Islande : beaucoup de questions // Iceland : so many questions

Après les trois dernières éruptions qui viennent de se dérouler sur la péninsule de Reykjanes, les Islandais se posent la même question  : que va-t-il se passer maintenant ? Les trois éruptions ont été courtes mais proches les unes des autres. Celle du 8 février était la sixième sur la péninsule depuis 2021. Les scientifiques islandais pensent que ces éruptions appartiennent à un nouveau cycle éruptif qui pourrait durer des années, des décennies, voire des siècles.

 

Vue de l’éruption du 8 février 2024 (image webcam)

Les éruptions volcaniques en Islande sont dues à la position de l’île au-dessus d’un point chaud où des panaches de matière à haute température en provenance des profondeurs de la Terre s’élèvent vers la surface. Le pays se situe également à la frontière entre les plaques tectoniques eurasienne et nord-américaine. Ces plaques s’écartent très lentement l’une de l’autre en créant un espace qui permet au magma de remonter à la surface où il donne naissance à des coulées de lave.

Source: Wikipedia

La péninsule de Reykjanes a été volcaniquement active pour la dernière fois il y a plusieurs siècles. L’activité a peut-être commencé dès le 8ème ou 9ème siècle et s’est poursuivie jusqu’en 1240. Il y a ensuite eu une pause de 800 ans. Les volcanologues ont tenté de l’expliquer en observant les roches de la région. Elles montrent un schéma de périodes de calme d’environ 1 000 ans, suivies d’éruptions qui se poursuivent pendant quelques siècles. La situation évolue donc en suivant un tel schéma actuellement, et il pourrait y avoir une série d’éruptions relativement brèves et d’intensité modérée au cours des années et décennies à venir.
Il serait important de pouvoir prévoir ces éruptions car la ville de Grindavik et la centrale géothermique de Svartsengi se trouvent dans la zone de danger. Avec la répétition des éruptions, les scientifiques comprennent mieux ce qui se passe. Ils ont analysé la façon dont le sol se soulève sous la pression du magma. En conséquence, ils peuvent déterminer avec plus de certitude qu’auparavant le moment où le magma percera la surface, mais il est beaucoup plus difficile de prévoir exactement le lieu où se produira une éruption.

La centrale de Svartsengi sous la menace de la lave? (photo: C. Grandpey)

Comme le sol est fracturé de la péninsule de Reykjanes, le magma circule plus facilement et sur une zone plus vaste que sur des volcans conventionnels comme l’ Etna en Sicile. Les éruptions se produisent le long de fissures pouvant atteindre des kilomètres de long. Celle qui s’est ouverte le 8 février mesurait trois kilomètres.

 

Fissure éruptive du 8 janvier 2024 (image webcam)

Comme elles ne savent pas où aura lieu une éruption, les autorités islandaises ont construit des digues de terre autour de Grindavik et de la centrale électrique de Svartsengi. Ces remparts ont assez bien fonctionné lors de l’éruption du 14 janvier, même si une fracture s’est ouverte au-delà des digues et la lave a détruit trois maisons à Grindavik.

 

L’éruption du 14 janvier : digue de terre et fissure éruptive aux abors de Grindavik (image webcam)

Le sud-ouest est la région avec la plus forte concentration de population en Islande. 70 % de la population vit sur un rayon de 40 km. C’est là que se trouvent toutes les infrastructures clés : l’aéroport international, les grandes centrales géothermiques et de nombreuses infrastructures touristiques ; elles représentent une grande partie de l’économie islandaise. Les scientifiques préviennent que Reykjavik, la capitale, pourrait être impactée par l’activité volcanique. La situation deviendrait réellement préoccupante si les éruptions se déplaçaient plus à l’est le long de la péninsule. Il ne faudrait pas oublier que des coulées de lave datant du dernier cycle éruptif il y a 1 000 ans ont été recensées là même où se trouve Reykjavik. La lave pourrait faire sa réapparition lors de futures éruptions.

Photo: C. Grandpey

Afin d’essayer de prévoir ce qui pourrait arriver dans les prochaines années, les scientifiques étudient les différents systèmes volcaniques sur la péninsule de Reykjanes. Ils ont remarqué qu’au cours du dernier cycle, les premières éruptions ont débuté dans les systèmes situés à l’est et ont migré vers l’ouest. Plus récemment, les premières éruptions de 2021 se sont produites dans un système volcanique situé plutôt au milieu de la péninsule. Ce système semble maintenant complètement à l’arrêt car il ne semble plus y avoir de magma pour l’alimenter. « Semble » est le mot important car personne ne sait si cette situation est temporaire ou permanente.

Image webcam de l’éruption de 2021

Les éruptions les plus récentes, qui ont débuté en décembre 2023, se situent désormais dans un système un peu plus à l’ouest que le précédent. Grâce aux instruments, les scientifiques peuvent avoir une idée de la quantité de magma accumulé sous terre et ils peuvent savoir si ce magma est susceptible de s’éloigner de Grindavik et de la centrale électrique en direction d’un système volcanique voisin. Par exemple, s’ils constatent que l’alimentation magmatique diminue, cela peut signifier que l’activité commence à décliner et va cesser complètement, ce qui peut prendre quelques mois. La question sera alors de savoir s’il s’agit d’une accalmie temporaire ou de la fin définitive de cette phase d’activité. Actuellement, personne n’est en mesure de répondre à cette question.
Les scientifiques accumulent des connaissances à chaque éruption, mais il reste encore beaucoup d’incertitude en Islande au moment où un nouveau cycle volcanique est en train de commencer sur la péninsule de Reykjanes.
Inspiré d’un article publié par la BBC.

———————————————————-

After the last three eruptions on the Reykjanes Penisnula, Icelanders are asking the question : what will happen next ? The three eruptions were short ones but occurred close to one another. The 8 February eruption was also the sixth on the peninsula since 2021. Icelandic scientists think they belong to a new eruptive cycle that could last years, decades or even centuries.

Volcanic eruptions in Iceland are dur to the position of the island above a geological hotspot, where plumes of hot material deep within the Earth rise towards the surface. The country also sits on the boundary between the Eurasian and North America tectonic plates. These plates are very slowly pulling apart from each other, creating a space for magma eo rise to the surface where it gives birth to lava flows. .

The last time the Reykjanes peninsula was volcanically active was hundreds of years ago. Activity may have started as early as the 8th or 9th century and continued until 1240. Then, there was an 800-year gap. Volcanologists have tried to explain it by looking at the rocks in the region which show a pattern of periods of quiet lasting around 1,000 years, followed by eruptions that continue for a few centuries. So, the situation is proceeding as expected at the moment, and there might be a series of these relatively small, relatively short-lived eruptions over the coming years and decades.

Trying to predict when the eruptions will happen is a key concern for Iceland right now, especially as the town of Grindavik and the Svartsengi geothermal power plant are in the danger zone.

With the repetition of eruptions, scientists have a better idea of what is happening. They have been tracking how the ground is inflating with magma pressure. As a result, they can tell with more certainty than before when magma will break the surface. However, predicting exactly where an eruption will happen is much harder.

In the Reykjanes Peninsula, magma is held more loosely under a larger area than on conventional volcanoes like Mount Etna in Sicily, and it erupts through cracks fissures that can be kilometers long. The fissure that opened on February 8th was three kilometers long.

As they don’t know where an eruption will occur, Icelandic authorities are building earth barriers around Grindavik and the Svartsengi power plant. They worked fairly well during the 14 January eruption, although a fissure opened up ibeyond the barriers and lava destroyed three houses in Grindavik. –

The south-west is the most densely populated part of Iceland. 70% of the population lives within 40 km or so. This also includes all of the key infrastructure : the main international airport, big geothermal power plants, and a lot of tourist infrastructure too, which is a big part of Iceland’s economy. Reykjavik, the capital, might be impacted by volcanic activity. The situation would really become hazardous if the eruptions moved further east along the peninsula. One should not forget that there are lava flows from 1,000 years ago from the last eruptive cycle in what is now Reykjavik. Scientists say it is not unfeasible that the lava could flow there in future eruptions.

In order to try and predict what might happen in the future, scientists are looking at the different volcanic systems that sit across the Reykjanes Peninsula. They have noticed that in the last cycle, the first eruptions started in the systems to the east and migrated to the west.

More recently, the first eruptions of 2021 happened in a system that sits more in the middle of the peninsula. That system now seems to have completely switched off as it does not seem magma is gargering beneath it. Is this temporary or permanent ? No one knows.

The most recent eruptions, which began in December 2023, are now in a neighbouring system a little further west. Scientists can get an idea of how much magma is held underground and whether it is likely to shift away from Grindavik and the power station to another neighbouring volcanic system. For instance, if they see the rate of magma inflow declining, then that may be an indication that it is starting to switch off and completely die down, which may take a few months.The question would then be to know if it is just a temporary lull or the actual end of this phase of activity, and nobody is able to gave an answer to this question.

Scientists are learning more with every eruption, but there is still a great deal of uncertainty for Iceland as a new volcanic era begins.

Adapted from an article released by the BBC.

Le rebond isostatique en Patagonie // Isostatic rebound in Patagonia

Avec la fonte des glaciers et leur perte de masse à la surface de la Terre, cette dernière a tendance à se soulever dans un phénomène baptisé rebond isostatique. Il a été observé en Islande où certains scientifiques pensent que la pression moindre exercée par les glaciers pourrait favoriser une accélération de l’activité éruptive. Rien de tel n’a été observé pour le moment et il faudra prendre en compte de longues périodes de temps pour avoir confirmation de cette conséquence éventuelle. L’échelle géologique est beaucoup plus longue que l’espérance de vie d’un être humain!

Comme en Islande, les champs de glace qui s’étendent sur des centaines de kilomètres en Patagonie le long de la Cordillère des Andes en Argentine et au Chili fondent à l’un des rythmes les plus rapides de la planète. Dans le même temps, le sol sous cette couche de glace s’élève à mesure que les glaciers disparaissent. En plus de ce que l’on sait déjà en Islande, les géologues ont découvert en Patagonie un lien possible entre la perte récente de la masse de glace, le soulèvement rapide des roches et une faille entre les plaques tectoniques qui sous-tendent la région.

Une équipe scientifique de l’université de Washington à St. Louis (Missouri), vient de terminer l’une des premières études sismiques des Andes patagoniennes. La recherche a été financée par la National Science Foundation. Dans une publication parue dans la revue Geophysical Research Letters, ils décrivent et cartographient la dynamique locale de la subsurface de la Patagonie.

Les données obtenues pour effectuer l’étude montrent comment un rift dans la plaque tectonique descendante, à environ 100 kilomètres sous la Patagonie, a permis à des matériaux mantelliques plus chauds et moins visqueux de s’écouler sous l’Amérique du Sud. Au-dessus de cette zone, les champs de glace ont rétréci, supprimant le poids qui faisait autrefois fléchir le continent vers le bas. Les scientifiques ont constaté une très faible vitesse sismique dans et autour du rift, ainsi qu’un amincissement de la lithosphère rigide recouvrant le rift. Ces conditions particulières du manteau sont à l’origine de bon nombre des changements récents observés en Patagonie, notamment le soulèvement rapide de certaines zones qui étaient auparavant recouvertes de glace.

L’un des auteurs de l’étude explique que « les faibles viscosités signifient que le manteau réagit à la déglaciation sur une échelle de temps de quelques dizaines d’années, plutôt que de milliers d’années. » Un autre fait intéressant est que la viscosité est plus élevée sous la partie sud du champ de glace de la Patagonie méridionale par rapport au champ de glace de la Patagonie septentrionale, ce qui contribue à expliquer pourquoi les taux de soulèvement varient du nord au sud.

Ce rebond isostatique, aussi appelé ‘ »ajustement isostatique glaciaire », est surtout important parce qu’il affecte les prévisions d’élévation du niveau de la mer dans le cadre de scénarios de réchauffement climatique futurs.

L’une des découvertes les plus intéressantes de l’étude est que les parties les plus chaudes et les moins visqueuses du manteau se trouvent dans la région du rift, sous la partie des champs de glace de Patagonie qui s’est ouverte le plus récemment.

Source: ta météo.com.

—————————————–

With the melting of glaciers and their loss of mass on the surface of the Earth, the latter tends to rise in a phenomenon called isostatic rebound. It has been observed in Iceland where some scientists believe that the reduced pressure exerted by glaciers could promote an acceleration of eruptive activity. Nothing like this has been observed so far and long periods of time will have to be taken into account for confirmation of this possible consequence. The geological scale is much longer than the life expectancy of a human being!

As in Iceland, the ice fields that stretch ove hundreds of miles in Patagonia along the Andes Cordillera in Argentina and Chile are melting at one of the fastest rates on Earth. At the same time, the ground beneath this ice sheet is rising as the glaciers disappear. In addition to what has already been observed in Iceland, geologists in Patagonia have discovered a possible link between the recent loss of ice mass, rapid rock uplift and a fault between the tectonic plates that underlie the region. .
A group of scientists from Washington University in St. Louis, Missouri, has just completed one of the first seismic studies of the Patagonian Andes. The research was funded by the National Science Foundation. In a publication in the journal Geophysical Research Letters, they describe and map the local dynamics of the Patagonian subsurface.
Data obtained to perform the study show how a rift in the descending tectonic plate, about 100 kilometers beneath Patagonia, allowed hotter, less viscous mantle materials to flow beneath South America. Above this area, the ice fields have shrunk, removing the weight that once flexed the continent downward. Scientists observed very low seismic velocity in and around the rift, as well as a thinning of the rigid lithosphere covering the rift. These particular mantle conditions are driving many of the recent changes seen in Patagonia, including the rapid uplift of some areas that were previously covered in ice.
One of the authors of the study explains that « the low viscosities mean that the mantle reacts to deglaciation on a time scale of tens of years, rather than thousands of years. » Another interesting fact is that the viscosity is higher under the southern part of the Southern Patagonian Icefield compared to the Northern Patagonian Icefield, which helps explain why uplift rates vary from north to south.
This isostatic rebound, also called « glacial isostatic adjustment », is especially important because it affects predictions of sea level rise in relation with future climate warming scenarios.
One of the study’s most interesting findings is that the hottest, least viscous parts of the mantle are found in the rift region, beneath the part of the Patagonian Ice Fields that most recently opened up. .
Source: tameteo.com.

Crédit photo : Wikipedia

Dans la province de Santa Cruz, au sud-ouest de la Patagonie argentine, à la frontière avec le Chili, le parc national Los Glaciares héberge de nombreux glaciers qui aboutissent dans les lacs. Le plus connu et le plus accessible est le Perito Moreno qui est l’un des rares glaciers de la planète à résister aux assauts du réchauffement climatique. Ce comportement est dû aux abondantes précipitations neigeuses sur sa zone d’accumulation.

Source: NASA

Un essaim sismique en Islande n’annonce pas toujours une éruption! // A seismic swarm in Iceland does not always herald an eruption!

Un essaim sismique en Islande n’est pas toujours le signe d’une éruption imminente ! La sismicité peut également avoir une origine tectonique car l’île se situe à la frontière entre les plaques nord-américaine et eurasienne.
Cependant, il semble que l’événement de magnitude M 3.7 enregistré dans la région de Húsafell, dans l’ouest de l’Islande, à 00h05 le 1er février 2022 n’appartienne à aucune des deux catégories.
La source du séisme a été localisée à 18,5 km au sud-ouest de Húsafell, à une profondeur de 3 km. Plus d’une douzaine de répliques ont suivi, avec un événement atteignant M 3.0.
Un essaim sismique est observé dans la région depuis le début de 2022 et les événements les plus significatifs avaient des magnitudes de M 3,3 et M 3,1. Le dernier séisme de M3.7 a été ressenti à Borgarfjörður, ainsi que dans la région de la capitale et à Akranes.
Le Met Office islandais explique qu’il s’agit du plus puissant séisme à avoir frappé cette région depuis des décennies et du plus grand essaim sismique dans la région depuis que le Met Office a commencé ses observations dans les années 1990. L’activité sismique est principalement concentrée à l’ouest d’Ok, le glacier qui a perdu sa classification en tant que tel en 2019. Le nombre de séisme dans cette zone a environ doublé chaque semaine depuis la fin décembre, pour atteindre 171 événements entre le 17 et le 23 janvier.
Les géologues islandais confirment que la zone n’est pas une zone d’activité volcanique et « il n’y a aucune raison de croire que l’activité sismique est liée à des mouvements de magma ». Ils pensent qu’il s’agit probablement « d’un de ces essaims sismiques intraplaques qui se produisent de temps en temps. Ils se produisent à l’intérieur d’une plaque tectonique, pas à la limite de plaques, ni dans la zone volcanique de la péninsule de Snæfellsnes. Donc, ceux qui voient des éruptions partout en Islande doivent se calmer !
Source : Iceland Monitor.

———————————————-

An earthquake qwarm in Iceland is not always the sign of an impending eruption! Seismicity can also have a tectonic origin as the island lies at the border between the North American and Eurasian plates.

However, it looks as if the M 3.7 event that was recorded in the Húsafell area, West Iceland, five minutes past midnight on February 1st did not belong to any of the two categories.

The source of the quake was 18.5 km southwest of Húsafell, at a depth of 3 km. More than a dozen aftershocks followed, with one event reaching M 3.0.

A seismic swarm has been observed in the area since the beginning of 2022 and the most significant events measured 3.3 and 3.1. The latest M3.7 quake was felt in Borgarfjörður, as well as in the capital area and in Akranes.

The Icelandic Met Office says it is the largest earthquake to hit this area in decades and the largest seismic swarm in the area since the Met Office started monitoring in the 1990s. Seismic activity was mainly concentrated west of Ok, the former glacier which lost its classification as such in 2019. The earthquake rate in this area has approximately doubled every week since late December, with 171 events between January 17th and 23rd.

Icelandic geologists confirm that the area is not one of volcanic activity and « there is no reason to believe that this is connected to magma movements.” They think it is likely « one of those occasional intraplate earthquake swarms. This is occurring inside a tectonic plate, not at a tectonic plate boundary, nor is it in the volcanic zone of the Snæfellsnes peninsula. So, those who see eruptions everywhere in Iceland should calm down!

Source: Iceland Monitor.

Source: IMO

 

Islande: Fin du suspense? // Iceland: End of the suspense?

La situation a l’air de bien se calmer en Islande et va peut-être mettre fin à l’angoisse des volcanologues locaux qui se posent beaucoup de questions sur l’avenir de l’éruption de Fagradalsfjall. Cela fait maintenant plus de deux semaines qu’aucune coulée de lave n’est observée sur le site. Le cratère principal se contente de dégazer tranquillement et ne montre pas la moindre velléité de réveil. La sismicité est en train de décliner dans la région et le tremor ne montre plus la même ardeur.

L’apparition d’une sismicité relativement intense à proximité du site éruptif initial a fait croire à une migration du magma et à la réapparition de la lave dans le secteur de Keilir. Au moment où j’écris cette note, aucun événement significatif n’est observé dans la région. En particulier, les satellites n’ont pas détecté d’inflation ou de déformation du sol.

Y a-t-il eu une intrusion magmatique comme l’ont affirmé certains? Mystère et boule de gomme. L’intrusion, a-t-elle effectivement eu lieu avec un manque de pression du magma, ce qui lui aurait empêché de percer la surface? Allez savoir!

La sismicité était-elle d’origine tectonique? Pourquoi pas? Comme je l’ai déjà signalé, la Presqu’île de Reykjanes est complexe car il y a une cohabitation entre la tectonique d’accrétion de l’Islande et un volcanisme potentiel. C’est d’ailleurs ce double aspect qui a fait beaucoup hésiter les scientifiques islandais avant que l’éruption se déclenche le 19 mars 2021. Ils se sont longtemps demandé s’il s’agissait effectivement d’une intrusion magmatique avec présence d’un dyke.

Heureusement, ces tergiversations sont sans danger car la région est très faiblement peuplée. Au pire, la lave aurait pu couper la route côtière au moment de l’éruption de Fagradalsfjall. Elle aurait pu couper la route conduisant à l’aéroport de Keflavik si une éruption avait eu lieu dans le secteur de Keilir.

Avec un peu de recul, on se rend compte qu’il reste un très long chemin à parcourir dans le domaine de la prévision volcanique…

——————————————-

The situation seems to be calming down in Iceland and perhaps will put an end to the anxiety of local volcanologists who have asked many questions about the future of the Fagradalsfjall eruption. It has now been more than two weeks since no lava flow has been observed at the site. The main crater is only degassing quietly and does not show the slightest hint of waking up. Seismicity is declining in the region and the tremor is decreasing as well.
The intense seismicity that was recorded near the initial eruptive site suggested a migration of magma and that lava might pierce the surface in the Keilir area. As of this writing, no significant events are observed in the region. In particular, the satellites did not detect any ground deformation or inflation.
Was there a magma intrusion as some have claimed? Nobody knows. Did the intrusion actually take place with a lack of pressure from the magma, which prevented it from piercing the surface? Who knows!
Was the seismicity of tectonic origin? Why not? As I have already pointed out, the Reykjanes Peninsula is complex because there is a mixture of Icelandic accretion tectonics and a potential volcanism. This dual aspect also caused Icelandic scientists to hesitate a lot before the eruption started on March 19th, 2021. They wondered for a long time whether it was indeed a magmatic intrusion with the presence of a dyke.
Fortunately, these procrastinations are harmless because the region is very sparsely populated. At worst, lava could have cut off the coastal road at the time of the Fagradalsfjall eruption. It could have cut off the road to Keflavik airport if an eruption had occurred in the Keilir area.
Looking back, one realizes that there is still a very long way to go in the field of volcanic prediction…

Capture écran webcam