Le mystère des cratères de Cérès // The mystery of Ceres’craters

drapeau-francaisUne nouvelle étude publiée dans la revue Nature Communications explique que les volcans de glace sur Cérès pourraient aider à résoudre le mystère de l’absence de grands cratères à la surface de cette planète naine
Avec un diamètre d’environ 940 km, Cérès est le plus grand élément de la ceinture d’astéroïdes entre Mars et Jupiter. Une grande partie de la surface de Cérès est parsemée de cratères qui ont environ 60 kilomètres de large ou moins. Ils ont probablement été créés par des météorites qui se sont écrasées dans la surface de la planète. Le plus grand cratère d’impact connu sur Cérès a seulement 280 km de large.
Des travaux sur la surface recouverte de cratères de Vesta, le deuxième plus gros astéroïde de la ceinture, ont conclu que Cérès devrait avoir au moins six à sept cratères d’au moins 400 km de diamètre. Une autre recherche a affirmé que 10 à 15 cratères de plus de 400 km de large auraient dû se former à la surface de Cérès pendant sa durée de vie d’environ 4,55 milliards années. L’absence de grands cratères sur Cérès est donc un mystère.
Pour essayer de résoudre le mystère des cratères manquants, les chercheurs ont utilisé les données fournies par la sonde Dawn de la NASA, dont la mise en orbite autour de Cérès a eu lieu en avril 2015. Ils ont utilisé ces données pour modéliser l’évolution de l’astéroïde (qui est en fait assez volumineux pour être considéré comme une planète naine) au fil du temps et ils ont estimé que Cérès s’était formée entre 1 et 10 millions d’années après la naissance du système solaire.
Les scientifiques ont été surpris de constater que Cérès ne possédait pas de cratères géants, mais ne présentait pas non plus de cratères légèrement plus petits. Il ressort de leurs simulations que Cérès devrait avoir 90 à 180 cratères d’environ 100 km de diamètre chacun, alors que la planète semble posséder seulement 40 de ces cratères. Par ailleurs, les simulations indiquent que Cérès aurait dû avoir 40 à 70 cratères d’environ 150 km de diamètre, alors qu’elle ne présente que 20 ces cratères. Ce manque de grands cratères contraste fortement avec d’autres astéroïdes tels que Vesta.
Les chercheurs ont proposé plusieurs explications possibles. Par exemple, la surface de Cérès peut s’être tout simplement relâchée au fil du temps et est devenue plus lisse. Une autre explication concerne les volcans de glace. Des travaux récents suggèrent que l’intérieur de Cérès contient probablement jusqu’à 25% de glace d’eau, ce qui expliquerait l’existence d’une activité cryovolcanique. Certains scientifiques pensent que les éruptions cryovolcaniques ont pu radicalement transformer la surface de Cérès en effaçant de nombreux cratères. Ainsi, les chercheurs ont trouvé des traces d’un, ou peut-être deux, cratères d’environ 800 km de diamètre. Le cryovolcanisme a pu se produire sur Cérès au cours de ses premières années d’existence, quand son intérieur était plus chaud, et les volcans ont pu faire disparaître plusieurs grands cratères. Lorsque le cryovolcanisme a cessé sur Cérès, de plus en plus de cratères ont survécu, de petite taille pour la plupart.
Source: Space.com.

———————————-

drapeau-anglaisA new study published in the journal Nature Communications explains that ice volcanoes on Ceres might help solve the mystery of why large craters seem to be missing on the dwarf planet’s surface

With a diameter of about 940 kilometres, Ceres is largest member of the asteroid belt located between Mars and Jupiter. Large portions of Ceres’ surface are saturated in craters that are about 60 kilometres wide or smaller, likely created by meteorites crashing into the dwarf planet’s surface. However, the largest confirmed impact crater on Ceres is only about 280 km wide.

Prior work that analyzed pockmarked Vesta, the second largest asteroid in the asteroid belt, suggested that Ceres should have at least six to seven craters that are 400 km in diameter or larger. Another research suggested that 10 to 15 craters greater than 400 km wide should have formed on Ceres during its lifetime of about 4.55 billion years. The absence of large craters on Ceres was a mystery.

To help solve the puzzle of Ceres’ missing craters, the researchers used data from the NASA Dawn mission, which began orbiting Ceres in April 2015. They used the data to model how the asteroid (which is actually large enough to be considered a dwarf planet) might have evolved over time and they estimated that Ceres formed within 1 million to 10 million years after the solar system was born.

Unexpectedly, the scientists found that Ceres not only lacks giant craters, but is also missing craters that are only slightly smaller. Their simulations predicted that Ceres should have 90 to 180 craters that are each more than about 100 km wide, but Ceres appears to only have about 40 such craters. In addition, the simulations predicted that Ceres should have 40 to 70 craters that are each more than about 150 km across, but Ceres has only about 20 such craters. This lack of large craters was in stark contrast with other asteroids like Vesta.

The researchers had several potential explanations for how this could have happened; for instance, the surface of Ceres may have simply relaxed over time and become less crinkly. Another explanation may be ice volcanoes. Recent work suggests that Ceres may consist of up to 25 percent water- ice in its interior, and so may experience cryovolcanic activity. The scientists proposed that cryovolcanic eruptions might have dramatically transformed the surface of Ceres, erasing many craters. For instance, the researchers found faded evidence of one or possibly two craters about 800 km in diameter. Cryovolcanism may have been more common on Ceres during its earlier years, when its interior was warmer, and the volcanoes may have eliminated many of the larger craters. As cryovolcanism on Ceres died down, more and more craters would have survived, leaving behind mostly smaller ones.

Source : Space.com.

Ceres

Vue d’un cratère sur Cérès, extraite d’une vidéo réalisée à partir de la sonde Dawn en orbite autour de cette planète naine (Source: NASA).

Des roches volcaniques pour expliquer la présence de l’eau sur Terre // Volcanic rocks to explain the presence of water on Earth

drapeau-francaisLes scientifiques ont longtemps débattu des origines de l’eau sur Terre, cette eau qui rend possible la vie humaine, contrairement aux astres stériles qui nous entourent. Ils se sont longtemps demandés comment l’eau a pu arriver sur notre planète. Bien qu’il semble probable que l’eau de notre système solaire soit très vieille, on ne sait pas si la Terre s’est formée à partir de molécules d’eau présentes dès les origines, ou si ces molécules sont arrivées plus tard, par exemple lors d’une collision avec un astéroïde
Dans une étude publiée dans la revue Science, une équipe de chercheurs américains tente de démontrer que la Terre possède de l’eau depuis le tout début de son existence et qu’aucun astéroïde n’a été nécessaire. Ils pensent que les grains de poussière riches en H2O qui ont contribué à former la planète étaient déjà en mesure de conserver l’eau liquide au moment où la Terre est née.
Pour trouver des preuves de cette eau ancienne, il fallait des échantillons quasiment vierges de la Terre à ses premières heures. La meilleure solution était d’examiner les roches volcaniques prélevées sur la Terre de Baffin en 1985. En remontant vers la surface, ces roches n’ont jamais été contaminées par des arrivées sédimentaires de la croûte, et les recherches précédentes montrent que leur source est restée intacte depuis la formation de la Terre. Ce sont parmi les roches les plus primitives jamais trouvées à la surface de notre planète. L’eau qu’elles contiennent donne aux scientifiques un aperçu précieux de l’histoire précoce de la Terre et de la provenance de son eau.
En analysant les échantillons, les scientifiques ont cherché la présence de deutérium, une forme modifiée de l’hydrogène qui crée «l’eau lourde». Ils savaient que le rapport du deutérium à l’hydrogène crée une signature unique dans l’eau de chaque planète, comète, ou astéroïde. Donc, si l’eau de l’origine de la Terre présentait des points communs avec un morceau d’astéroïde, cela signifierait que notre première eau était le résultat d’une violente collision.
Cependant, l’examen des échantillons de l’île de Baffin a montré que l’eau était très pauvre en deutérium. La conclusion est donc que l’eau de la Terre provient de la poussière qui a formé les planètes de notre système solaire. Une grande partie de ce liquide se serait évaporée au moment où ces particules de poussière ont fusionné pour donner naissance à la Terre, mais il en restait suffisamment pour ensemencer notre planète avec de l’eau.
Il reste encore de nombreuses questions sans réponses à propos de l’humidité fortuite de notre planète. Puisque l’eau est nécessaire à la vie, savoir comment nous avons pu nous retrouver sur une planète recouverte d’océans pourrait aider les scientifiques à déterminer la probabilité de la vie dans le reste de l’univers.
Source: The Washington Post.

————————————–

drapeau-anglaisScientists have long debated the origins of Earth’s water that made human life possible, unlike the barren planets that surround us. They have long wondered how it got here. While it seems likely that the water in our solar system is very old, they are not sure whether Earth formed with water molecules on it or whether those molecules arrived later, for instance during a collision with an asteroid
In a study published in the magazine Science, a team of American researchers present new evidence that the Earth has had its water since the very beginning and that no asteroid was required. They suggest that the H2O-rich grains of dust that helped form the planet were able to retain liquid water as the Earth was born.
To find evidence of this ancient water, they had to find the most pristine possible samples of an infant Earth. There was only one solution to find the required samples: examine volcanic rocks taken from the arctic Baffin Island in 1985. On their way to the surface, these rocks were never affected by sedimentary input from crustal rocks, and previous research shows their source region has remained untouched since Earth’s formation. They are among the most primitive rocks ever found on Earth’s surface, and so the water they contain gives scientists an invaluable insight into the Earth’s early history and where its water came from.
While analysing the samples, the researchers looked for deuterium, a modified form of hydrogen that creates « heavy water. » Scientists have found that the ratio of deuterium to hydrogen creates a unique signature in the water of every planet, comet, or asteroid. So if the Earth’s earliest water seemed similar to something expected from a chunk of asteroid, it is likely that our first water had been delivered by a violent collision.
On examining the samples from Baffin Island, the scientists found water that was very poor in deuterium. Their conclusion was that the Earth’s water came from the dust that formed our solar system’s planets. A lot of this liquid would have evaporated as these dust particles fused together to give birth to Earth, but enough of it remained to seed our planet with water.
There are still plenty of questions to answer about the serendipitous wetness of our planet. Since water is necessary for life, figuring out just how we could end up on a planet covered in ocean could help scientists determine how likely life is out in the rest of the universe.
Source: The Washington Post.

Baffin

La Terre de Baffin vue depuis l’espace (Crédit photo: NASA)

De la péninsule du Yucatan (Mexique) aux Trapps du Deccan (Inde)

drapeau-francaisGéologues et paléontologues débattent depuis longtemps sur les causes possibles de l’extinction de masse à la fin du Crétacé, avec en particulier la disparition des dinosaures.
Plusieurs études ont été publiées montrant que cette extinction était synchrone avec l’impact d’un astéroïde dans la péninsule du Yucatan au Mexique il y a 66 millions d’années. L’impact a probablement provoqué un bouleversement autour de la Terre, avec des tsunamis et des séismes, des nuages de matériaux incandescents dans l’atmosphère, provoquant des incendies dans les forêts de la planète en retombant à sa surface. La poussière produite par l’impact, s’ajoutant à la fumée des incendies, aurait bloqué les rayons du soleil et provoqué un hiver d’impact qui a duré pendant des années.
De nombreux chercheurs sont sceptiques devant une autre hypothèse qui affirme que l’impact de l’astéroïde et le volcanisme dans les Trapps de l’Inde étaient liés. Toutefois, des recherches récentes tendent à prouver qu’une relation existe effectivement entre les deux événements.
Ces derniers jours, une étude publiée dans la revue Science conclut que les séismes générés par l’impact de l’astéroïde dans la péninsule du Yucatan il y a 66 millions d’années ont eu un effet significatif sur les petites éruptions qui avaient lieu à cette époque dans les Trapps du Deccan et les ont transformées en d’énormes épanchements de lave qui ont duré des centaines de milliers d’années.
L’étude, qui s’appuie sur une datation plus précise des éruptions volcaniques avant et après l’impact de l’astéroïde, pourrait permettre de mettre fin, une fois pour toutes, au débat de longue date sur la (ou les) cause(s) de l’un des plus grands événements d’extinction de masse de tous les temps.
Les auteurs de la dernière étude ont daté des échantillons de lave des Trapps du Deccan en utilisant des radio-isotopes d’argon. Ils ont constaté un changement brusque de l’activité volcanique moins de 50 000 années après l’impact de l’astéroïde. Ils ont remarqué que les éruptions du Deccan ont commencé au moins 173 000 ans avant l’impact et ont continué pendant au moins 500 000 ans après. De plus, ils ont pu déterminer la taille et l’intensité de chaque éruption majeure en se basant sur des estimations lave émise. Avant l’impact, les éruptions ont produit environ 71 000 kilomètres cubes de lave, avec une moyenne d’environ 400 millions de mètres cubes chaque année. A  partir d’environ 50 000 ans après l’impact de l’astéroïde, les volcans et les fractures du Deccan ont commencé à émettre de la lave à raison d’environ 900 millions de mètres cubes par an.
Le problème était de connaître le lien entre l’événement dans le Yucatan et le volcanisme du Deccan! L’étude explique que l’impact de l’astéroïde qui a produit le cratère de Chicxulub a déclenché un énorme événement sismique – probablement équivalent à M 11 – qui a fondamentalement modifié le système d’alimentation des chambres magmatiques du Deccan. L’impact de l’astéroïde et le volcanisme du Deccan auraient contribué ensemble à recouvrir la planète de poussière et de gaz nocifs, ce qui a changé radicalement le climat. Les auteurs ont constaté que l’émission de ce grand volume de magma a continué pendant environ 500 000 ans après l’extinction de masse. Il a fallu également environ 500 000 ans à la faune marine et aux océans pour retrouver les valeurs qui étaient les leurs avant l’extinction de masse. C’est aussi le temps qu’il a fallu au volcanisme pour arriver à son terme.
Affaire à suivre… !
Source: Synthèse de la presse scientifique.

————————————

drapeau-anglaisGeologists and palaeontologists have long debated about what caused the Cretaceous-Tertiary mass extinction event, with the disappearance of the dinosaurs.
Several studies have been published showing that the extinctions were synchronous with the asteroid impact in Mexico’s Yucatan Peninsula 66 million years ago. The impact sent shockwaves around the planet that caused tsunamis and earthquakes, and sent burning debris high into the atmosphere, causing global forest fires as it rained back down on to the surface. Dust from the impact, together with smoke from the fires, blanketed the planet, blocking out sunlight and triggering an impact winter which lasted for years.
Many researchers were sceptical about another idea that pretended that the asteroid impact and volcanism in the Indian Traps were related. However, recent research tends to prove that a links exists between both events.
A recent study published in the journal Science concludes that earthquakes generated by the impact of a meteorite into Mexico’s Yucatan Peninsula 66 million years ago changed the series of small eruptions in India’s Deccan Traps volcanic field into huge events lasting hundreds of thousands of years.
The findings, based on the most accurate dates yet for the volcanic eruptions both before and after the asteroid impact, may help settle a long-standing debate about what caused one of the greatest mass extinction events of all time.
The authors of the study examined lava samples from the Deccan flood basalt using high-resolution argon radio isotope dating techniques. They found a sudden change in volcanism within 50,000 years of the impact. They found that the Deccan eruptions started at least 173,000 years before the asteroid hit and continued for at least 500,000 years after the impact. What’s more, the researchers were able to determine the size and strength of each major eruption, based on lava flow estimates. Before the impact, the eruptions produced about 71,000 cubic kilometres of lava—an average rate of about 400 million cubic metres each year. But starting about 50,000 years after the asteroid impact, Deccan volcanoes and fissures began spewing lava at an average rate of about 900 million cubic metres per year.
The problem was to explain the link between the Yucatan event and the Deccan volcanism. The study explains that the asteroid impact that produced the Chicxulub Crater caused a huge seismic event that fundamentally changed the plumbing system in the Deccan volcano magma chambers. It was probably the equivalent of an M11 earthquake. Both the impact and the volcanism blanketed the planet with dust and noxious fumes, drastically changing the climate. The authors found this large volume of magma continued erupting for approximately 500,000 years after the mass extinction. The time it took marine fauna and many aspects of ocean chemistry to recover back to pre-extinction values is about half a million years, which happens to be the amount of time it took the volcanism to die down.
To be continued…!
Source: Summary of several scientific articles.

Trapps

Vue des trapps du Deccan (Crédit photo: Wikipedia)