Long Valley : une menace pour la Californie ? // Is Long Valley a threat to California ?

La caldeira de Long Valley, qui comprend la région de Mammoth Lakes, est considérée comme l’un des volcans les plus dangereux de Californie. Depuis 2018, au vu du classement de l’USGS, la caldeira fait partie des trois volcans de l’État représentant une « menace très élevée ». Les deux autres volcans californiens appartenant à cette classification sont le mont Shasta et la zone volcanique de Lassen, dominée par Lassen Peak.

 

Un trio volcanique infernal ? De haut en bas : Long Valley (Crédit photo : Daniel Mayer / Wikipedia) : Mt Shasta et Lassen Peak (Photos : C. Grandpey)

Pour établir sa classification, l’USGS a pris en compte la menace potentielle d’un volcan et le nombre de personnes et de biens exposés au risque éruptif.
Les conclusions des scientifiques ont été publiées dans la revue Science Advances. L’étude complète peut être consultée en cliquant sur ce lien :
https://www.science.org/doi/10.1126/sciadv.adi9878#:~:text=The%20upper%2Dcrust%20lid%20confining,of%20recent%20upper%20crust%20intrusions.

La caldeira de Long Valley est une vaste dépression à l’est de la Sierra Nevada. Elle se trouve à environ 65 km à l’est de Yosemite, à 320 km à l’est de San Francisco et à 400 km au nord de Los Angeles. Elle a été façonnée par une super-éruption il y a environ 760 000 ans. Le volcan a vomi 600 kilomètres cubes de magma, recouvrant une grande partie du centre-est de la Californie de cendres à haute température dont les nuages ont atteint l’actuel Nebraska.

Carte schématique de la caldeira de Long Valley. (Source : Wikipedia)

Les scientifiques étudient depuis longtemps la caldeira de Long Valley où l’on constate une hausse significative de la sismicité et des mouvements du sol depuis une quarantaine d’années. En particulier, il y a eu quatre séismes de M 6,0 dans la région de Long Valley en mai 1980. Cependant, de tels événements ne signifient pas nécessairement qu’une éruption se produira à court terme.
Les chercheurs sont persuadés que nous ne verrons pas une super éruption dans la caldeira de Long Valley de notre vivant car le magma sous la région est en cours de refroidissement et est donc de moins en moins actif
Pourtant, les phénomènes géologiques observés récemment ont posé une double question importante aux scientifiques : que signifient la hausse de l’activité sismique et la déformation du sol ? Est-ce le signe avant-coureur de quelque chose d’alarmant ?
Une première chose est de savoir s’il y a suffisamment de magma dans les conduits d’alimentation du réservoir souterrain pour déclencher une éruption. Une autre question est de savoir s’il y a une explication aux séismes et aux mouvements du sol alors que le magma est en cours de refroidissement et donc de solidification. Les scientifiques pensent qu’il pourrait y avoir d’autres fluides non magmatiques en train de remonter vers la surface et susceptibles de déclencher des séismes. Les scientifiques de Caltech ont conclu que la région ne se prépare pas à une nouvelle super éruption. Cependant, le processus de refroidissement du magma peut libérer suffisamment de gaz et de fluides pour provoquer des séismes et de petites éruptions.
Certains scientifiques sont persuadés que la caldeira de Long Valley est morte en tant que volcan et que l’activité sismique intense enregistrée de temps en temps est générée par des fluides qui sont encore chauds et se déplacent vers la surface à mesure que le magma se refroidit et se solidifie.
D’autres scientifiques pensent que la caldeira de Long Valley est encore active. Le dernier épisode d’activité sismique dans la région a commencé en 2011 et s’est accompagné d’une déformation du sol, avec élévation de la surface. Cette activité a diminué et depuis 2020 on observe à nouveau une phase calme. Cependant, ces mêmes scientifiques pensent qu’une éruption magmatique ne saurait être exclue. Ils font remarquer que, même si la caldeira de Long Valley proprement dite est ancienne et son magma se refroidit et se cristallise, il existe des coulées de lave extrêmement jeunes le long de la chaîne voisine de cratères de Mono-Inyo. Cela montre que d’autres poches de magma subsistent dans la région. En outre, il ne faudrait pas oublier que la région constitue toujours une menace importante et peut être le siège de puissants essaims sismiques.
Source : Science Advances, The Los Angeles Times.

————————————————

The Long Valley Caldera, which includes the Mammoth Lakes area, is one of California’s riskiest volcanoes. The caldera was classified in 2018 by the U.S. Geological Survey (USGS) as one of three volcanoes in the state considered a « very high threat ». The two other volcanoes in California with that classification are Mt. Shasta and the Lassen Volcanic Center, which includes Lassen Peak. The threat assessment is defined as a combination of a volcano’s potential threat and the number of people and properties exposed to it.

The scientists’ findings were published in the journal Science Advances. The complete study can be found by clicking on this link :

https://www.science.org/doi/10.1126/sciadv.adi9878#:~:text=The%20upper%2Dcrust%20lid%20confining,of%20recent%20upper%20crust%20intrusions.

The Long Valley Caldera is a broad depression of land east of the Sierra Nevada. It’s roughly 65 km east of Yosemite Valley, 320 km east of San Francisco and 400 km north of Los Angeles. Itwas formed by a super-eruption about 760,000 years ago that blasted 600 cubic kilometers of magma, covering much of east-central California in hot ash that was blown as far away as present-day Nebraska.

Scientists have long scrutinized the Long Valley Caldera, where there have been noticeable increases in earthquakes and the ground fluctuations that began four decades ago. In particular, there were four M 6.0 earthquakes in the Long Valley area in May 1980. However, such events do not necessarily mean an eruption will occur in the short term.

Researchers are persuaded the risk of a supervolcanic eruption in the Long Valley Caldera in our lifetime is extremely low,as the magma underneath the area is clearly cooling and, as such, continuing to calm down.

Still, the recent geological phenomena posed an important question for scientists: What does the increased seismic activity and deformation of the ground mean? Is it a precursor to something alarming?

A first question was to know whether there was enough magma in connected segments of the underground reservoir to combine and erupt. Another question was whether there was an explanation for the earthquakes and ground movement as the cooling magma crystallized and solidified. They thought there might be other non-magma fluids that were coming to the surface and triggering earthquakes. Then, the Caltech scientists concluded that the region was not gearing up for another supervolcanic eruption. However, the cooling process may release enough gas and liquid to cause earthquakes and small eruptions..

Some scientists suspect the Long Valley Caldera as a volcano is essentially dead and the increased seismic activity, when it happens, is being generated by fluids that are still hot and moving to the surface as the magma cools and solidifies.

Other scientits, however, argue the Long Valley Caldera is active.The most recent episode of increased earthquake activity in the area began in 2011 and was accompanied by a ground deformation in which the land started to rise. That activity has tapered off, and since 2020, a quiet phase has resumed. However, these scientists believe a magmatic eruption is still something to consider. While the Long Valley Caldera itself is old and its magma is cooling and crystallizing, there are extremely young lava flows along the nearby Mono-Inyo Craters chain. This shows there are other pockets of magma in the area..Besides, it is important to understand the area still poses a significant threat and remains capable of powerful earthquake swarms.

Source : Science Advances, The Los Angeles Times.

Japon : forte sismicité dans un volcan éteint // Japan : significant seismicity through an extinct volcano

Un essaim sismique significatif est enregistré depuis trois ans sur la péninsule de Noto, au bord de la mer du Japon, dans le nord du pays. Selon une nouvelle étude réalisée par des scientifiques japonais, l’essaim semble être causé par le déplacement de fluides à travers un volcan éteint dont l’effondrement a formé une caldeira.
Il n’y a pas eu d’activité volcanique dans cette région depuis 15,6 millions d’années. Cependant, la nouvelle étude publiée en juin 2023 dans la revue JGR Solid Earth a révélé que la sismicité se produit selon un schéma qui laisse supposer que du magma liquide se déplace toujours sous la surface d’une ancienne caldeira effondrée. Les auteurs de l’étude pensent que « l’essaim sismique a été causé par l’ascension de fluides à travers un réseau complexe de failles ».
L’essaim a commencé en décembre 2020. Depuis lors, on a enregistré plus de 1 000 secousses de magnitude M 2,0 ou plus, dont un événement de M 5,4 en juin 2022 et un autre de M 6,5 en mai 2023 qui a tué une personne et en a blessé des dizaines d’autres.
Les auteurs de l’étude ont étudié les ondes sismiques émises par plus de 10 000 événements de magnitude M 1,0 ou plus qui se sont produits dans la région au cours des trois dernières années. Ils ont découvert que les séismes avaient leurs hypocentres à une vingtaine de kilomètres de profondeur dans la croûte, avant de migrer progressivement vers la surface. Selon les chercheurs, cela peut s’expliquer par l’ascension de fluides à travers un réseau de failles existant. Les épicentres sont disposés selon un schéma circulaire, correspondant à la structure en forme d’anneau de ce réseau de failles. Cela pourrait indiquer l’ancienne caldeira effondrée d’un volcan aujourd’hui éteint.
Il n’est pas rare que des volcans inactifs depuis longtemps contiennent encore des poches de magma. Lorsque ces fluides se déplacent, ils peuvent déformer la croûte et faire glisser les failles les unes contre les autres. Des essaims comme celui de la péninsule de Noto peuvent se produire à tout moment dans les zones de subduction, là où le frottement d’une plaque sur une autre déplace continuellement les fluides dans la croûte. Une autre hypothèse est que le puissant séisme de Tohomu (M 9.1) en 2011 a provoqué un mouvement fluides dont l’effet se fait encore sentir aujourd’hui ; on se souvient que ce séisme a été suivi de plusieurs petits essaims dans le nord-est du Japon.
La question est maintenant de comprendre comment l’essaim actuel a commencé avec de nombreux petits séismes avant d’être suivi d’un puissant événement qui a causé des dégâts en mai 2023. Les scientifiques essayent de savoir comment la croûte a pu se déplacer sans générer de sismicité avant ce puissant tremblement de terre.
Source : Live Science via Yahoo News.

———————————————

A significant swarm of earthquakes has been rocking the Noto Peninsula by the Sea of Japan, on the north coast of the countryover the past three years. According to a new study by Japanese scientists, the swarm appears to be the result of fluids moving through an extinct, collapsed volcano.

There has not been volcanic activity in this area for 15.6 million years. However, the new study published in June 2023 in the journal JGR Solid Earth found that the quakes are occurring in a pattern that suggests liquid magma is still moving around deep below the surface in an ancient, collapsed caldera. The authors of the study think « the earthquake swarm was caused by upward fluid movement through a complex network of faults. »

The swarm began in December 2020. Since then, there have been over 1,000 M 2.0 or larger earthquakes, including one M 5.4 quake in June 2022 and an M 6.5 event in May 2023 that killed one person and injured dozens more.

The authors of the study investigated the swarm by studying the seismic waves from more than 10,000 M 1.0 or larger quakes that occurred in the area in the past three years. They found that the quakes originated about 20 kilometers deep in the crust, before gradually migrating to shallower depths. According to the researchers, this is consistent with fluid ascending through an existing network of faults. The location of the quake epicenters occurred in a circular pattern, suggesting a ring-like structure to this fault network. This could indicate an ancient, collapsed caldera from a now-extinct volcano.

It’s not unusual for long-dead volcanos to still hold pockets of magma, and when these fluids move, they can deform the crust and cause faults to slip and slide against one another. Swarms like this can happen anytime in subduction zones, where the grinding of one plate under another continuously moves fluids around the crust. Another hypothesis is that the devastating M 9.1 Tohoku earthquake in 2011 set off fluid movement that is still echoing today; that quake was followed by several small swarms in northeastern Japan.

The question now is to understand how this current swarm transitioned from many small quakes to the large, damaging event that occurred in May 2023. The scientific team is working to understand how the crust might have been moving without shaking before that quake.

Source : Live Science through Yahoo News.

Localisation de la péninsule de Noto (Source : Wikipedia)

Personne ne sait si et quand le Mauna Loa (Hawaii) entrera en éruption // Nobody knows if or when Mauna Loa (Hawaii) will erupt

Le dernier article de la rubrique Volcano Watch du HVO commence par une question : « Une éruption est-elle en préparation sur le Mauna Loa ? » La réponse est : « La question n’est pas de savoir s’il y aura une éruption, mais quand. » Comme leurs collègues ailleurs dans le monde, les scientifiques américains ne sont pas en mesure de prévoir les éruptions. En regardant son histoire éruptive, ils sont sûrs que le Mauna Loa entrera à nouveau en éruption, mais ils sont incapable de dire quand.
Près de 40 années se sont écoulés depuis la dernière éruption du volcan; c’est la plus longue période de calme jamais observée. Au vu de la hausse d’activité sous la caldeira sommitale au cours du mois écoulé, les scientifiques du HVO se demandent si la prochaine éruption pourrait se produire bientôt.
L’Observatoire a signalé le 5 octobre 2022 que l’activité sismique avait atteint à 40 à 50 événements de faible magnitude par jour depuis la mi-septembre, avec un pic à plus de 100 secousses par jour les 23 et 29 septembre. Il s’agit d’une forte hausse par rapport aux 5-10 séismes par jour en juin, et même les 10-20 secousses par jour en juillet et août. La majeure partie de cette sismicité a été enregistrée sous Moku’āweoweo, la caldeira sommitale du Mauna Loa, à des profondeurs de 1,5 et 3 kilomètres. La plupart des séismes avaient des magnitudes inférieures à M 2. Le niveau d’alerte du volcan reste à ‘Advisory’ (surveillance conseillée) et la couleur de l’alerte aérienne est maintenue au Jaune. La récente augmentation de l’activité a incité le Parc national des volcans à fermer la zone sommitale du Mauna Loa jusqu’à nouvel ordre.
Cependant, tous ces événements ne signifient pas forcément qu’une éruption est susceptible de se produire à court terme. D’autres facteurs, tels que la présence d’un tremor indiquant qu’une éruption est imminente, n’ont pas été observés.
La hausse d’activité sismique s’est accompagnée d’une inflation de la chambre magmatique sous le sommet du Mauna Loa. Les scientifiques expliquent que l’activité observée actuellement est probablement due à un nouvel apport de magma dans le réservoir du sommital.
Le volcan est en niveau d’alerte  »Advisory’ depuis 2019; il a déjà montre une hausse de la sismicité et de l’inflation de la région sommitale entre fin janvier et fin mars en 2021, sans éruption. D’autres périodes d’activité plus intense se sont également produites au cours des 38 dernières années depuis la dernière éruption du Mauna Loa. La hausse d’activité actuelle a commencé fin 2014, puis a ralenti en 2017-2018, avant d’augmenter à nouveau en 2019.
Le Mauna Loa est entré en éruption 33 fois depuis 1843, avec en moyenne une éruption tous les cinq ans. Le volcan est resté relativement calme depuis sa dernière éruption dans les années 1980. C’est sa plus longue période de repos au cours des 200 dernières années.
Il convient de rappeler que la dernière éruption du Mauna Loa en mars 1984 a commencé avec une forte hausse de la sismicité atteignant 2 à 3 événements par minute le 24 mars. L’éruption a débuté au sommet du volcan à 1 h 30 le 25 mars. La principale crainte était que la lave atteigne Hilo. Il n’en fut rien. L’intensité de l’éruption a diminué et le 14 avril, aucune coulée ne s’étendait à plus de 2 kilomètres des bouches actives. L’éruption a pris fin le 15 avril 1984.
Le HVO indique que les événements rapides qui ont conduit à l’éruption de 1984 sont typiques des éruptions du Mauna Loa au cours des deux derniers siècles. Cependant, même si la technologie a progressé depuis la dernière éruption, l’Observatoire est forcé d’admettre que la prévision d’une éruption reste encore très difficile. La situation peut évoluer très rapidement sans prévenir.
Source : USGS/HVO.

———————————————

HVO’s latest Volcano Watch article begins with a question : « Is Mauna Loa getting ready to erupt? » The answer is : « It’s not a matter of if, but when. » Like their colleagues in other parts of the world, American scientits are not able to predict eruptions. Looking at its history, they are sure that the volcano will erupt again, but they can’t say when.

It’s been nearly 40 years since the volcano’s last eruption, the longest period Mauna Loa has gone without one. Looking at the heightened activity under the summit caldera during the past month, HVO scientists wonder whether the next eruption might occur soon.

The Observatory reported October 5th, 2022 that seismic activity has increased to 40 to 50 small-magnitude earthquakes a day since about mid-September, peaking at more than 100 events a day on September 23rd and 29th. This was a sharp increase compared with 5 to 10 earthquakes a day in June, and even10 to 20 quakes per day in July and August. Most of the quakes have occurred beneath Moku‘āweoweo, Mauna Loa’s summit caldera, at depths of 1.5 and 3 kilometers. The majority had magnitudes smaller than M 2. The alert level for the volcano remains at Advisory and the aviation color code is kept at Yellow. The recent uptick in activity caused Hawai‘i Volcanoes National Park to close the Mauna Loa summit area until further notice.

However, all these observations do not mean an eruption is likely to happen soon or that one is expected. Other signals, such as seismic tremor, that would indicate that an eruption is imminent, have not been observed.

The spike in seismic activity has been accompanied by an inflation of a magma chamber beneath Mauna Loa’s summit. Scientists explain that the current unrest is likely caused by renewed input of magma into Mauna Loaʻs summit reservoir system.

The volcano has been at the Advisory alert level since 2019 and displayed similar elevated activity and inflation of the summit region from late January to late March in 2021 with no eruption. Additional periods of increased activity have also happened during the past 38 years since Mauna Loa’s last eruption in the 1980s. The current episode of unrest actually began in late 2014 and then waned in 2017-18 before increasing again in 2019.

Mauna Loa has erupted 33 times since 1843, averaging one eruption every five years. The volcano has remained relatively quiet since its last eruption in the 1980s, its longest period of repose in the past 200 years.

It is worth remembering that Mauna Loa’s last eruption in March 1984 began with the number of earthquakes under the volcano rapidly spiking to 2 to 3 per minute on March 24th. The eruption began at 1:30 a.m. on March 25th at the summit. The main fear was that the lava from the eruption might reach Hilo. It did not. The intensity of the eruption decreased and by April 14th, no active flows extended more than 2 kilometers from the active vents. The eruption ended on April 15th, 1984.

HVO indicates that the rapid onset of extreme unrest leading to the 1984 eruption is typical of the Mauna Loa eruptions that have been observed in the last two centuries. However, even though technology has advanced since the last eruption, forecasting an eruption still remains difficult. The situation may change very rapidly without warning.

Source: USGS / HVO.

Le Mauna Loa vu depuis la zone de rift SO (Photo: C. Grandpey)

Sommet et zones de rift du Mauna Loa (Source: HVO)

Nouvelles informations sur l’éruption du Hunga-Tonga Hunga-Ha’apai // More information on the Hunga-Tonga Hunga-Ha’apai eruption

Des chercheurs viennent de terminer la cartographie du cratère du Hunga-Tonga Hunga-Ha’apai, le volcan sous-marin de l’archipel des Tonga qui, le 15 janvier 2022, a produit l’une des plus grandes explosions atmosphériques jamais observées sur Terre. La caldeira mesure maintenant 4 km de large et descend à 850 m sous le niveau de la mer. Avant l’éruption, la base du volcan était à une profondeur d’environ 150m. Le volume de matière émis est estimé à au moins 6,5 km3.
Des scientifiques de l’Université d’Auckland (Nouvelle-Zélande) ont publié un rapport qui analyse le processus éruptif et formule des recommandations pour la résilience future. Là encore, on remarquera que les scientifiques sont capables de décrire l’éruption, mais que personne n’a jamais été en mesure de la prévoir.
Bien qu’il soit peu probable que le Hunga-Tonga Hunga-Ha’apai (HTHH) produise une éruption semblable avant plusieurs siècles, il ne faudrait pas oublier qu’il existe au moins 10 volcans sous-marins dans cette région du Pacifique sud-ouest. Eux aussi pourraient entrer violemment en éruption sur une échelle de temps plus brève.
L’Institut national de recherche sur l’eau et l’atmosphère (NIWA) de Nouvelle-Zélande a publié une carte bathymétrique de la zone autour du volcan. Une comparaison avec les cartes de la caldeira, réalisées en 2015 et 2016, donc avant l’éruption, montre des changements majeurs.
En plus d’un approfondissement général de la caldeira, de grosses parties des parois intérieures de la falaise ont disparu, en particulier à l’extrémité sud du cratère. Cependant, le cône du volcan tel qu’il se présente aujourd’hui semble structurellement solide. La caldeira est un peu plus grande en diamètre et un peu moins profonde à cause des effondrements des côtés vers l’intérieur. Le côté nord-est semble un peu mince et fragile; s’il lâchait prise, un tsunami mettrait en danger les îles Ha’apai, mais la structure du volcan semble globalement assez robuste.
Les scientifiques commencent à avoir une bonne idée du processus éruptif. Les très nombreuses données d’observation obtenues le15 janvier montrent que l’événement a connu une surcharge dans la demi-heure après 17h00 (heure locale).
Au fur et à mesure que la caldeira s’est fracturée, l’eau de mer a commencé à interagir avec le magma à haute température qui se décompressait en remontant des profondeurs. Il y a eu des explosions assourdissantes causées par des interactions entre le magma et l’eau à grande échelle.
Les scientifiques néo-zélandais insistent sur l’importance des coulées pyroclastiques au cours de l’éruption. Les nuages de cendres et de roches très denses projetés dans le ciel sont retombés et ont roulé sur les flancs du volcan et sur le fond de l’océan. Ils sont en grande partie à l’origine des vagues de tsunami qui ont déferlé sur les côtes de l’archipel des Tonga. Ces vagues de tsunami atteignaient 18 m de hauteur à Kanokupolu, à l’ouest de Tongatapu (65 km au sud du HTHH) ; 20m de haut sur l’île Nomukeiki (une distance similaire mais au nord-est); 10m de haut sur les îles à des distances supérieures à 85 km du volcan.
Source : Université d’Auckland, NIWA.

—————————————–

Researchers have just finished mapping the crater of Hunga-Tonga Hunga-Ha’apai, the underwater Tongan volcano that, on January 15th, 2022, produced one of Earth’s biggest atmospheric explosions. The caldera of the volcano is now 4km wide and drops to a base 850m below sea level. Before the eruption, the base was at a depth of about 150m. The volume of material ejected by the volcano can thus be estimated at least 6.5 cubic km.

Scientists from the University of Auckland (New Zealand) have issued a report which assesses the eruption and makes recommendations for future resilience. Here again, we can notice that we are able to describe the eruption but nobody was ever able to predict it.

Although Hunga-Tonga Hunga-Ha’apai (HTHH) is unlikely to give a repeat performance for many hundreds of years, there are at least 10 volcanic seamounts in the wider region of the south-west Pacific that could produce something similar on a shorter timescale.

New Zealand’s National Institute for Water and Atmospheric (NIWA) Research has released a bathymetry map for the area immediately around the volcano. A comparison with pre-eruption maps of the caldera, made in 2016 and 2015, shows the major changes.

In addition to a general deepening, big chunks have been lost from the interior cliff walls, particularly at the southern end of the crater. However, the volcano cone as it stands today looks structurally sound. The caldera is a little bigger in diameter and a little shallower as the sides collapse inwards. The north-eastern side looks a bit thin and if that failed, a tsunami would endanger the Ha’apai islands. But the volcano’s structure looks quite robust.

Scientists are beginning to get a good idea of how the eruption progressed. The wealth of observational data from January 15th suggests the event became supercharged in the half-hour after 17:00 (local time).

As the caldera cracked, seawater was able to interact with decompressing hot magma being drawn up rapidly from depth. There were sonic booms caused by large-scale magma-water interactions.

NZ scientists insist on the significance of pyroclastic flows in the eruption. These thick dense clouds of ash and rock thrown into the sky fell back to roll down the sides of the volcano and along the ocean floor. They caused much of the tsunami wave activity that inundated coastlines across the Tongan archipelago. The tsunami waves were 18m high at Kanokupolu, on western Tongatapu (65km south of HTHH); 20m high on Nomukeiki Island (a similar distance but to the north-east); 10m high on islands at distances greater than 85 km from the volcano.

Source: University of Auckland, NIWA.

Source: Université d’Auckland

Source: Tonga Services