of course, the transition between the two phases is gradual. In the second phase, the shock wave propagates essentially in the form of a sound, without any significant displacement of the « crossed » air: the velocity of the wave is the same as that of the sound. In the first phase, however, the usual propagation laws are not applicable: while propagating, the shock wave is accompanied by a significant displacement of materials (various gases, ash, even rocks and debris of all kinds ): Its own velocity partially superimposes itself to the speed of projection of the gases. Thus, it is not surprising that the « apparent » velocity of the shock wave should be slightly higher than that of sound.

– Nevertheless, since the shock wave is not « material », it cannot be said that it has « crossed the sound barrier », it has simply been momentarily faster than « ordinary » sound.

Concerning now the video, several remarks can be made:
The event begins between 11 and 12 seconds in the video, because the zone where the release of the gas pocket occurs is below the horizon, inside the crater and therefore invisible ; confirming this fact, it seems that a very slight shadow appears a few tenths of a second before the visible rise of the eruptive cloud, which lengthens the propagation time to take into account: the actual duration of the propagation would then be clearly above 13 seconds, while remaining less than 14 seconds;
– the velocity of the sound must be very close to or even exceed 350 metres per second, if the air is close to the saturation of water vapour (which obviously is the case here) and if its temperature approaches 30°C ; however, with 350 m / s, we get a little less than 14.3 seconds.

The difference between the theoretical time and the real time is thus much less than 2 seconds, or even slightly less than one second. By taking an example, if there was a second deviation from the reference time of the order of 14 seconds, this would correspond to an error of the order of 7%; … and an error of 7% over the distance of 5 km gives an error of only 350 meters on this distance, which does not seem really significant.

It would therefore be very difficult to rely on the « sonic » aspect of the phenomenon to confirm the supersonic nature of the ejection of materials!

mur-du-son

Avion franchissant le mur du son (Crédit photo: Wikipedia)

Publicités

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s