Persistance de la sismicité dans l’Afar (Éthiopie) // Continuing seismicity if the Afar region (Ethiopia)

Une sismicité relativement importante continue d’être enregistrée dans la région du volcan Dofen en Éthiopie depuis le 22 décembre 2024. Cette crise a été marquée par une série de séismes modérés à forts, l’ouverture d’importantes fissures dans le sol et l’apparition d’une bouche volcanique dans la région de l’Afar.
Un nouveau séisme de forte intensité et peu profond, enregistré par l’USGS avec une magnitude de M5,5, a frappé la région de l’Afar le 16 mars 2025. L’hypocentre se situait à 10 km de profondeur. L’épicentre se trouvait à 46 km au sud d’Awash et à 55 km à l’est du volcan Dofen. Le risque de victimes et de dégâts est faible. Une réplique modérée de magnitude M4,3 a également été enregistrée le 16 mars à 10 km de profondeur.
L’évacuation de 60 000 habitants a été ordonnée après le séisme de magnitude M5,7 du 4 janvier 2025, qui a provoqué l’apparition de larges fissures.
Le 3 janvier, une nouvelle bouche est apparue près du mont Dofen ; elle émettait de puissants jets de vapeur, de gaz, de roches et de boue, suscitant des inquiétudes quant à une éventuelle éruption.
L’activité sismique a par ailleurs suscité des inquiétudes quant à la stabilité structurelle du barrage de Kesem/Sabure, qui retient un volume d’eau important. Le barrage est censé résister à des séismes de magnitude M5,6. Cependant, l’activité sismique dans la région dépassant ce seuil, les scientifiques ont averti que toute défaillance structurelle pourrait entraîner des inondations catastrophiques, mettant en danger la vie de centaines de milliers d’habitants.
La région se situe dans le rift éthiopien qui fait partie du Système de rift est-africain (EARS), l’une des zones tectoniques les plus actives au monde. Cette région est sujette à de fréquents séismes, éruptions volcaniques et déformations du sol, principalement dues à l’accrétion des plaques tectoniques et à l’intrusion de magma sous la surface. Le rift africain se situe à la limite entre des plaques tectoniques divergentes, là où la plaque africaine est en train de se scinder en deux et donne naissance à la plaque somalienne et la plaque nubienne. La partie orientale de l’Afrique, autrement dit la plaque somalienne, s’éloigne du reste du continent, qui comprend la plaque nubienne. Les plaques nubienne et somalienne se séparent également de la plaque arabique au nord, créant ainsi un système de rift en « Y ». Ces plaques se croisent dans la région de l’Afar, en Éthiopie, en formant une « triple jonction ».
Source : The Watchers, USGS.

Source: USGS

———————————————

A significant seismicity has been recorded in Ethiopia’s Dofen volcano region since December 22nd, 2024. The crisis has been marked by a series of moderate to strong earthquakes, large ground fissures, and the opening of a powerful volcanic vent in the Afar region.

Another strong and shallow earthquake registered by the USGS as M5.5 hit the Afar region on March 16th, 2025. The hypocenter was located at a depth of 10 km. The epicenter was located 46 km south of Awash, and 55 km east of Dofen volcano. There is a low likelihood of casualties and damage. A moderate M4.3 aftershock was also recorded on March 16th at a depth of 10 km.

The evacuation of 60,000 residents was ordered after an M5.7 earthquake on January 4th, 2025, led to the appearance of large cracks.

On January 3rd, a new vent formed near Mount Dofen, releasing powerful jets of steam, gas, rocks, and mud, raising concerns about a potential eruption.

The seismic actuivity raised concerns about he structural stability of the Kesem/Sabure Dam which holds a substantial volume of water. The dam is supposed to withstand earthquakes up to M5.6. However, with seismic activity in the region exceeding that threshold, experts warned that any structural failure could lead to catastrophic flooding, endangering hundreds of thousands of lives.

The region lies within the Main Ethiopian Rift, part of the East African Rift System (EARS), one of the most tectonically active zones in the world. This region is prone to frequent earthquakes, volcanic eruptions, and ground deformation, mainly from ongoing tectonic plate divergence and magma intrusion beneath the surface. The rift lies on a developing divergent tectonic plate boundary where the African plate is in the process of splitting into two tectonic plates, the Somali plate and the Nubian plate. The eastern portion of Africa, the Somalian plate, is pulling away from the rest of the continent, that comprises the  Nubian plate. The Nubian and Somalian plates are also separating  from the Arabian plate in the north, thus creating a ‘Y’ shaped rifting system. These plates intersect in the Afar region of Ethiopia at what is known as a ‘triple junction’.

Source : The Watchers, USGS.

Changement de forme du noyau interne de la Terre // Earth’s inner core is changing shape

Une nouvelle étude conduite par des sismologues de l’Université de Californie du Sud montre que le noyau interne de la Terre n’est pas une sphère statique et uniforme, mais une structure dynamique qui subit des changements de forme, avec des zones qui s’élèvent et s’abaissent jusqu’à 1 km sur de courtes échelles de temps géologiques.

L’étude a utilisé des données provenant de capteurs de la base aérienne d’Eielson en Alaska et du réseau sismologique de Yellowknife dans les Territoires du Nord-Ouest du Canada. L’analyse des ondes sismiques générées par des séismes survenus entre 1991 et 2023 a révélé des variations surprenantes dans le comportement des ondes ; elles laissent supposer que la couche la plus externe du noyau interne subit des déformations localisées en raison de la redistribution de la matière. Les ondes sismiques fournissent des informations essentielles sur le noyau interne, qui se trouve à environ 5 000 km sous la surface de la Terre. Elles révèlent des informations sur sa composition et sur tout changement en cours. Les observations les plus importantes de l’étude montrent que si les ondes sismiques plus profondes restent constantes, celles qui se propagent le long des couches externes du noyau interne présentent des anomalies. Ces déformations montrent que la surface du noyau interne est en constante évolution.

 Source: University of Saskatchewan

La topographie changeante du noyau interne peut être due à de multiples facteurs liés aux conditions extrêmes de température et de pression dans les profondeurs de la planète. Il se peut que les fluctuations de température à la frontière entre le noyau interne et le noyau externe provoquent une fusion et une solidification continues du fer, ce qui remodèlerait la surface du noyau au fil du temps. Une autre théorie explique que le fer pourrait s’échapper du noyau interne en rafales semblables à la remontée du magma dans le manteau terrestre, mais en étant soumis à des pressions extrêmes. Les changements rapides détectés entre 2004 et 2008 révèlent que ces déformations se produisent plus rapidement qu’on ne le pensait auparavant, ce qui soulève des questions sur leurs implications plus larges pour le système géodynamique de la Terre.

Il est important de comprendre si ces déformations influencent les courants convectifs du fer en fusion dans le noyau externe. Les chercheurs étudient également si les déformations du noyau interne sont liées aux variations de rotation. Les déplacements asymétriques du noyau peuvent provoquer des fluctuations mineures dans la rotation de la Terre, affectant les processus planétaires tels que la durée du jour et les variations du moment angulaire. Les changements dans la forme et le mouvement du noyau interne pourraient affecter le transfert de chaleur entre les couches du noyau, influençant potentiellement la stabilité du champ magnétique terrestre et contribuant à des fluctuations telles que les inversions géomagnétiques.

Les recherches futures se concentreront sur la collecte de davantage de données sismiques, l’amélioration des simulations informatiques et l’affinement des modèles théoriques des interactions noyau-manteau. Les scientifiques souhaitent examiner comment ces changements structurels influencent des processus géodynamiques plus larges, notamment la convection dans le manteau et la tectonique des plaques.

 

Vision moderne de la convection mantellique (Kevin C. A. Burke) 

Source : The Watchers.

——————————————————

New research by seismologists at the University of Southern California shows that Earth’s inner core is not a static, uniform sphere but a dynamic structure experiencing shape changes, with regions rising and falling by up to 1 km over short geological timescales.

The study utilized data from sensors at the Eielson Air Force Base in Alaska and the Yellowknife Seismological Array in Canada’s Northwest Territories. Analysis of seismic waves from earthquakes between 1991 and 2023 revealed unexpected variations in wave behavior, suggesting that the outermost layer of the inner core undergoes localized deformations due to the redistribution of material. Seismic waves provide critical insights into the inner core, which lies approximately 5 000 km beneath the Earth’s surface. Waves passing through the core reveal information about its composition and any ongoing changes. Key observations from the study showed that while deeper seismic waves remained consistent, those traveling along the outer layers of the inner core exhibited anomalies. This suggested localized deformations indicating that the inner core’s surface is in constant flux.

The shifting topography of the inner core may result from multiple factors related to extreme temperature and pressure conditions deep within the planet. One possibility is that temperature fluctuations at the boundary between the inner and outer core cause continuous melting and solidification of iron, reshaping the core’s surface over time. Another theory suggests that iron may be bubbling out of the inner core in localized bursts, similar to magma upwelling in Earth’s mantle, albeit under extreme pressures. The rapid changes detected between 2004 and 2008 suggest that these deformations occur faster than previously believed, raising questions about their broader implications for Earth’s geodynamic system.

A key concern is whether these deformations influence the convective currents of molten iron in the outer core. Researchers are also investigating whether inner core deformations are linked to rotational variations. Asymmetric shifts in the core may cause minor fluctuations in Earth’s rotation, affecting planetary processes such as day length and angular momentum variations. Changes in the inner core’s shape and movement could affect heat transfer between core layers, potentially influencing the stability of Earth’s magnetic field and contributing to fluctuations such as geomagnetic reversals.

Future research will focus on gathering more seismic data, enhancing computational simulations, and refining theoretical models of core-mantle interactions. Scientists aim to examine how these structural changes influence broader geodynamic processes, including mantle convection and plate tectonics.

Source : The Watchers.

La sismicité dans la mer Égée (suite) // Seismicity in the Aegean Sea (continued)

Sur sa page Facebook, Haraldur Sigurdsson a publié une carte très intéressante du GeoForschungs Zentrum de Potsdam. Au lieu de la carte précédente avec des nuages pour illustrer les séismes, les scientifiques allemands ont clarifié les données concernant la région de Santorin depuis le 29 janvier 2025 et ils proposent aujourd’hui une image beaucoup plus lisible (voir ci-dessous). On peut voir la tendance linéaire de l’activité sismique vers le nord-est ; elle correspond probablement à des lignes de faille ou de dykes, ou les deux. Il convient de noter que la tendance n’inclut pas le volcan sous-marin Kolumbo, qui est entré en éruption en 1650. La nouvelle carte semble confirmer que le dernier essaim sismique avait une origine tectonique et n’était pas lié aux volcans de la région.

————————————-

On his Facebook page, Haraldur Sigurdsson has posted a very interesting map from Die GeoForschungs Zentrum in Potsdam. Instead of the prevous map with clouds showing the earthquakes, the German scientists have cleaned up the data from the Santorini region since 29. January 2025, and suggest a much clearer picture (see below). One can see linear northeasterly trends that are likely showing fault lines or dike trends, or both. It should be noted that the trend does not include submarine volcano Kolumbo, which erupted in 1650. The new map seems to confirm that the latest seismicity had a tectonic origin and was not related to the volcanoes in the region.

Santorin (Grèce) : personne ne sait… // Santorini (Greece) : nobody knows…

Voici un résumé de la situation à Santorin et dans ses environs. Une chose est certaine : personne ne sait comment va évoluer la situation dans les prochains jours, les prochaines semaines et les prochains mois. Plusieurs hypothèses ont été émises par les scientifiques, mais aucune prévision fiable n’a été faite et ne peut être faite.
Au début de la crise sismique actuelle dans la mer Égée, on a brièvement craint que ce soit le signe d’une injection de magma dans la croûte terrestre, accompagnée de séismes, avec le risque d’une éruption volcanique. Apparemment, cette hypothèse peut être écartée. En effet, la sismicité a rapidement quitté la caldeira de Santorin et se concentre désormais au nord-est. La plupart des séismes proviennent de la zone de faille Santorin-Amorgos. Ils ne présentent aucune des caractéristiques liées à une ascension de magma, et ne s’accompagnent pas de signes pré-éruptifs typiques comme un soulèvement important du sol et une déformation des pentes d’un volcan.

Tous les sismologues à Santorin s’accordent à dire que la sismicité actuelle est d’origine tectonique. Une possibilité est que l’essaim sismique décline et que tout rentre dans l’ordre. Mais la menace la plus importante est celle d’un puissant séisme, avec les glissements de terrain ou le tsunami qu’il pourrait déclencher. Personne n’a oublié ce qui s’est passé en 1956, lorsqu’un séisme de magnitude M7,7 a frappé le sud de l’île d’Amorgos, suivi quelques minutes plus tard par un séisme de magnitude M7,2 près de Santorin. L’événement a causé des dégâts importants aux deux îles et a également déclenché un tsunami de 25 mètres de haut. 53 personnes ont été tuées et 100 autres blessées.

En cliquant sur ce lien, vous verrez un bon documentaire sur le séisme de 1956, avec de nombreux témoignages :

https://www.youtube.com/watch?v=hce8U7o1JHk

Bien qu’un puissant séisme fasse partie des préoccupations, ce n’est pas la seule source d’inquiétude. On redoute aussi que la sismicité migre vers la chaîne volcanique de cette région de la mer Égée, avec en particulier le volcan sous-marin Kolumbo. Un couplage des deux acticités, sismique et volcanique, ne peut être exclu.

Certains scientifiques craignent que la sismicité actuelle ne soit le signe avant-coureur d’une secousse beaucoup plus forte. Jusqu’à présent, la plus significative a été enregistré le 5 février au soir, avec une magnitude de M5,2.
Santorin connaît souvent une activité sismique, mais rarement aussi intense et aussi longue. L’activité actuelle est également inhabituelle. En effet, on observe généralement un puissant séisme suivi de répliques dont la magnitude et la fréquence diminuent avec le temps. Dans le cas présent, nous observons un phénomène très différent : la magnitude a augmenté avec le temps, ce qui n’est pas un comportement typique. Selon un scientifique, un tel comportement correspond généralement à une activité « pré-sismique », ce qui signifie que l’événement le plus puissant reste peut-être à venir. C’est pourquoi les autorités grecques ont pris des mesures de précaution, avec des évacuations organisées et la présence de forces de secours prêtes à intervenir.
Source : Médias d’information internationaux.

Avec ses maisons perchées au sommet de falaises, Santorin est très exposée aux glissements de terrain et aux effondrements en cas de séisme (Crédit photo : Wikipedia)

————————————————–

Here is a summary of the situation in and around Santorini. One can only say that nobody knows what will happen next. Several hypotheses have been suggested but no reliable prediction has been made and can be made.

In the early days of th ecurrent seismic crisis in the Aegean Sea, there were briefly concerns that this could indicate the start of a fresh injection of magma into the Earth’s crust, which could generate additional, damaging quakes or potentially trigger an eruption. Fortunately, the caldera-focused quakes were only temporary. Right now, the seismic activity is focusing to the northeast. It’s not clustering underneath any volcano. Now, most quakes are coming from the Santorini-Amorgos fault zone. These offshore quakes also show none of the hallmarks of ascending magma, nor are they accompanied by typical pre-eruption signs, like significant ground uplift and deformation on a volcano’s slopes. All seismologists at Santorini agree to say that the earthquakes are related to tectonic activity.

For now, the major threat is an especially strong earthquake, and any resulting landslides or localized tsunamis it may cause. The swarm could suddenly die out, but there is still an anxiety that there could be an acceleration to a much larger earthquake like the event that occurred in 1956, when an M 7.7 quake struck to the south of the island of Amorgos, followed minutes later by an M7.2 earthquake near Santorini. This caused significant damage to both islands and also triggered a 25-meter-high tsunami. 53 people were killed, and a further 100 were injured.

By clicking on this link, you will see a good documentary on the 1956 earthquake, with many testimonies:
https://www.youtube.com/watch?v=hce8U7o1JHk

Although a catastrophic quake is of concern, it’s not the only thing causing anxiety. The biggest worry is if the earthquakes start to focus more toward the volcanic chain, including the nearby submarine volcano Kolumbo. “There is always a risk of some kind of coupling.

Some scientits fear that the current seismicity might herald a much bigger one. According to a scientists, days, or perhaps, weeks will be needed to evaluate the unusual tremors but the series of quakes typically occur in the build-up to a larger tremor. The largest tremor so far was recorded on February 5th in the evening, with a magnitude M5.2.

Santorini often experiences seismic activity, but rarely so intensely for so long.The current activity is also unusual because what one usually observes is a large earthquake followed by aftershocks which decrease with time in magnitude and frequency. Here, we observe a very different phenomenon. We see that the magnitude has been increasing with time and the rate has been increasing, so this is not typical behavior. According to one scientist, such behavior typically amounts to “foreshock” activity, meaning that the largest earthquake could be yet to come. This is why the Greek authorities are taking precautionary measures, with organized evacuations and the readying of rescue forces.

Source : International news media.