Chili : observatoires contre usine d’hydrogène // Chile : observatories vs. hydrogen plant

Le mont Paranal, un sommet de 2 664 m situé dans le désert d’Atacama, au nord du Chili, est l’un des derniers endroits sur Terre à ne pas être pollué par la lumière urbaine et industrielle. Grâce à la géographie unique de la Cordillère des Andes, le ciel nocturne au-dessus du sommet est parfaitement clair plus de 11 mois par an, et il offre des conditions parfaites pour les observations astronomiques les plus difficiles.

Vue du Mont Paranal (Crédit photo : Wikipedia)

Au sommet du mont Paranal, le Very Large Telescope (VLT) de l’Observatoire européen austral (European Southern Observatory – ESO), dont la construction a coûté quelque 350 millions de dollars dans les années 1990 (840 millions de dollars actuels), est l’un des instruments d’observation du ciel les plus performants au monde ; il est capable d’observer les objets les plus mystérieux de l’univers. Cet observatoire de haute précision se compose de quatre télescopes de 8,2 mètres de large qui fonctionnent comme un seul et qui ont permis de mettre en lumière certains des phénomènes les plus mystérieux de l’humanité. Jusqu’à présent, le VLT a permis aux astronomes de suivre les orbites des étoiles les plus proches du trou noir au centre de la Voie Lactée, de prendre la première image d’une planète en dehors du système solaire et de découvrir l’insaisissable réseau cosmique qui s’étend sur tout le cosmos.

Vue du Very Large Telescope – VLT (Source : ESO)

Les parfaites conditions d’observation du ciel dans la région ont conduit l’ESO à choisir le mont Armazones voisin comme emplacement de son super télescope nouvelle génération, l’Extremely Large Telescope (ELT).
Une fois terminé vers la fin de cette décennie, l’ELT sera le plus grand télescope au monde capable d’étudier l’univers en lumière visible, avec un miroir de 39 mètres de large. Le télescope, d’une valeur de plus de 1,5 milliard de dollars, promet d’améliorer les observations effectuées par le VLT. Il offrira des vues encore plus profondes de l’univers le plus lointain, mais sera également capable de recueillir des informations détaillées sur les exoplanètes potentiellement habitables.

Vue de l’Extremely Large Telescope – ELT (Source : ESO)

Le problème est que le potentiel d’observation du télescope sera considérablement réduit si un projet d’usine de production d’hydrogène, l’INNA, reçoit le feu vert. La pollution lumineuse émanant du projet INNA pourrait anéantir tous les espoirs fondés sur le nouveau télescope. Selon le directeur général de l’ESO, « nous pourrions perdre la capacité d’observer environ 30 % des galaxies les plus faibles. Nous sommes sur le point de commencer à voir les détails de l’atmosphère des exoplanètes, mais si le ciel devient plus clair, nous ne pourrons peut-être plus voir ces détails. »
Le projet INNA, un parc industriel de 3 021 hectares et d’une valeur de 10 milliards de dollars, comprendra trois fermes solaires, trois fermes éoliennes, un système de stockage d’énergie par batterie et des installations de production d’hydrogène.
L’ESO estime que le complexe laissera échapper autant de pollution lumineuse qu’une ville d’environ 20 000 habitants. Certaines parties du parc industriel pourraient s’étendre jusqu’à 5 kilomètres des télescopes de l’ESO, et toute nouvelle extension aggraverait encore les impacts sur le ciel nocturne du mont Paranal.
Le projet, qui devrait générer 217 023 tonnes d’hydrogène vert par an, représente un casse-tête pour l’ESO. L’organisation elle-même s’est engagée à réduire son empreinte carbone et a même construit une centrale photovoltaïque de 9 mégawatts pour alimenter les observatoires des monts Paranal et Armazones en énergie verte.
Il semble évident que le télescope et l’usine d’hydrogène ne peuvent pas cohabiter. Selon le directeur de l’ESO, « cette usine d’hydrogène propre nous conviendrait parfaitement si elle était implantée à seulement 50 kilomètres de distance. Nous ne voyons pas pourquoi elle ne pourrait pas être déplacée ».
Dans un communiqué publié le 30 décembre 2024, l’Agence environnementale du Chili a déclaré que le projet en est à ses débuts et qu’aucune décision d’investissement n’a encore été prise.
Source : space;com.

——————————————

Mount Paranal, a 2,664 m peak in the Atacama Desert of Northern Chile, is one of the last spots on Earth free from urban and industrial light pollution. Thanks to the unique geography of the Andes mountain range, the night sky above the summit is perfectly clear more than 11 months per year, providing perfect conditions for the most challenging astronomical research.

Standing at the summit of Mount Paranal, the European Southern Observatory’s (ESO) Very Large Telescope (VLT), which cost some 350 million dollars to build in the 1990s (840 million in today’s dollars), is one of the world’s most sensitive sky-watching instruments, capable of observing the most intriguing objects in the universe. The high-precision observatory consists of four 8.2-meter-wide telescopes that act as one, and has shed light on some of the most mysterious phenomena known to humankind. So far, the VLT has allowed astronomers to trace orbits of stars in the nearest vicinity of the black hole at the center of the Milky Way galaxy, taken the first ever image of a planet outside the solar system and uncovered the elusive cosmic web that sprawls across the entire cosmos.

The superior sky-observing conditions in the area led ESO to choose the neighboring Mount Armazones as a location of its next generation sky-observing super-machine — the Extremely Large Telescope (ELT).

Once completed toward the end of this decade, ELT will be the world’s largest telescope studying the universe in visible light, featuring a 39-meter-wide mirror. The telescope, worth more than 1.5 billion dollars, promises to expand the science done by the reliable VLT. It will provide even deeper views into the most distant universe but will also be able to gather detailed information about potentially habitable exoplanets.

The problem is that the observing potential of the telescope will be significantly curtailed if a hydrogen project, called INNA, receives a go ahead. The light pollution expected from the INNA project could undo all that progress. According to ESO’s Director General, « we might lose the ability to observe about 30% of the faintest galaxies. We are at the point of starting to be able to see details of exoplanet atmospheres, but if the sky gets brighter, we may not be able to see those details anymore. »

The INNA project, a 3,021-hectare industrial park worth 10 billion dollars, will consist of three solar farms, three wind farms, a battery energy storage system and facilities for the production of hydrogen.

ESO estimates the complex will leak as much light pollution as a city with a population of about 20,000. Parts of the industrial park may extend as close as 5 kilometers to ESO’s telescopes, and any possible further expansion would further worsen the impacts on the Paranal night sky

Expected to generate 217,023 tonnes of green hydrogen per year, the venture presents a conundrum for ESO. The organization itself has committed to reducing its carbon footprint and even built a 9-megawatt photovoltaic power plant to supply the Paranal and Armazones observatories with green power.

It seems obvious that the telescope and the hydrogen plant cannot be in the same place. According to ESO’s Director, « this clean hydrogen plant would be perfectly O.K. for us only 50 kilometers away. We don’t think there is any reason why it couldn’t be moved. »

In a statement issued on December 30th, 2024, Chile’s environment agency said that the project was in early stages and that no investment decision had yet been taken.

Source : space;com

Le HVO et les autres observatoires volcanologiques de l’USGS // HVO and the other USGS volcano observatories

Le dernier article « Volcano Watch » était consacré à l’Observatoire des volcans d’Hawaii (HVO) et aux autres observatoires volcanologiques gérés par l’U.S. Geological Survey (USGS), L’Institut d’études géologiques des États-Unis

Le Hawaiian Volcano Observatory (HVO) a été fondé en 1912. Aujourd’hui, plus de 111 ans plus tard, c’est l’un des cinq observatoires volcanologiques gérés par l’USGS.
D’un seul géologue, Thomas A. Jaggar, en 1912, l’Observatoire est passé à plus de 30 employés aujourd’hui. Cette équipe comprend des géologues, des géophysiciens, des géochimistes, etc. Des volcanophiles (j’en ai fait partie), des étudiants et d’autres scientifiques ont également apporté une aide précieuse au HVO au fil des ans.
Les méthodes d’observation et d’analyse du HVO sur le terrain ont radicalement changé depuis l’époque de Thomas Jaggar. Actuellement, le réseau de surveillance de l’Observatoire comprend plus de 200 instruments, avec des sismomètres, des systèmes GPS, des inclinomètres, des infrasons, des détecteurs de gaz et des caméras thermiques. Ces instruments transmettent des données au HVO 24 heures sur 24 afin de suivre l’activité des volcans. Malgré tous ces instruments, la prévision éruptive est encore loin d’être parfaite. Dans son dernier bulletin, le HVO nous informe que le Kilauea n’est pas en éruption ; les webcams ne montrent aucun signe d’activité dans le cratère de l’Halema’uma’u, et personne ne sait où et quand la lave réapparaîtra sur le volcan.
Lorsque le HVO a été fondé en 1912, Hawaii n’était pas encore un État. Un lac de lave s’agitait au fond de l’Halema’uma’u,semblable à celui observé au cours des trois dernières années. Le HVO était à l’origine exploité avec le soutien du Massachusetts Institute of Technology (MIT) et de la Hawaiian Volcano Research Association. Il a ensuite été géré par une série d’agences fédérales, dont le U.S. Weather Bureau, le National Park Service et maintenant l’USGS qui est devenu l’administrateur permanent du HVO en 1947.
Suite à la réussite du HVO, l’USGS a établi de nouveaux observatoires pour surveiller et étudier 161 volcans actifs à travers les États-Unis et les territoires qui en dépendent.

L’Observatoire des volcans d’Hawaii (HVO) se concentre sur les volcans actifs de la Grande Ile d’Hawaï : Kilauea, Mauna Loa et Hualālai, sans oublier le Lo’ihi.. Le HVO surveille également les volcans actifs des Samoa américaines.

L’Observaroire volcanologique de la Chaîne des Cascades (CVO) a été mis sur pied en 1980 à la suite de l’éruption du mont St. Helens et officiellement inauguré en 1982. Le CVO se concentre sur les volcans des Etats de Washington, de l’Oregon et de l’Idaho.

L’Observatoire volcanologique de l’Alaska (AVO) a été fondé en 1988 suite à l’éruption de l’Augustine en 1986. L’AVO, un partenariat entre l’USGS, l’Université d’Alaska à Fairbanks et l’État de l’Alaska, se concentre sur les volcans de l’Alaska et du Commonwealth des îles Mariannes du Nord.

L’Observatoire volcanologique de Yellowstone (YVO) a été fondé en 2001. Il se concentre sur l’activité volcanique dans la région du Plateau de Yellowstone et dans les États de l’ouest des États-Unis.

L’Observatoire des volcans de Californie (CalVO) a été créé en 2012. Le CalVO, avec une extension au-delà de l’Observatoire de Long Valley (LVO) a été créé en 1982. il se concentre sur les volcans de Californie et du Nevada.

Les connaissances, compétences et expériences rassemblées par ces cinq observatoires sont vastes et complémentaires. Leur personnel communique et se déplace entre les différents observatoires et effectue un véritable travail d’équipe.
Source : USGS/HVO.

————————————————-

The latest « Volcano Watch » article was dedicated to the Hawaiian Volcano Observatory (HVO) and the other volcanological observatoried mananed by the U.S. Geological Survey (USGS).

The Hawaiian Volcano Observatory (HVO) was founded in 1912. Today, more than 111 years later, it is one of five volcano observatories supported by the USGS.

HVO staff has grown from one geologist, Thomas A. Jaggar, in 1912 to more than 30 people today. This team includes scientists and specialists in geology, geophysics, geochemistry, and more. Hundreds of volunteers (I was one of them), students and visiting scientists have also provided valuable assistance to HVO through the years.

HVO methods of observing and analyzing data from instruments and field studies have changed dramatically since Jaggar’s time. Presently, the Observatory’s monitoring network consists of more than 200 sensors, including seismometers, global positioning systems (GPS), tiltmeters, infrasound, gas detectors and thermal/visual cameras. These sensors transmit data to HVO 24 hours a day in order to track activity and support research into how volcanoes work. However, despite all these instruments, eruptive prediction is still far from perfect. In its latest update, HVO informs us that Kilauea is not erupting ; webcams show no signs of active lava in Halemaʻumaʻu crater, but nobody knws whther and when lava will reappear at the volcano.

When HVO was founded, Hawaiʻi was not yet a state. A lake of molten lava was on the floor of Halemaʻumaʻu crater, similar to what has been observed throughout the past three years. HVO was originally operated with support from the Massachusetts Institute of Technology (MIT) and the Hawaiian Volcano Research Association. It was later managed by a series of federal agencies including the U.S. Weather Bureau, the National Park Service and now the USGS which became the permanent administrator of HVO in 1947.

Based on HVO’s success, the USGS went on to establish additional observatories to monitor and study 161 active volcanoes throughout the United States and U.S. Territories.

HVO focuses on the active volcanoes in Hawaii : Kīlauea, Mauna Loa and Hualālai, all of which are on the Big Island, without forgetting Lo’ihi.. HVO also monitors active volcanoes in American Samoa.

Cascades Volcano Observatory (CVO) was authorized in 1980 following the eruption of Mount St. Helens and formally dedicated in 1982. CVO focuses on volcanoes in Washington, Oregon and Idaho.

Alaska Volcano Observatory (AVO) was founded in 1988 following the 1986 eruption of Augustine. AVO, a collaboration between the USGS, the University of Alaska Fairbanks and the state of Alaska, focuses on volcanoes in Alaska and the Commonwealth of Northern Mariana Islands.

Yellowstone Volcano Observatory (YVO) was founded in 2001. It focuses on volcanic activity in the Yellowstone Plateau region and intermountain western U.S. states.

California Volcano Observatory (CalVO) was formed in 2012. CalVO, with expanded scope beyond the Long Valley Observatory (LVO) established in 1982, focuses on volcanoes in California and Nevada.

The collective knowledge, skills and experience of people at these five observatories is extensive and complementary. Staff communicate and travel between observatories in true team fashion.

Source : USGS / HVO.

Collaboration entre observatoires aux Etats-Unis // Collaboration between observatories in the United States

Les observatoires volcanologiques à travers les États-Unis fonctionnent en étroite relation les uns avec les autres pour assurer une surveillance efficace des volcans actifs de ce pays. Cette collaboration est particulièrement évidente lors d’une crise, comme ce fut le cas au moment de l’éruption du Kilauea en 2018. Cette année-là, des scientifiques, des ingénieurs et des administratifs du Volcano Science Center de l’USGS se sont rendus sur la Grande Ile d’Hawaï pour épauler le HVO, l’observatoire des volcans d’Hawaï, et aider les volcanologues locaux à surveiller les coulées de lave et les effondrements qui se produisaient au sommet du Kilauea. Leur aide fut essentielle au bon fonctionnement du HVO 24 heures sur 24, 7 jours sur 7.
La collaboration entre les observatoires volcanologiques existe également quand il n’y a pas de crise éruptive majeure. Certains observatoires tels que l’Alaska Volcano Observatory (AVO) doivent effectuer toutes les missions sur le terrain en été car les conditions météorologiques sont difficiles et les conditions de travail dangereuses le reste de l’année. Comme la saison estivale est courte en Alaska, il est important de faire appel à l’aide temporaire d’autres États.
L’AVO a beaucoup de travail à effectuer au cours de la saison estivale. Le soleil est presque en permanence dans le ciel et les heures de clarté sont pleinement utilisées lorsque le temps le permet. L’aide d’autres observatoires permet aux équipes de terrain d’être renouvelées tous les mois afin d’éviter l’épuisement professionnel.

Comme il y a peu à faire en ce moment à Hawaii depuis la fin de l’éruption du Kilauea, plusieurs géologues du HVO se sont rendus en Alaska cet été pour aider à la mise en place de nouveaux sites de surveillance sismique et la mise à niveau d’instruments plus anciens sur les volcans des Aléoutiennes. Cela fait partie d’une campagne entreprise par l’AVO pour convertir l’ensemble de son réseau sismique analogique en un réseau entièrement numérique. Un tel travail est important car les instruments numériques peuvent détecter une gamme plus large de signaux sismiques. Le HVO est passé à un réseau numérique de 2014 à 2017.
Dans les Aléoutiennes, la mission a débuté à Adak, une île située à environ 1 700 kilomètres au sud-ouest d’Anchorage. L’île, qui abritait une base militaire de 1942 à 1997, est très paisible maintenant que la plupart des installations ont été abandonnées. Adak a servi de base aux opérations scientifiques. En effet, c’est un point central où les stations les plus éloignées sont raccordées au réseau de surveillance des volcans de l’Alaska.
A partir d’Adak, les scientifiques ont voyagé à bord d’un navire de recherche qui les a conduits à travers la Mer de Béring afin de visiter différents volcans. Une fois un volcan atteint, le capitaine jetait l’ancre dans un port bien protégé des tempêtes parfois très violentes qui surviennent dans les Aléoutiennes. À partir de là, les scientifiques ont pris l’hélicoptère embarqué sur le navire pour visiter les différents sites.
Les conditions météorologiques sont souvent difficiles dans les Aléoutiennes, ce qui rend la surveillance des volcans d’autant plus délicate. Un scientifique explique qu’il y avait un épais brouillard presque tous les matins. À chaque fois que le pilote de l’hélicoptère estimait qu’une fenêtre était utilisable, les hommes chargeaient le matériel et décollaient.
Une fois sur un volcan, les scientifiques se mettaient au travail. Il fallait d’abord installer un local de protection du matériel et creuser un trou de 2 mètres de profondeur pour y loger le sismomètre. Des panneaux solaires étaient ensuite installés sur le local avec à l’intérieur 15 batteries de 12 volts pour alimenter l’électronique qui numérise les signaux du sismomètre et envoie les données à Adak par radio. Le travail a toujours été une course contre le soleil, tout en luttant contre les conditions météorologiques en constante évolution.
Les hommes expliquent que le travail fut difficile mais enrichissant. La cohabitation permanente, l’élaboration de stratégies pour faire face aux éléments et le travail en équipe sur un volcan loin de tout ont permis de créer des liens solides entre le HVO et l’AVO. Cet état d’esprit se prolongera bien au-delà du travail sur le terrain dans les îles Aléoutiennes.
Source: USGS / HVO.

—————————————————

Volcano observatories across the United States work together to ensure efficient and thorough monitoring of the nation’s active volcanoes. This collaboration is particularly evident during a crisis, like the 2018 eruption of Kilauea Volcano. In 2018, scientists, field engineers, and administrative professionals from across the US Geological Survey Volcano Science Center came to the Island of Hawaii to assist the Hawaiian Volcano Observatory (HVO) in monitoring Kilauea’s Lower East Rift Zone (LERZ) lava flows and summit collapses. Their assistance was critical to maintaining HVO’s 24/7 response capability.

Collaboration between volcano observatories also occurs in non-crisis times. Some volcano observatories, such as the Alaska Volcano Observatory (AVO) must accomplish all field work in the summer because other times of the year can bring harsh weather and dangerous working conditions. Since the summer field season in Alaska is short, it is important to use temporary help from other states.

The field season for AVO staff is intense. The sun is almost always up, and the daylight hours are fully used when weather permits. Help from other volcano observatories allows field teams to be rotated every month to avoid burn-out.

As there is little to do in Hawaii with the end of the Kilauea eruption, several HVO staff travelled to Alaska this summer to help build new, and upgrade old, seismic monitoring sites on western Aleutian volcanoes. This is part of a big step that AVO is taking to convert their entire seismic network from an analog to an all-digital network. This is important because digital instruments can detect a wider range of earthquake signals. HVO made the transition to a digital network in 2014 to 2017.

The mission began on Adak, an island about 1,700 kilometres SW from Anchorage. The island, home to a military base from 1942 to 1997, is very peaceful now that most of the facilities have been abandoned. Adak was the base of operations, a central place where more-remote field stations tie into the Alaska volcano monitoring network.

From Adak, the scientists boarded a research vessel which took them across the Bering Sea in order to visit different volcanoes. Once the targeted volcano was reached, the captain dropped anchor in a harbour that would be mostly protected from potentially fierce Aleutian storms. From there, the scientists flew in the onboard helicopter to go back and forth from the ship to the different field sites.

Weather conditions are often difficult in the Aleutians, which makes the monitoring of the volcanoes all the more difficult. The scientific team explains that they were shrouded in fog nearly every morning. Whenever the helicopter pilot deemed that a safe window of opportunity had arrived, they loaded up and took off.

Once the geologists landed on a volcano, the real work began. They dug a foundation for the equipment hut and a 2-metre-deep hole where the seismometer would reside. Solar panels were mounted on the hut, which housed 15 12-volt batteries to power the electronics that digitizes signals from the seismometer and sends data back to Adak via radio. The work was always a race against the sun, while battling the ever-changing weather conditions.

The men explain that the work was difficult but rewarding. Living in close quarters, continuously strategizing to overcome the elements, and working as a team on a remote volcano, led to a bond between HVO and AVO that will last beyond the Aleutian field work.

Source : USGS / HVO.

Le Cleveland, le Semisopochnoi  ou le Veniaminof comptent parmi les volcans les plus actifs des Aléoutiennes, sans oublier l’Augustine… (Photos : AVO et C. Grandpey)

Bientôt un Bureau de Surveillance Volcanique aux Etats-Unis ? // A Volcano Watch Office soon in the U.S .?

drapeau-francaisSelon les journaux américains, des sénateurs de l’Alaska, de l’Etat de Washington et d’Hawaï ont présenté un projet de loi visant à améliorer la surveillance volcanique et les capacités d’alerte précoce.
La mesure inclurait les observatoires des volcans d’Alaska, de la Chaîne des Cascades et d’Hawaii dans un système connexe et créerait un Bureau de Surveillance Volcanique opérationnel 24 heures sur 24. Ce Bureau permettrait une appréciation permanente de la situation des volcans actifs des États-Unis et des territoires qui en dépendent.
L’Observatoire des Volcans d’Alaska est doté depuis longtemps d’un budget insuffisant et figure pourtant parmi les observatoires les plus sollicités au monde. L’Observatoire des Cascades surveille les volcans dans les États de Washington, de l’Oregon et de l’Idaho, tandis que deux des volcans les plus actifs, le Kilauea et le Mauna Loa, sont surveillés par l’Observatoire des Volcans d’Hawaii.
Pour le moment, il ne s’agit que d’un projet de loi (Bill). La loi (Act) doit être votée pour que la mesure soit officielle.

————————————-

drapeau-anglaisAccording the U.S. newspapers, U.S. senators in Alaska, Washington and Hawaii have proposed legislation intended to improve volcano monitoring efforts and early warning capabilities.

The measure would put the Alaska, Cascades and Hawaiian volcano observatories into a connected system and create a 24-hour Volcano Watch Office to provide ongoing situational awareness of active volcanoes in the U.S. and its territories.

The Alaska Volcano Observatory has long been underfunded and is among the busiest observatories in the world. The Cascades observatory monitors volcanoes in the states of Washington Oregon and Idaho, whereas two of the most active volcanoes, Kilauea and Mauna Loa, are monitored by the Hawaiian Volcano Observatory.

For the moment, it is only a Bill, namely a proposed legislation. It needs to become an Act to be official.

redoubt-blog

Le Redoubt est surveillé par l’Alaska Volcano Observatory.

st-helens-blog

Le St Helens est surveillé par la Cascades Volcano Observatory.

Entree 06

Le Kilauea est surveillé par le Hawaiian Volcano Observatory.

(Photos: C. Grandpey)