Dernières nouvelles d’Islande (22 juillet 2025) // Latest news from Iceland (22 July 2025)

L’Office de Tourisme islandais avertit les agences de tourisme que la pollution atmosphérique près de Fagradalsfjall et du cratère de Sundhnúkar est actuellement très dangereuse. Dans un communiqué publié le 22 juillet 2025, l’agence indique que tant que ces conditions actuelles persisteront, les visites du site éruptif ne devront en aucun cas être organisées.
Il est à noter qu’il est possible d’observer la zone de l’éruption depuis Arnarsætursnáma, mais s’approcher du site est trop risqué. L’Office du tourisme demande aux agences de tourisme de se référer attentivement aux prévisions de qualité de l’air et de pollution gazeuse publiées sur le site web du Met Office islandais.
Source : Iceland Monitor.

Cette mise en garde de l’Office de Tourisme confirme un état des lieux publié par le Met Office le 22 juillet. Le rapport indique que « la pollution par le SO₂ devrait se déplacer vers l’est aujourd’hui, couvrant de grandes parties du sud et de l’est de l’Islande d’ici la soirée. Demain, la pollution devrait se propager plus largement dans tout le pays. »
S’agissant de l’éruption, un seul des deux cratères est actuellement actif. L’activité du cratère nord a cessé vers 22h00 le 21 juillet. La lave continue de s’épaissir et de s’écouler lentement vers l’est jusqu’à Fagradal. Le tremor volcanique diminue progressivement. L’activité sismique reste faible dans la zone.
La déformation du sol ne montre actuellement aucun signe de soulèvement ou d’affaissement dans la région de Svartsengi, ce qui montre que les entrées et sorties de magma vers le système éruptif sont actuellement en équilibre.
Source : Met Office.

L’éruption le 21 juillet avant l’arrêt d’activité du cratère nord (image du drone d’Isak Finnbogason

—————————————–

The Icelandic Tourist Board is warning tourism operators that conditions due to air pollution near Fagradalsfjall and the Sundhnúkar crater area are currently very dangerous. In a statement released on July 22nd, 2025, the agency says that as long as these conditions persist, trips to the eruption sites should not be organized under any circumstances.

It is noted that it may be possible to view the area from Arnarsætursnáma, but travel closer to the eruption sites themselves is not considered safe. The Tourist Board urges tourism operators to closely monitor air quality and gas pollution forecasts on the website of the Icelandic Meteorological Office.

Source : Iceland Monitor.

This statement confirmed another statement released by the Met Office on July 22nd too. Thereport says that « SO₂ pollution is expected to drift eastward today, covering large parts of South and East Iceland by the evening. Tomorrow, the pollution is forecasted to spread more widely across the country. »

Only one of the two previously active craters is currently erupting. Activity from the northern crater ceased around 22:00 lon July 21st.. The lava continues to thicken and flow slowly eastward into Fagradal, although the advance is very gradual. The volcanic tremor is gradually decreasing. Seismic activity remains low in the area.

Ground deformation observations currently show no indication of either uplift or subsidence in the Svartsengi area, suggesting that magma inflow and outflow to the system are presently in equilibrium.

Source : Met Office.

Le Veniaminof (Alaska) pour mieux comprendre le comportement du magma // Veniaminof (Alaska) to better undrestand magma behaviour

Le Veniaminof, l’un des volcans qui se dressent sur la péninsule d’Alaska, présente une longue histoire d’éruptions qui se produisent avec peu ou pas de signes précurseurs détectables. Malgré la présence de huit stations sismiques permanentes et d’une surveillance satellite par radar à synthèse d’ouverture interférométrique (InSAR), la plupart des éruptions depuis 1993 se sont produites sans véritables signes précurseurs. Sur les 13 dernières éruptions, seules deux ont été précédées de signes avant-coureurs détectables. Ce schéma éruptif a incité les chercheurs à examiner le système magmatique sous-jacent du Veniaminof et à étudier le comportement des volcans avant leur éruption.

Vue du Veniaminof (Crédit photo : USGS)

Des chercheurs de deux universités de l’Illinois ont cherché à déterminer si un système magmatique fermé pouvait entrer en éruption sans déclencher d’activité sismique ni de mouvements de terrain notables.
Dans les systèmes volcaniques ouverts, comme le Mauna Loa, le magma et les gaz se déplacent librement vers la surface, ce qui génère parfois peu de signaux avant-coureurs clairs. En revanche, les systèmes fermés, comme les Champs Phlégréens, accumulent généralement de la pression, ce qui peut provoquer un soulèvement du sol et une hausse de la sismicité avant une éruption. Pour comprendre comment des éruptions peuvent se produire sans ces signaux, les chercheurs ont construit des modèles thermomécaniques avec lesquels ils ont testé l’interaction des changements de forme, de taille, de profondeur et de débit de la chambre magmatique avec les propriétés physiques de la roche environnante.
L’équipe scientifique a créé des modèles intégrant le comportement de la roche, dépendant et indépendant de la température. Ils ont simulé le déplacement du magma depuis des sources profondes, à plus de 13 km de profondeur, vers des chambres magmatiques moins profondes, avec diverses géométries.
Pour tester le réalisme de ces modèles, ils ont comparé les résultats aux données InSAR et sismiques de l’éruption de Veniaminof de 2018. L’éruption de 2018 est intéressante car elle n’a montré aucun mouvement de terrain significatif ni aucune activité sismique préalable, ce qui en fait un bon exemple d’éruption ‘silencieuse’, autrement dit sans signes précurseurs.
La principale conclusion est que certains systèmes magmatiques peuvent entrer en éruption sans produire de signaux d’alerte détectables. Plus précisément, les systèmes disposant de petites chambres magmatiques profondes, avec de faibles apports de magma et une roche environnante ramollie par la chaleur peuvent produire des éruptions avec une déformation minimale du sol (moins de 10 mm) et une sismicité faible, voire nulle. Cette dernière est en général liée à la rupture de la roche par cisaillement.
Cependant, les scientifiques ont remarqué que certaines roches continuent à se fracturer suite à des contraintes trop intenses, ce qui est suffisant pour permettre au magma de remonter vers la surface et provoquer une éruption. Dans les modèles où le comportement de la roche évolue avec la température, un flux de magma plus important est nécessaire pour déclencher cette rupture, mais même dans ce cas, les signaux de surface restent faibles.
L’analyse InSAR de 2015 à 2018 n’a révélé aucun schéma cohérent de soulèvement ou d’affaissement du sol autour du Veniaminof, ce qui corrobore les résultats de la modélisation. Même lors de l’éruption de 2018, les signaux de déplacement étaient difficilement détectables et probablement masqués par des interférences atmosphériques ou par le glacier qui recouvre le sommet. Ces facteurs compliquent la détection de signes subtils d’inflation volcanique et étayent la conclusion selon laquelle le Veniaminof peut produire des éruptions avec peu ou pas de signes précurseurs en surface.

References:

Stealthy magma system behavior at Veniaminof Volcano, Alaska – Yuyu Li, Patricia M. Gregg, et al. – Frontiers in Earth Science – June 10, 2025 – DOI https://doi.org/10.3389/feart.2025.1535083 – OPEN ACCESS

The Watchers.

———————————————–

Veniaminof volcano on the Alaska Peninsula has a long record of eruptions that occur with little or no detectable warning. Despite the presence of eight permanent seismic stations and satellite monitoring using Interferometric Synthetic Aperture Radar (InSAR), most eruptions since 1993 have taken place without clear precursory signals. Of the last 13 eruptions, only two were preceded by detectable warning signs. This pattern prompted researchers to examine the underlying magma system at Veniaminof and investigate how volcanoes behave prior to eruption.

Researchers from two Illinois universities set out to test whether a sealed magma system could erupt without triggering any noticeable seismic activity or ground movement.

In open volcanic systems, such as Mauna Loa, magma and gases move more freely toward the surface, sometimes resulting in fewer clear warning signals. In contrast, closed systems, such as Campi Flegrei, typically accumulate pressure, which can cause ground uplift and increased seismicity before an eruption.

To figure out how eruptions might happen without these signals, the researchers built detailed thermomechanical models. They tested how changes in magma chamber shape, size, depth, and magma supply rate interact with the surrounding rock’s physical properties.

The scientific team created models incorporating both temperature-dependent and temperature-independent rock behavior. They simulated magma transport from deep sources, more than 13 km below the surface, into shallower magma chambers with varying geometries.

To test how realistic these models were, they compared the results with InSAR and seismic data from Veniaminof’s 2018 eruption. The 2018 eruption is valuable because it showed no obvious ground movement or any preceding seismic activity, making it a good example of a quiet eruption.

The main finding is that certain magma systems can erupt without producing detectable warning signals. Specifically, systems characterized by small, deep magma chambers, low magma supply rates, and heat-softened surrounding rock can produce eruptions with minimal ground deformation (less than 10 mm and little to no seismicity related to shear failure, which typically causes earthquakes.

However, some rock still fractured through tensile failure, which was enough to allow magma to rise and cause an eruption. In models where the rock’s behavior changed with temperature, a higher magma flux was needed to trigger this failure, but even then the surface signals remained weak.

InSAR analysis from 2015 to 2018 revealed no consistent uplift or subsidence patterns around the volcano, supporting the modeling results. Even during the 2018 eruption, displacement signals were ambiguous and likely masked by atmospheric interference or the glacier covering the summit. These factors complicate the detection of subtle signs of volcanic inflation and support the conclusion that Veniaminof can produce eruptions with little or no surface warning.

References:

Stealthy magma system behavior at Veniaminof Volcano, Alaska – Yuyu Li, Patricia M. Gregg, et al. – Frontiers in Earth Science – June 10, 2025 – DOI https://doi.org/10.3389/feart.2025.1535083 – OPEN ACCESS

The Watchers.

Uturuncu, volcan ‘zombie’ en Bolivie // Uturuncu, a ‘zombie’ volcano in Bolivia

Une équipe internationale de scientifiques vient de résoudre le mystère de l’Uturuncu, un volcan supposé endormi dans le sud de la Bolivie, mais qui fait entendre des grondements. Leur étude, publiée dans les Proccedings de la National Academy of Sciences (PNAS), offre à ce jour l’approche la plus détaillée du volcan. Elle révèle que la déformation du sol et l’activité sismique qui y sont observées depuis longtemps sont dues au mouvement de fluides et de gaz à haute température, mais pas à la remontée de magma. Les chercheurs pensent qu’il n’y a pas de risque d’éruption immédiate, mais ils confirment qu’un système magmatique demeure actif sous la surface. La probabilité d’une éruption imminente reste donc faible malgré les récents grondements liés à l’activité sismique enregistrée dans la région et à la déformation du sol, avec l’élévation de la base du volcan et l’affaissement des zones environnantes.
Bien qu’il soit en théorie éteint – sa dernière éruption remonte à 250 000 ans – le volcan Uturuncu continue d’émettre des panaches de gaz. Les chercheurs ont cherché à mieux comprendre l’activité volcanique afin d’évaluer la gravité d’une éventuelle éruption, ainsi que les dégâts matériels et humains.

Crédit phoro : Wikipedia

L’équipe internationale, avec des scientifiques chinois, britanniques et américains, a réalisé des images haute résolution du magma et des gaz qui circulent sous le volcan. Leur étude révèle que le grondement entendu autour de l’Uturuncu est dû aux mouvements de liquides et de gaz sous le cratère. L’imagerie a révélé un système de conduits sous-jacent au volcan, dans lequel circule un mélange complexe de fluides et de gaz à travers des réservoirs magmatiques et des systèmes hydrothermaux.
On savait que l’Uturuncu se trouvait au-dessus du plus grand corps magmatique connu dans la croûte terrestre, relié à un système hydrothermal actif. Cependant, le mode de circulation des fluides dans ce système restait inconnu. Dans la dernière étude, les scientifiques ont ‘photographié’ l’intérieur du volcan en utilisant des méthodes similaires à celles utilisées pour l’imagerie médicale du corps humain. L’analyse de la structure souterraine et des propriétés physiques du volcan, telle que la composition des roches, a permis de détecter des chenaux de migration des fluides chauds vers le surface et de comprendre comment les liquides et les gaz s’accumulaient dans les réservoirs situés sous le cratère. Ils ont conclu que ces mouvements de fluides étaient la cause la plus probable de la déformation au centre du système volcanique.
Les résultats de l’étude montrent comment l’utilisation commune des méthodes géophysiques et géologiques peut permettre de mieux comprendre les volcans, leurs dangers et leurs ressources potentielles. Les chercheurs expliquent que les méthodes présentées dans cette étude pourraient être appliquées à plus de 1 400 volcans potentiellement actifs et à des dizaines de volcans ‘zombies’ comme l’Uturuncu, qui ne sont pas considérés comme actifs mais qui montrent des signes de vie.
Source : Médias d’information internationaux.

Image satellite de l’Uturuncu (Sourcee : Copernicus)

La Smithsonian Institution explique que l’Uturuncu fait partie de la zone volcanique centrale (ZVC) des Andes, une ceinture tectonique active qui s’étend au sud du Pérou, à l’ouest de la Bolivie, au nord du Chili et au nord-ouest de l’Argentine. Bien que la Bolivie compte moins de volcans historiquement actifs que ses voisins, le pays abrite plusieurs grands complexes volcaniques témoignant d’une activité holocène, notamment le Cerro Nuevo Mundo, le Cerro Chascon-Runtu Jarita, ainsi que les Cerro Luxsar et Irruputuncu, potentiellement actifs, près de la frontière chilienne.
Si aucune éruption explosive majeure n’a été enregistrée en Bolivie au cours de la période historique, des dépôts laissés par des événements passés majeurs sont préservés sur l’Altiplano, notamment au sein du complexe volcanique Altiplano-Puna. Ce complexe a produit certaines des plus importantes éruptions ignimbrites des 10 derniers millions d’années. Ces éruptions ont façonné une grande partie de la topographie volcanique actuelle de la région et enfoui des paysages plus anciens sous d’épais dépôts volcaniques.

———————————————-

An international team of scientists has just solved the mystery about a supposed dormant volcano that is showing signs of rumbling. Their study, published in PNAS, provides the most detailed view to date of the Uturuncu volcano in southwestern Bolivia, revealing that its long-standing ground deformation and seismic unrest are driven by the movement of hot fluids and gases, not by magma ascent. Researchers conclude there is no immediate eruption risk, but confirm that a deep magmatic system remains active beneath the surface. The likelihood of an imminent eruption at what researchers called Bolivia’s “zombie” volcano remains low despite recent rumbling which has been tied to frequent earthquakes in the area as well as land deformation, causing its base to rise and surrounding areas to sink, raising fears of an imminent eruption..

In spite of being technically dead, with its last eruption 250,000 years ago, the Uturuncu volcano continues to eject plumes of gases. Researchers have sought to understand the volcano’s activity better to gauge the severity of a potential eruption, which could cause widespread damage to life and property.

An international team of scientists from China, the UK and the US has conducted high-resolution imaging of magma and gases moving around underneath the volcano. Their study reveals that the rumbling of Uturuncu is caused by the movement of liquid and gas beneath the crater, with a low likelihood of imminent eruption. The imaging uncovers the plumbing system undergirding the volcano that involves a complex mixture of fluids and gases passing through magmatic reservoirs and hydrothermal systems.

Uturuncu was known to sit above the largest known magma body in the Earth’s crust with an active hydrothermal system connecting to it. But exactly how fluids moved through this underground system remained unclear. In the latest study, scientists imaged the interior of the volcano using methods similar to those for medical imaging of the human body.

Analysing this underground structure and the volcano’s physical properties, such as rock composition, helped the authors of the study to detect upward migration channels of hot fluids and understand how liquids and gases accumulated in reservoirs below the crater. They concluded that these fluid movements were the most likely cause of the deformation in the centre of the volcanic system.

The results of the study show how linked geophysical and geological methods can be used to better understand volcanoes, and the hazards and potential resources they present. The researchers explain that the methods in this paper could be applied to the more than 1400 potentially active volcanoes and to the dozens of ‘zombie volcanoes’ like Uturuncu that aren’t considered active but that show signs of life.

Source : International news media.

The Smithsonian Institution explains that Uturuncu is part of the Central Volcanic Zone (CVZ) of the Andes, a tectonically active belt that extends through southern Peru, western Bolivia, northern Chile, and northwestern Argentina. Although the country has fewer historically active volcanoes than its neighbors, it hosts several large volcanic complexes with evidence of Holocene activity, including Cerro Nuevo Mundo, Cerro Chascon-Runtu Jarita, and the potentially active Cerro Luxsar and Irruputuncu near the Chilean border.

While no major explosive eruptions have been recorded in Bolivia during the historical period, deposits from large past events are preserved across the Altiplano, particularly within the Altiplano-Puna Volcanic Complex. This complex has produced some of the largest ignimbrite-forming eruptions in the last 10 million years. These eruptions shaped much of the region’s current volcanic topography and buried older landscapes under thick volcanic deposits.

Islande : un jeu de devinettes // Iceland : a guessing game

La situation actuelle en Islande intrigue les volcanologues locaux et se transforme en un jeu de devinettes où chacun participe avec ses propres prévisions. Se référant au soulèvement du sol observé depuis plusieurs semaines sous Svartsengi, signe évident d’une importante accumulation de magma, les scientifiques islandais s’attendaient à une puissante éruption avec émission d’énormes quantités de lave. L’éruption du 1er avril 2025 a été bien différente. Une fissure s’est ouverte en direction de Grindavik, mais n’a émis qu’un faible volume de lave estimé à environ 0,4 million de mètres cubes. Le champ de lave est le plus petit observé depuis le début de la séquence éruptive sur la chaîne de cratères de Sundhnúkur en décembre 2023. Au final, l’éruption n’a duré que six heures.
Malgré le faible volume de lave émis, les instruments ont montré que le magma était actif sous la surface et formait un dyke qui s’étendait du nord au sud sur une distance d’une vingtaine de kilomètres. Cela signifie que la lave émise en surface le 1er avril ne représentait qu’une infime partie du magma qui s’était accumulé au cours des semaines précédentes. La question est maintenant de savoir comment la situation va évoluer.

Le Met Office estime qu’une nouvelle éruption est peu probable. Þorvaldur Þórðarson, professeur de volcanologie et de pétrologie à l’Université d’Islande, affirme de son côté que la récente activité sismique sur la péninsule de Reykjanes, en particulier près de Reykjanestá et au nord-est de la chaîne de cratères de Sundhnúkur, signale peut-être un changement d’activité volcanique. Il pense que la sismicité actuelle est plus probablement causée par des tensions tectoniques que par des mouvements de magma. Il ne faudrait pas oublier les importants essaims sismiques enregistrés à Reykjanestá et Krysuvik ces derniers temps. Selon le scientifique, ces événements pourraient indiquer que l’activité volcanique est en train de ralentir à Sundhnúkahraun, le champ de lave formé lors des dernières éruptions, et pourrait se déplacer vers une nouvelle zone. Malgré la hausse de l’activité sismique au nord-est de la chaîne de cratères de Sundhnúkur, Þorvaldur Þórðarson estime peu probable qu’elle soit due au mouvement d’un dyke magmatique. Il attribue plutôt cette sismicité aux forces tectoniques. Il pense qu’il s’agit plus probablement du résultat d’un relâchement de tension le long des limites entre les plaques tectoniques.
Le jeu de devinettes continue…

 

Cet interférogramme illustre la déformation de surface survenue entre le 31 mars et le 2 avril. La ligne de faille blanche marque l’emplacement estimé de l’intrusion magmatique observée le 1er avril. D’autres lignes blanches indiquent les endroits où des mouvements de faille ont été détectés en surface. La déformation la plus importante s’est produite dans les zones où les franges colorées sont les plus rapprochées, comme la zone de Svartsengi, où le terrain s’est affaissé d’environ 25 cm, et de part et d’autre de la partie nord du dyke. La superposition grise montre l’étendue des coulées de lave depuis le début de l’épisode éruptif en décembre 2023, tandis que la superposition orange montre le champ de lave produit par l’éruption du 1er avril.(Source : Met Office)

———————————————-

The current situation in Iceland puzzles the local volcanologists and the current situation has become a guessing game. In which local volcanologists are making their own predictions. Referring to the long-term ground uplift beneath Svartsengi, the sign of a voluminous magma accumulation, they were expecting a powerful eruption with the emission of huge quantities of lava. The eruption that occurred on April 1st, 2025 was largely different. A fissure opened toward Grindavik but it only emitted a volume of lava estimated at about 0.4 million cubic meters. The lava field was the smallest one observed since the eruption sequence at Sundhnúkur crater row began in December 2023. The eruption only lasted six hours. Even though le volume of emitted lava was low, magma was active beneath the surface and formed a dike that extended both north and south over a distance of about 20 km. This means that the lava emitted on April 1st was a very small portion of the magma that had been accumulating. The question is to know how the situation will evolve.

The Met Office thinks that a new eruption is unlikely. Þorvaldur Þórðarson, professor of volcanology and petrology at the University of Iceland, says that the recent seismic activity on the Reykjanes Peninsula, particularly near Reykjanestá and northeast of the Sundhnúkur crater row, may signal a shift in volcanic activity. He believes the current earthquakes are more likely caused by tectonic tension than by magma movement. One should not forget the significant seismic swarns that were recorded at Reykjanestá and Krysuvik. According to the scientist, these events may signal that volcanic activity is winding down at Sundhnúkahraun, the lava field formed during the recent eruption, and may be shifting to a new area. Despite the increase in seismic activity northeast of the Sundhnúkur crater row, Þorvaldur Þórðarson considers it unlikely that this is due to the movement of a magma dyke. Instead, he attributes the earthquakes to tectonic forces. He believes it is more likely the result of tension released along tectonic plate boundaries.

The guessing game continues…