L’Ol Doinyo Lengaï (Tanzanie) s’enfonce dans le sol // Ol Doinyo Lengai (Tanzania) is sinking into the ground

Il y a quelques jours (le 4 août 2024), j’ai diffusé une note donnant les dernières nouvelles de l’Ol Doinyo Lengaï, le seul volcan actif au monde à émettre des carbonatites.
Un article publié sur le site Live Science nous informe que le Lengaï s’enfonce peu à peu dans le sol depuis 10 ans, et que la cause pourrait être la perte de volume d’un réservoir qui se trouverait juste sous l’un des deux cratères. C’est la conclusion d’une nouvelle étude publiée le 8 juin 2024 dans la revue Geophysical Research Letters. Les chercheurs ont utilisé les données de deux systèmes satellitaires, Sentinel-1 et Cosmo-SkyMed, pour élaborer des cartes montrant l’évolution au fil du temps du sol autour de l’Ol Doinyo Lengai.
La nouvelle étude révèle que le sol autour du sommet du Lengai s’est affaissé à raison de 3,6 centimètres par an entre 2013 et 2023. Cela signifie que le volcan qui culmine officiellement à 2 962 mètres d’altitude a perdu environ 36 centimètres au cours de la période couverte par l’étude. Les cartes montrent qu’une zone circulaire autour du cratère nord du volcan « s’éloigne du satellite, de manière constante au fil du temps. »

Illustration du système d’alimentation sous le Lengaï, extraite de l’étude mentionnée ci-dessus.

Comme je l’ai écrit précédemment, l’Ol Doinyo Lengai a connu un épisode explosif en septembre 2007. Cette activité s’est poursuivie jusqu’au printemps 2008, après quoi le volcan a recommencé à produire des coulées de lave. Des études antérieures avaient déjà signalé que le cratère qui venait d’exploser était probablement en train de s’affaisser. La nouvelle étude confirme que les pentes supérieures du cratère s’affaissent depuis 2013. Il convient de noter que les chercheurs n’ont pas étudié les données entre 2008 et 2013. Selon les auteurs de la dernière étude, la cause probable de cet affaissement est un réservoir de magma dont la taille est en train de se réduire, à un millier de mètres sous le volcan.
On peut lire dans la dernière étude qu’« aucune recherche ne s’est intéressée à la géométrie et aux caractéristiques du système d’alimentation magmatique peu profond sous l’Ol Doinyo Lengai. » Il se peut que ce réservoir soit connecté à un réservoir plus profond et plus volumineux à 3 000 mètres ou plus sous le volcan.
Les chercheurs expliquent que la surveillance de l’affaissement de l’Ol Doinyo Lengai est importante pour prévoir les éruptions. Ils ajoutent qu’il existe également une fissure remplie de lave, d’une centaine de mètres de longueur, le long du bord ouest du volcan. « Elle pourrait s’allonger encore davantage avec les éruptions et le processus d’affaissement du Lengai. Selon Francis Balland, cette fracture présente une longueur d’une centaine de mètres, une largeur d’environ 5 mètres et des parois verticales de 5 à 10 mètres de hauteur.
Source :Live Science via Yahoo News.

Voici une bonne vidéo qui montre parfaitement les caractéristiques physiques de la carbonatite, ainsi que sa fluidité :

https://youtu.be/qputaVyn7TE

Débordement d’un lac de lave au sommet du Lengaï (Photo: C. Grandpey)

————————————————————

A few days ago August 4th, 2024), I wrote a post giving the latest news of Ol Doinyo Lengai, the only active volcano in the world to erupt carbonatite lava.

An artiicle published on the Live Science website informs us that this volcano has been steadily sinking into the ground for the past 10 years, and the cause could be a deflating reservoir directly beneath one of the volcano’s two craters. This is the conclusion of a new study published on June 8th, 2024 in the journal Geophysical Research Letters. It used data from two satellite systems, Sentinel-1 and Cosmo-SkyMed, to produce maps showing changes over time in the ground around Ol Doinyo Lengai.

The new research reveals that the ground around the summit of Ol Doinyo Lengai subsided at a rate of 3.6 centimeters per year between 2013 and 2023. This means the 2,962-meter-tall volcano lost about 36 centimeters in the timeframe of the study.

The maps indicate that a circular patch of ground around the volcano’s northern crater is « moving away from the satellite with a steady rate of displacement over time.

As I put it before, Ol Doinyo Lengai showed explosive activity in September 2007. This activity continued through spring 2008, after which the volcano resumed producing lava flows. Previous research suggested the newly-blasted crater may be subsiding, and the new study confirms that the upper slopes of this crater have been sinking since 2013. It should be noted the researchers did not look at data between 2008 and 2013. According to the authors of the latest study, the likely cause for this subsidence is a deflating magma reservoir located about 1,000 meters beneath the volcano.

One can read in the study that « the geometry and characteristics of the shallow magma plumbing system below Ol Doinyo Lengai remain elusive. » This reservoir may be connected to a bigger magma storage area 3,000 meters or deeper beneath the volcano.

The researchers explain that monitoring the subsidence of Ol Doinyo Lengai is important to forecast eruptions. There is also a growing 100-meter-long lava-filled fissure along the western rim of the volcano that « could further elongate as Ol Doinyo Lengai continues to erupt and subside, » according to the study. Francis Balland has informed me that this fissure is about 100 meters long, 5 meters wide, with 5-10-meter-high walls.

Source : Live Science via Yahoo News.

Here is a good video that perfectly shows the physical characteristivs of carbonatite lava, as well as its fluidity :

https://youtu.be/qputaVyn7TE

Islande : réouverture du Blue Lagoon : jusqu’à quand ? // Iceland : reopening of the Blue Lagoon : until when ?

Le Blue Lagoon a rouvert ses portes le 18 février 2024. La décision a été prise en concertation avec les autorités locales. Le site était fermé depuis le 8 février, lorsqu’une éruption a commencé entre Sundhnúkagígar et Stóra Skógfell, juste au nord-est du Blue Lagoon et de la centrale électrique de Svartsengi.
Environ 150 personnes se trouvaient dans l’enceinte du Blue Lagoon lorsque la dernière éruption a commencé. Il a fallu une quarantaine de minutes pour évacuer les lieux.
La lave de l’éruption du 8 février a traversé la route menant au Blue Lagoon ; les visiteurs devront donc emprunter un itinéraire alternatif.
Personne ne sait combien de temps le Blue Lagoon restera ouvert. Le Met Office islandais enregistre à nouveau un gonflement du sol de 0,5 à 1 cm chaque jour sous Svartsengi. C’était déjà le cas à la suite des éruptions précédentes dans la région. Le Met Office indique qu’une autre éruption ou intrusion magmatique se produira dans les semaines à venir.

Source : Iceland Review.

Photo: C. Grandpey

 °°°°°°°°°°

Plusieurs visiteurs de mon blog ainsi qu’une journaliste de France 3 m’ont demandé  mon avis sur la situation sur la péninsule de Reykjanes et quelle pourrait être la cause des éruptions à répétition. Comme les volcanologues islandais, je ne peux faire que des suppositions…

Il y a de toute évidence sous le secteur de Svartsengi un réservoir magmatique superficiel qui est bien alimenté par un magma dont l’origine se trouve à très grande profondeur, dans le manteau supérieur, comme l’ont démontré les analyses effectuées par les Islandais. En paraphrasant le regretté Hervé de Goër, scientifique clermontois, je dirais qu’il s’agit probablement d’un magma TGV qui, contrairement aux magmas Omnibus, atteint directement la surface sans étapes, et donc sans différentiations intermédiaires (voir ma note du 20 août 2021 pour plus de détails).

Le réservoir ne doit pas être très volumineux si on en juge par la brièveté des éruptions. Selon les volcanologues islandais, le volume de lave émis le 8 février était de 10 millions de mètres cubes alors que le volume stocké dans le réservoir avait été estimé à 6,5 puis 9 millions de mètres cubes.

Eruption du 8 février 2024 (image webcam)

La répétition relativement rapide des éruptions semble montrer qu’il existe une source magmatique constante dans les profondeurs, et cette source alimente en permanence le réservoir superficiel puisque le gonflement du sol reprend dès que l’épisode éruptif est terminé. Il y aura sûrement d’autres brèves éruptions (combien, on ne la sait pas) jusqu’au jour où cette source sera tarie. De ce fait, les prochaines éruptions devraient se produire dans le même secteur, sauf si le magma trouve ou ouvre de nouvelles fractures, comme il l’a fait pour aller sérieusement menacer Grindavik et y détruire trois maisons.

Image webcam

Il ne faudrait pas que le magma ait la mauvaise idée de se faufiler vers la centrale de Svartsengi en passant sous les digues de terre, ce qui serait catastrophique! A l’heure actuelle, je ne pense pas – comme le redoute un volcanologue islandais – que Reykjavik soit menacée. L’avenir dira si j’ai raison…

—————————————————-

The Blue Lagoon opened again for business on February 18th, 2024. The decision was made in consultation with local authorities. The popular tourist site had been closed since February 8th, when an eruption began between Sundhnúkagígar and Stóra Skógfell, just northeast of the Blue Lagoon and Svartsengi power plant.

Around 150 people were at the Blue Lagoon and the tourist infrastructure around when the last eruption began.  It took about 40 minutes to evacuate the premises.

Lava from the February 8th eruption crossed over the road leading to the Blue Lagoon, so visitors will have to take an alternative route.

Nobody knows how long the Blue Lagoon will remain open. The Icelandic Met Office has recorded a daily land rise of 0.5 – 1 cm beneath Svartsengi, which was also the case in the wake of previous eruptions in the area. It is predicted that another eruption or dyke intrusion will occur within the coming weeks.

Source : Iceland Review.

°°°°°°°°°°

I was asked by several followers of this blog and by a France3 journalist my opinion on the situation on the Reykjanes Peninsula and what could be the cause of the repeated eruptions. Like the Icelandic volcanologists, I can only make suggestionss…
There is obviously under the Svartsengi area a shallow reservoir which is well supplied by magma coming from a very great depth, in the upper mantle, as the analyses have demonstrated. Paraphrasing the late Hervé de Goër, a scientist from Clermont-Ferrand, I would say that it is probably a TGV (high speed) magma which, unlike Omnibus (slow speed) magma, reaches the surface directly without intermediate stages.

The reservoir must not be very large judging from the brevity of the eruptions. According to Icelandic volcanologists, the volume of lava emitted on February 8th was 10 million cubic meters while the volume stored in the reservoir was estimated at 6.5 then 9 million cubic meters. The relatively rapid repetition of eruptions seems to show that there is a constant in-depth magmatic source, and this source permanently feeds the surface reservoir since ground uplift resumes as soon as the eruptive episode is over. There will surely be other brief eruptions (how many, we do not know) until the day when this source will dry up. As a result, the next eruptions are likely to occur in the same area, unless magma finds or opens new fissures, as it did when it seriously threatened Grindavik and destroyed three houses there. Let’s hope it does not sneak towards the power plant by passing under the earthen dikes, which would be disastrous ! At the moment, I don’t think Reykjavik is threatened. The future will tell if I am right…

Le lac de lave du Kilauea (Hawaii) // The Kilauea lava lake (Hawaii)

Le dernier épisode de « Volcano Watch », un article hebdomadaire publié par l’U.S. Geological Survey (USGS) est consacré au comportement des lacs de lave au sommet du Kilauea.

Lorsque j’ai visité le volcan en août 2008, le cratère de l’Halema’uma’u (HMM) était recouvert d’une croûte de lave bien rigide. Le seul signe d’activité était une zone jaune causée par des dépôts de soufre dans la paroi SO du cratère.

Photos : C. Grandpey

En fait, c’est l’endroit où la lave a décidé d’émerger dans le cratère en septembre de cette même année. Une courte série d’explosions a précédé la formation d’un lac de lave qui s’est étendu régulièrement pour former ce qui a été baptisé l’Overlook Crater. La convection de la lave dans le lac a entraîné des émissions constantes de dioxyde de soufre (SO2) qui ont généré un brouillard volcanique, le vog à Hawaiʻi.

Photo : C. Grandpey

Le lac de lave a également produit une lueur visible en permanence la nuit dans toute la zone sommitale.

Photo : C. Grandpey

Lorsque la lave a commencé à être émisse par des fissures dans les Leilani Estates en 2018, le réservoir sommital du Kilauea a entamé une phase de déflation et le lac de lave s’est rapidement vidangé avant que le sommet commence à s’effondrer.

Source : HVO

L’un des aspects intéressants du lac de lave qui est resté en place entre 2008 et 2018 a été la relation étroite entre les variations du tilt – ou inclinaison du sommet – et le niveau de la surface du lac de lave.

Le lac de lave en 2016 (Crédit photo :  HVO)

Au fur et à mesure que la surface du lac s’élevait dans l’Overlook Crater, les inclinomètres du sommet enregistreraient une tendance inflationniste. Au fur et à mesure que la surface du lac de lave s’abaissait, les instruments enregistraient une tendance déflationniste. Les scientifiques du HVO ont conclu qu’il y avait une connexion ouverte entre le lac de lave et le réservoir magmatique peu profond sous le sommet (réservoir HMM). En conséquence, le lac a agi comme un baromètre, son niveau montant et descendant en relation directe avec les variations de pression dans le réservoir HMM. Ce comportement du lac de lave a permis de déterminer certaines quantités de magma contenues dans le réservoir HMM qui sont difficiles, voire impossibles, à déterminer sur d’autres volcans.

Exemples de variations du tilt en avril 2018 ‘Source : HVO)

Dans une publication de 2019, les scientifiques ont expliqué qu’en analysant la déformation du sommet et les variations de niveau de la lave au cours des premières phases d’effondrement du sommet du Kilauea en 2018, il a été possible d’affirmer que l’effondrement et l’éruption de 2018 avaient entraîné une diminution du volume du réservoir HMM de l’ordre de 20 %, et que la plus grande partie du magma restait présente dans le réservoir.

Le lac de lave présent actuellement dans le cratère de l’Halema’uma’u monte et descend également en suivant des variations inflationniste et déflationniste. Cela signifie que, dans une certaine mesure, il existe à nouveau une connexion ouverte avec le réservoir HMM. Cependant, certains cycles de déflation et d’inflation sont plus importants que d’autres; pendant ces épisodes, le niveau du lac de lave baisse et l’éruption s’arrête. L’éruption ne reprend pas et le niveau du lac ne remonte pas au moment où les inclinomètres montrent une tendance inflationniste. Il faut en général attendre que la phase d’inflation soit à peu près égale à l’épisode de déflation précédent.

Crédit photo : HVO

En observant ce comportement du lac de lave, les scientifiques du HVO savent à peu près à quel moment la pause de l’éruption sera terminée et à quel endroit la lave fera sa réapparition dans le cratère. L’écart de temps observé entre le retour de l’inflation sommitale et la reprise de l’éruption est également une indication que la connexion entre la surface et le réservoir HMM n’est pas toujours ouverte. Pendant que le sommet gonfle, la pression monte dans le réservoir, et ce n’est que lorsque l’éruption recommence que la pression est relâchée. Après cela, le système s’équilibre et se comporte à nouveau comme un système ouvert, comme il l’a fait en 2008-2018.
Il s’agit donc d’une différence intéressante et importante entre le lac de lave actuel et celui qui existait de 2008 à 2018. Cela offre la possibilité de mieux connaître les conditions nécessaires pour que le système passe de fermé à ouvert.
On observe globalement en ce moment une déflation lente du système magmatique sommital du Kilauea. Cela signifie que l’éruption ne s’intensifiera probablement pas. La lave ne fait que des apparitions éphémères dans le cratère.
Source : USGS/HVO.

————————————————–

The latest episode of « Volcano Watch », a weekly article released by U.S. Geological Survey (USGS) is dedicated to the behaviour of lava lakes at the summit of Kilauea.

When I visited the volcano in August 2008, Halema’uma’u Crater (HMM) was covered with a solid crust of lava. The only sign of activity was a yellow area caused by sulphur deposits in the SW wall of the crater. (see photos above)

Actually, it was the place where lava decided to emerge in the crater in September of that year. A short series of explosions preceded the opening of a lava lake which grew steadily, forming what became known as the Overlook crater. Convection of lava within the lake provided a steady supply of sulphur dioxide (SO2), which was the main contributor to vog (volcanic smog) in Hawaiʻi. (see photo above)

It also provided a reliable glow against the night sky that was visible throughout the summit region. (see photo above).

When lava began erupting from fissures in Leilani Estates in 2018, Kilauea’s summit reservoir system began to deflate, and the lava lake quickly drained away before the summit began to collapse. ‘see photo above)

One of the interesting facets of the 2008–2018 lava lake era was the close association between summit tilt data and the surface level of the lava lake. As the lake surface would rise within the Overlook crater, summit tiltmeters would record inflationary tilt. As the lava lake surface withdrew, tiltmeters would record deflationary tilt. The interpretation was that there was a fully open connection between the lava lake and the shallow summit magma reservoir, referred to as the Halemaʻumaʻu (HMM) reservoir. As a result, the lake acted like a barometer, with its level moving up and down in direct proportion to pressure changes in the HMM reservoir. This unique behaviour made it possible to determine certain quantities for the HMM magma reservoir that are difficult or impossible to determine at other volcanoes.

In a 2019 publication, scientists showed that by tracking deformation and lava level changes during the opening stages of Kilauea’s 2018 summit collapses, it was possible to determine that the entire 2018 collapse and eruption decreased the HMM magma reservoir volume by a most likely amount of 20%, leaving the majority of the magma in place.

The current lava lake in Halemaʻumaʻu (see photo above) also rises and falls together with inflationary and deflationary tilt. This indicates that, to some extent, there is again an open connection to the shallow HMM magma chamber. However, some of the deflation and inflation cycles are larger than others, and during these episodes the lava lake level goes down and the eruption pauses. The eruption does not resume, and the lake level does not rise again at the same time as the tiltmeters show inflationary tilt, but instead waits until the amount of inflationary tilt is about equal to the amount of preceding deflationary tilt.

This behaviour of the lava lake gives HVO scientiststs a rough idea of when the eruption pause be over and active lava will return to the crater. The gap in time between the return of inflationary tilt and eruption renewal is also an indication that the connection between the surface and shallow HMM reservoir is not always open. While the summit is inflating, pressure is building in the reservoir, and it is not until the eruption starts again that the pressure is released. After this the system equilibrates and once again behaves as an open system, like it did in 2008–2018.

This is an interesting and important difference between the current lava lake and the lake that existed from 2008–2018 and presents the opportunity to learn more about the conditions under which the system might change from closed to open.

The current overall trend of Kilauea’s summit magma system is slow deflation. This means there are no signs right now that the eruption could get more vigorous.

Source: USGS / HVO.

Nouvelle histoire d’eau à Hawaii // New story about water in Hawaii

Quand on me parle d’Hawaii, ce mot est synonyme de volcans, d’éruptions et de coulées de lave. En ce moment, les éruptions sont au point mort et le Kilauea a cessé d’émettre de la lave au mois d’août 2018. La dernière éruption a laisse derrière elle un immense gouffre au sommet du volcan, là où mijotait un superbe lac de lave. Au fond de ce gouffre de 500 mètres, les scientifiques du HVO ont vu apparaître en juillet 2019 une poche d’eau qui a fini par former une mare puis un petit lac dont la superficie et la profondeur augmentent semaine après semaine. Début novembre 2020, cette profondeur était d’une cinquantaine de mètres.

Dans une note rédigée le 12 octobre 2019, j’explique l’origine cette eau.

https://claudegrandpeyvolcansetglaciers.com/2019/10/12/kilauea-hawaii-leau-de-lhalemaumau-the-water-in-halemaumau-crater/

Quand ils ont vu l’eau apparaître au fond de l’Halema’uma’u, les scientifiques ont proposé deux hypothèses : ce pouvait être le résultat de l’accumulation d’eau de pluie, ou bien une résurgence de la nappe phréatique qui se trouve sous le cratère de l’Halemau’mau. Au moment de l’éruption, quand le plancher de la caldeira s’est effondré et a été remplacé par le gouffre profond que l’on observe aujourd’hui, le niveau de la nappe phréatique s’est abaissé sous le cratère nouvellement formé, tout en étant isolée de la lave par un manchon de matériaux.. Une fois l’éruption terminée en août 2018, la situation géologique du sommet du Kilauea s’est stabilisée, de sorte que le niveau de la nappe phréatique a commencé à s’élever et, peu à peu, a probablement retrouvé son niveau d’origine, autrement dit un équilibre hydraulique avec la nappe phréatique.

La poche d’eau au fond de l’Halema’uma’u confirme donc la présence d’une vaste nappe phréatique sous la partie sommitale du Kilauea. C’est important car à Hawaii, comme dans beaucoup d’îles, l’eau est un bien précieux. Essentiellement à cause de l’afflux de touristes, la demande en eau est très forte dans l’archipel hawaiien et une grande partie de l’eau qui s’accumule à la surface au moment des précipitations disparaît avant de pouvoir être utilisée. On sait toutefois que la majeure partie de l’eau s’infiltre dans des d’aquifères côtiers, couches souterraines de roches poreuses.

Un article paru dans Courrier International offre de grands espoirs aux Hawaiiens quant à leur alimentation en eau. Grâce à une nouvelle technique qui repose sur le traçage de la résistivité électrique, une équipe d’hydrogéologues a découvert que le sol volcanique de l’archipel hawaiien collectait et accumulait l’eau douce sous le fond de l’océan. Les scientifiques ont détecté un immense réservoir d’eau douce qui n’avait jamais été identifié jusque-là, à 500 mètres sous le plancher océanique. Les Les résultats de leur étude ont été publiés dans Science Advances le 25 novembre 2020.

Situé à 4 kilomètres au large de la côte ouest de la Grande Ile, ce réservoir contiendrait 3,5 kilomètres cubes d’eau douce. Il pourrait constituer une aide précieuse pour éviter les pénuries et éloigner les menaces de sécheresse. En outre, il semble que l’eau de ce vaste réservoir soit plus facile à pomper que les aquifères côtiers, car elle est sous haute pression. L’équipe de chercheurs estime que ce nouveau réservoir offshore est constitué par l’eau qui s’écoule des aquifères côtiers.

Si le pompage de cette eau sous le plancher océanique ne semble pas poser de gros problèmes techniques, il soulève toutefois un certain nombre de questions. Certains scientifiques se montrent prudents. L’ensemble du système aquifère est probablement connecté et le pompage de cette eau au large de Big Inland pourrait avoir un impact négatif sur les écosystèmes et sur les quantités d’eau disponibles pour les pompes sur l’île.

En dépit de ces réserves, la découverte de cet immense réservoir d’eau douce est une bonne nouvelle. Certains imaginent même une situation identique dans d’autres îles volcaniques comme la Réunion, les archipels du Cap-Vert et des Galapagos, qui présentent une géologie similaire.

Source : Courrier International.

————————————————

When people talk to me about Hawaii, the word is synonymous with volcanoes, eruptions and lava flows. These days, the eruptions are at a standstill and Kilauea stopped emitting lava in August 2018. The last eruption left behind a huge chasm at the top of the volcano, instead of the superb lava lake. At the bottom of this 500-metre chasm, HVO scientists saw a pocket of water appear in July 2019; it eventually formed a pond and then a small lake whose area and depth increased week after week. Early in November 2020, its depth was around 50 metres. In a post written on October 12th, 2019, I explained the origin of this water. https://claudegrandpeyvolcansetglaciers.com/2019/10/12/kilauea-hawaii-leau-de-lhalemaumau-the-water-in-halemaumau-crater/

When they saw water appear at the bottom of Hale’uma’u, the scientists proposed two hypotheses: it could be the result of the accumulation of rainwater, or a resurgence of the water table which is located under the Halemau’mau Crater. At the time of the eruption, when the caldera floor collapsed and was replaced by the deep chasm seen today, the groundwater level dropped below the newly formed crater, while being isolated from the lava by a layer of materials .After the eruption ended in August 2018, the geological situation of the summit of Kilauea stabilized, so that the groundwater level began to rise and, little by little, probably regained its original level, in other words a hydraulic equilibrium with the water table.

The pocket of water at the bottom of Halema’uma’u therefore confirms the presence of a large water table below the summit of Kilauea. This is important because in Hawaii, like many islands, water is a precious commodity. Mainly because of the influx of tourists, the demand for water is very high in the Hawaiian archipelago and much of the water that collects on the surface during rainfall disappears before it can be used. However, most of the water is known to seep into coastal aquifers which are subterranean layers of porous rocks.

An article in Courrier International offers Hawaiians high hopes for their water supply. Using a new technique that relies on electrical resistivity tracing, a team of hydrogeologists discovered that the volcanic soil of the Hawaiian archipelago collects and accumulates fresh water under the ocean floor. The scientists have detected a huge reservoir of freshwater that had never been identified before, 500 meters below the sea floor. The results of their study were published in Science Advances on November 25, 2020.

Located 4 kilometres off the west coast of the Big Island, this reservoir is said to contain 3.5 cubic kilometres of fresh water. It could be of great help in avoiding shortages and warding off threats of drought. In addition, the water from this vast reservoir appears to be easier to pump than coastal aquifers because it is under high pressure. The research team believes that this new offshore reservoir is made up of water flowing from coastal aquifers.

If pumping this water under the ocean floor does not seem to pose major technical problems, it does raise a number of questions. Some scientists are cautious. The entire aquifer system is likely connected, and pumping this water off Big Inland could have a negative impact on ecosystems and the amount of water available for pumps on the island.

Despite these reservations, the discovery of this immense reservoir of fresh water is good news. Some even imagine a similar situation in other volcanic islands such as Réunion, the archipelagos of Cape Verde and the Galapagos, which have similar a geology.

Source: Courrier International.

Une réserve d’eau douce au large de Green Sand Beach ? (Photo : C. Grandpey)