Le Mont Hood (Oregon) sous haute surveillance // Mount Hood to be closely monitored

drapeau francaisDans une note rédigée le 21 février 2014, j’indiquais que, dans une étude parue dans la revue Nature, des chercheurs de l’Université d’Oregon avaient conclu que la lave émise lors des dernières éruptions du Mont Hood, il y a 1500 ans et 220 ans, était restée stockée 100 000 ans sous le volcan. Les scientifiques avaient également analysé les cristaux à l’intérieur de la lave afin de connaître la température du magma qui lui avait donné naissance. Il en ressortait que le magma est resté à une température de 750°C, voire un peu moins. C’est donc au moment où le magma connaît une hausse de température que le volcan entre en éruption.

Au vu des résultats de cette étude, l’USGS et l’Observatoire Volcanologique des Cascades ont demandé à installer dans les meilleurs délais quatre stations de surveillance sur les hautes pentes du Mont Hood. Bien qu’il ne soit pas en éruption, le volcan rappelle qu’il est actif avec de fréquents séismes et des émissions de gaz et de vapeur dans la zone de Crater Rock, près du sommet. Ces stations amélioreraient la capacité des scientifiques à détecter les moindres signaux de réveil du volcan et permettraient de déterminer s’il représente une menace d’éruption imminente.
En 2005, l’USGS a qualifié le Mont Hood de volcan présentant « une très forte menace», en raison de son histoire éruptive, de l’activité actuelle et de la proximité des zones habitées. Le Mont Hood se dresse à environ 80 kilomètres à l’est de Portland.

Source : The Oregonian.

 ———————————————-

drapeau anglaisIn a note written on February 21st 2014, I indicated that in a study published in the journal Nature University of Oregon researchers could determine that the lava from Mt. Hood’s last two eruptions – 220 years ago and 1,500 years ago – had been stored for up to 100,000 years beneath the volcano. The scientists also analyzed crystals that formed in the lava to determine how hot the magma had been for most of that time. The results show that magma has remained at or below 750°C. So it is only when the magma gets warmer than this that Mt. Hood will erupt.

After taking the results of this study into account, the U.S. Geological Survey and the Cascades Volcano Observatory have asked to install soon four volcano monitoring stations on the upper flanks of Mount Hood. Scientists say that although it’s not erupting, Mount Hood signals that it is an active volcano. The peak produces frequent earthquakes, and steam and volcanic gases are emitted in the area around Crater Rock near the summit. The stations would enhance scientists’ ability to detect subtle signals beneath the volcano and help determine whether it poses any threat of imminent eruption.

In 2005, the USGS designated Mount Hood as a “very high threat” volcano, due to its history of eruptions, current activity and closeness to downstream communities. The mountain is about 80 kilometres east of Portland.

Source : The Oregonian.

Hood-blog-2

Photo:  C.  Grandpey

Nouvelle étude sur le système d’alimentation du Mont Rainier // New study about Mount Rainier’s feeding system

drapeau francaisUne étude publiée dans la revue Nature nous apprend qu’en mesurant la vitesse avec laquelle la Terre conduit l’électricité et les ondes sismiques, un chercheur de l’Université de l’Utah et ses collègues ont obtenu une image détaillée du système d’alimentation volcanique profond du Mont Rainier.

L’image (voir ci-dessous) semble montrer qu’au moins une partie du réservoir magmatique du Mont Rainier se trouve entre 9 et 16 kilomètres au nord du volcan. Cela est probablement dû au fait que les 80 capteurs électriques utilisés pour l’expérience ont été placés le long d’une ligne de 300 kilomètres de long d’est en ouest, à une vingtaine de kilomètres au nord du Rainier. En conséquence, il se peut que la partie principale de la chambre magmatique se situe directement sous le volcan et qu’un lobe s’étire vers le nord-ouest sous la ligne de capteurs.
Dans l’image obtenue, la partie supérieure du réservoir magmatique se trouve à 8 km sous la surface et semble avoir 8 à 16 km d’épaisseur, avec une largeur de 8 à 16 km d’est en ouest.
La nouvelle image ne ​​montre pas le circuit d’alimentation qui relie le Mont Rainier à la chambre magmatique située 8 km en dessous. Au lieu de cela, elle montre que l’eau et la roche partiellement ou totalement fondue sont générées à 80 km de profondeur, là où l’une des plaques de la croûte terrestre – la plaque Juan de Fuca – plonge vers l’est et vient s’enfoncer sous la plaque nord-américaine, et où la matière en fusion commence son ascension vers la chambre magmatique du Mont Rainier.
La nouvelle étude a utilisé à la fois l’imagerie sismique et les mesures magnétotelluriques, ce qui produit des images en montrant comment les champs électriques et magnétiques dans le sol varient en fonction de la résistance et de la conductivité des roches et des fluides à l’électricité. C’est la vue en coupe la plus détaillée jamais obtenue d’un système volcanique des Cascades grâce à l’imagerie électrique et sismique. Les images sismiques précédentes montraient l’eau et la roche en fusion partielle au-dessus de la plaque pendant sa subduction. Selon un chercheur, la nouvelle image montre la fusion « depuis la surface de la plaque jusqu’à la partie supérieure de la croûte, là où le magma s’accumule avant le début d’une éruption. »

S’agissant de l’histoire géologique, le Mont Rainier trône sur des coulées vieilles parfois de 36 millions d’années. Un ancien Mont Rainier a existé il y a 2 millions d’années à un million d’années. De fréquentes éruptions ont façonné la montagne actuelle au cours des 500 000 dernières années. Au cours des 11 000 dernières années, le Rainier a connu des dizaines d’éruption explosives avec des émissions de cendre et de ponce. A une époque, le Rainier était plus haut qu’aujourd’hui, jusqu’au jour où il s’est effondré lors d’une éruption il y a 5600 années. Il a alors présenté un grand cratère ouvert vers le nord-est, un peu comme le cratère formé par l’éruption du mont St Helens en 1980. Il y a 5600 ans, cette éruption a produit une énorme coulée de boue à l’ouest du volcan, en direction de Puget Sound, couvrant tout ou partie les sites actuels du port de Tacoma, de la banlieue de Seattle, ainsi que des villes comme Puyallup, Orting, Buckley, Sumner et Enumclaw. La lave a dévalé pour la dernière fois les flancs du Mont Rainier il y a 2200 années, tandis que les dernières coulées pyroclastiques ont eu lieu il y a 1100 années. La dernière grande coulée de boue s’est produite il y a 500 ans. Certains rapports contestés font état d’éruptions de vapeur dans les années 1800.

Plus de détails sur cette étude peuvent être consultés sur le site ScienceDaily:
http://www.sciencedaily.com/releases/2014/07/140717094607.htm?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+sciencedaily+%28Latest+Science+News+–+ScienceDaily%29

 ——————————————————

drapeau anglaisA study published in the journal Nature informs us that by measuring how fast Earth conducts electricity and seismic waves, a University of Utah researcher and colleagues made a detailed picture of Mount Rainier’s deep volcanic plumbing system.

The image (see below) appears to show that at least part of Mount Rainier’s magma reservoir is located about 9 to 16 kilometres northwest of the volcano. That could be because the 80 electrical sensors used for the experiment were placed in a 300-kilometre-long, west-to-east line about 20 km north of Rainier. So the main part of the magma chamber could be directly under the peak, but with a lobe extending northwest under the line of detectors.

The top of the magma reservoir in the image is 8 km underground and appears to be 8 to 16 km thick, and 8 to 16 km wide in east-west extent.

The new image doesn’t reveal the plumbing tying Mount Rainier to the magma chamber 8 km below it. Instead, it shows water and partly molten and molten rock are generated 80 km underground where one of the crustal plates is subducting eastward and downward beneath the North America plate, and how and where those melts rise to Rainier’s magma chamber.

The new study used both seismic imaging and magnetotelluric measurements, which make images by showing how electrical and magnetic fields in the ground vary due to differences in how much underground rock and fluids conduct or resist electricity. It is the most detailed cross-section view yet under a Cascades volcanic system using electrical and seismic imaging. Earlier seismic images indicated water and partly molten rock atop the diving slab. According to one researcher, the new image shows melting « from the surface of the slab to the upper crust, where partly molten magma accumulates before erupting. »

As far as geological history is concerned, Mount Rainier sits atop volcanic flows up to 36 million years old. An ancestral Rainier existed 2 million to 1 million years ago. Frequent eruptions built the mountain’s modern edifice during the past 500,000 years. During the past 11,000 years, Rainier erupted explosively dozens of times, spewing ash and pumice. Rainier once was taller until it collapsed during an eruption 5,600 years ago to form a large crater open to the northeast, much like the crater formed by Mount St. Helens’ 1980 eruption. The 5,600-year-old eruption sent a huge mudflow west to Puget Sound, covering parts or all of the present sites of the Port of Tacoma, Seattle suburbs, and the towns Puyallup, Orting, Buckley, Sumner and Enumclaw. Rainier’s last lava flows were 2,200 years ago, the last flows of hot rock and ash were 1,100 years ago and the last big mudflow 500 years ago. There are disputed reports of steam eruptions in the 1800s.

More details about this study can be found on the ScienceDaily website:

http://www.sciencedaily.com/releases/2014/07/140717094607.htm?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+sciencedaily+%28Latest+Science+News+–+ScienceDaily%29

Rainier-sommet

Le sommet du Mont Rainier  (Photo:  C. Grandpey)

RainierElectricView

L’image magnéto-tellurique montre la plaque Juan de Fuca en bleu, les remontées de magma en orange, tandis que le Mont Rainier est symbolisé par un triangle rouge.

De moins en moins de neige à Crater Lake (Oregon) // Less and less snow at Crater Lake (Oregon)

drapeau francaisLe parc national de Crater Lake est connu pour être l’un des lieux habités les plus enneigés d’Amérique du Nord, avec une moyenne de 14 mètres de neige par an. Il faut pourtant se mettre à l’évidence : le seul parc national de l’Oregon a perdu progressivement sa neige emblématique au cours des huit dernières décennies.
Les hauteurs de neige ont été répertoriées depuis 1931 au Visitor’s Center à 1935 mètres d’altitude. La quantité de neige a diminué lentement, avec une perte annuelle moyenne de plus de 2,50 mètres entre 1931 et 2013.
Pendant les années 1930, 40 et 50, Crater Lake a reçu en moyenne 15,62, 15,82 et 14,50 mètres de neige chaque hiver.  Entre 2000 et 2013, cette moyenne n’est plus que de 11,70 mètres.
Les pertes ne sont toutefois pas régulières. Les années 1990 à 2000 ont vu une petite hausse par rapport aux autres décennies, et la baisse de 1970 à 2013 est limitée.
Les données ci-dessus ne tiennent pas compte de la saison actuelle, la quatrième plus mauvaise jamais enregistrée et qui représente 43 % de la normale jusqu’au 18 avril. Aucune donnée ne couvre les années de la Seconde Guerre mondiale. Avant 1930, la station météorologique a changé de place et a connu des altitudes différentes ; elle n’est donc pas fiable pour suivre les données météorologiques dans le parc à cette époque.

Source : StatesmanJournal.com.

 ———————————————-

 drapeau anglaisCrater Lake National Park is known as one of the snowiest inhabited place in North America, with an average 14 metres of annual snowfall. However, Oregon’s only national park has been gradually losing its iconic snow for the past eight decades.

Data on snow levels have been kept at theVisitor’s Center (1935 metres a.s.l.) going back to 1931. The amount of snow has slowly declined, with the yearly average dropping by more than 2.5 metres between 1931 and 2013.

During the 1930s, ’40s and ’50s, Crater Lake averaged 15.62, 15.82 and 14.50 metres of seasonal snowfall, respectively. By 2000 to 2013, the average was 11.70 metres.

The numbers aren’t a straight line down. The 1990 to 2000 years saw a small spike compared with surrounding decades, and the decline from 1970 to 2013 is limited.

But park officials say they’re preparing for a future with less snow overall.

The data doesn’t take into account the current season, the fourth-worst on record and 43% of normal as of April 18th. The data also is missing four seasons in the 1940s due to World War II. Prior to 1930, the weather station was shuffled between lower and higher locations and is not considered reliable to track weather data at Crater Lake National Park.

Source : StatesmanJournal.com.

Crater-Lake-blog

Crater Lake et Wizard Island  (Photo:  C.  Grandpey)

Après le Mont Hood, voici South Sister (Oregon / Etats-Unis) // After Mount Hood, here is South Sister (Oregon / United States)

drapeau francaisLes deux chercheurs de l’Université de l’Oregon qui ont effectué l’étude sur le magma du Mont Hood veulent maintenant étudier d’autres volcans à travers le monde, y compris South Sister, où un soulèvement du sol a commencé en 1997 avant de ralentir puis de cesser au cours des dernières années.
Pendant leur étude du Mont Hood, les deux scientifiques sont arrivés à la conclusion que la plupart du temps le magma qui se trouve dans la chambre sous le volcan demeure à une température relativement basse ; il est très pâteux et plutôt dur, ce qui rend la probabilité d’une éruption assez faible. Toutefois, si un afflux de magma à haute température monte des profondeurs de la terre, la situation peut changer rapidement. En quelques semaines ou quelques mois, le magma qui s’est accumulé à un état presque solide peut devenir plus fluide en se réchauffant. Lorsque la température augmente, il en va de même de la pression dans la chambre magmatique et la roche en fusion commence à se déplacer vers le haut, ce qui augmente la possibilité d’une éruption.
Les chercheurs pensent qu’une telle situation pourrait se reproduire sur d’autres volcans que le Mont Hood, y compris sur South Sister, à l’ouest de Bend, ou encore sur le Mont Pinatubo aux Philippines. Ils ont demandé une subvention à la National Science Foundation et espèrent recevoir environ 500 000 dollars pour leurs prochaines recherches. Ce qu’ils ont découvert à ce jour souligne l’importance des appareils de surveillance sur et autour de volcans susceptibles de menacer des villes. L’Observatoire des Cascades géré par l’USGS à Vancouver a installé de tels équipements sur les volcans de la Chaîne des Cascades au cours de la dernière décennie, y compris sur South Sister et sur le Newberry Volcano.
Comme nous savons maintenant avec quelle rapidité un volcan peut montrer des signes éruptifs, il est urgent d’installer des stations de surveillance, en particulier des réseaux sismiques. Les scientifiques de l’USGS veulent les installer sur et autour du Mont Hood, et en ajouter autour de South Sister.

Source : The Oregonian.

——————————————-

drapeau anglaisThe two Oregon State University researchers who performed the study about Mount Hood’s magma now want to study more volcanoes around the world, including South Sister where an uplifting of the ground started in 1997, then later slowed or stopped in recent years.

While studying Mt Hood, the two scientists came to the conclusion that much of the time the magma in a chamber under the volcano is relatively cool, making it sticky and stiff and the likelihood of an eruption low. However, if an influx of hot magma ascends from deep within the earth, the situation can change quickly. In just weeks or months the pool of nearly solid magma can become a runnier liquid as it heats up. When its temperature rises, so does the pressure in the magma chamber and the molten rock starts to move upward, increasing the possibility of an eruption.

The researchers said this could be the case for other volcanoes than Mount Hood, including South Sister, just west of Bend, and Mount Pinatubo in the Philippines. They applied for a grant from the National Science Foundation and hope to receive about $500,000 for the next round of research. What they have discovered so far underscores the importance of having monitors on and around volcanoes that could impact cities. The U.S. Geological Survey’s Cascades Volcano Observatory in Vancouver has installed monitors at Cascade volcanoes over the past decade, including at South Sister and Newberry Volcano.

As we now know how quickly a volcano can show signs of a coming eruption, it is urgent to install monitoring stations, especially seismic networks. USGS scientists want to install them on and around Mount Hood, and add more around South Sister.

Source: The Oregonian.

Three-Sisters

South-Sister

Three Sisters  & South Sister  (Oregon)   [Photo:  C. Grandpey]