Astronomie et traditions à Hawaii (1) // Hawaii: The telescope vs. the volcano (1)

Une tradition bien ancrée.

Le projet de télescope géant – le Thirty Meter Telescope, ou TMT – au sommet du Mauna Kea, un volcan sur la Grande Ile d’Hawaii, est la source de nombreux conflits entre les autorités et les Hawaïens de souche qui se font appeler les kia’i, ou protecteurs. Depuis le début du projet, des cérémonies traditionnelles sont organisées contre la construction du télescope géant sur ce que certains considèrent comme une terre sacrée. Pendant des siècles, les Hawaïens de souche sont venus pratiquer ces cérémonies sur la montagne. L’atmosphère ténue du sommet, à 4 000 mètres d’altitude, laisse peu d’oxygène à un cerveau humain. Pour les Hawaïens indigènes, ce peu d’oxygène est la preuve que le sommet est le domaine des divinités et que les humains ne peuvent s’y rendre qu’avec un but bien précis. Pour les kia’i, le TMT serait un télescope de trop sur un site qu’ils considèrent comme volé, sacré, et systématiquement mal géré. Ils désignent également un cercle où se dressent des centaines de sanctuaires à environ 300 mètres sous le sommet, et qui, selon eux, marquent la limite de la zone sacrée. La construction du TMT empièterait sur cet anneau, ce qui n’est pas acceptable.

L’histoire du TMT.

L’histoire du TMT a commencé en 2003, lorsqu’un partenariat sans but lucratif a été constitué entre deux universités californiennes et leurs homologues au Japon, en Chine, en Inde et au Canada. Baptisé TMT International Observatory, le groupe a décidé de concevoir un télescope avec un miroir d’observation gigantesque qui bouleverserait nos connaissances scientifiques. Il permettrait des découvertes susceptibles d’aborder certaines des questions existentielles de l’astronomie et changer l’humanité à jamais.
En 2009, le TMT a jeté son dévolu sur le sommet du Mauna Kea. Depuis cette époque, il a fallu négocier l’accès et la construction avec l’État qui est propriétaire du terrain, et l’Université d’Hawaï qui gère l’astronomie. Il y a eu plusieurs affaires judiciaires concernant les permis requis pour la construction. Lorsque la construction du TMT a été tentée en 2014, les kia’i ont interrompu cette initiative. Les tensions ont atteint leur paroxysme en juillet 2019, quand il a été annoncé que la construction du TMT allait reprendre. Les kia’i se sont alors mobilisés ; ils ont bloqué les camions et barré la route vers le sommet.

Le Mauna Kea : un site astronomique exceptionnel.

Certains habitants d’Hawaii et des hawaïens de souche soutiennent le TMT. Ils considèrent que les télescopes sont des successeurs modernes des anciens navigateurs qui se servaient des étoiles pour s’orienter. De plus, de tels télescopes constituent un maillon vital de l’économie locale et offrent des opportunités en matière d’éducation et d’emploi pour leurs enfants.
Pour les scientifiques qui souhaitent construire le TMT, le sommet du Mauna Kea est tout simplement le meilleur site possible. Ils ont besoin d’un site dans l’hémisphère Nord permettant de faciliter les partenariats avec les télescopes du sud, comme le Télescope Magellan Géant en construction au Chili.
Ensuite, il y a une question d’atmosphère. Le sommet du Mauna Kea est considéré comme l’un des meilleurs endroits sur Terre pour l’astronomie. Ironiquement, c’est pour cette même raison – la raréfaction de l’oxygène – que les Hawaïens indigènes considèrent le sommet sacré. Comme beaucoup d’autres télescopes dans le monde, le TMT doit se trouver sur un site au sommet d’une montagne, loin des couches inférieures de l’atmosphère terrestre qui peuvent perturber les images des télescopes. Cependant, même au sommet du Mauna Kea, le résultat n’est pas parfait. C’est pourquoi le TMT sera équipé d’un système d’optique adaptative, qui mesure et soustrait automatiquement les perturbations causées par l’atmosphère.

Source: Adapté d’un article paru sur le site Space.com.

—————————————————

 A long-standing tradition.

The project of a giant telescope – the Thirty Meter Telescope, or TMT – on the summit of Mauna Kea volcano on Hawaii Big Island has triggered a lot of conflicts between the authorities and native Hawaiians who call themselves kia’i, or protectors..

Since the start of the project, traditional ceremonies have been organised against the construction of the massive telescope on what some consider sacred land.

For centuries, Hawaiian natives have come to the mountain. The tenuous atmosphere at the summit, 4,000 metres above sea level, leaves little oxygen to feed a human brain. For native Hawaiians, that shortage of oxygen is a sign that the summit is the realm of deities and that humans should visit only for specific purposes. For the kia’i, the TMT would be one telescope too many at a site they see as stolen, sacred, delicate and consistently mismanaged. The kia’i can also point to a ring of hundreds of shrines about 300 metres below the summit, which they say marks the edge of the most sacred zone. The TMT construction would run right through that ring, and that is not acceptable.

The story of the TMT.

The story of the TMT began in 2003, when a nonprofit partnership formed between two universities in California and counterparts in Japan, China, India and Canada. Now called TMT International Observatory, the group set out to design a telescope with such a massive observing mirror that it would change science forever. Its findings could tackle some of astronomy’s existential questions and change humanity forever.

In 2009, the TMT set its sights on the summit of Mauna Kea; since then, it has worked to negotiate access and construction with the State, which owns the land, and the University of Hawaii, which manages the astronomy precinct. There have been multiple court cases over the permits required for construction. When the TMT tried to break ground in 2014, the kia’i interrupted the ceremony. Tensions came to a head in July 2019, when the TMT announced it was ready to try building again and the kia’i mobilized, blocking construction trucks from the road that climbs to the summit.

Mauna Kea: Perfect for astronomy.

Some Hawaiian residents and native Hawaiians support the TMT, seeing the telescopes as modern successors to the islanders’ expertise at navigating by the stars, as a vital segment of the local economy, and as a pathway to educational and employment opportunities for their children.

For scientists hoping to build the TMT, the summit of Mauna Kea is simply the best possible site. They want a Northern Hemisphere location to better facilitate partnerships with telescopes in the south, including the equally massive Giant Magellan Telescope already under construction in Chile.

Then, it is a matter of atmospheres. The summit of the volcano is considered among the best places on Earth for ground-based astronomy. Ironically, it is for the same reasons native Hawaiians consider the peak sacred: the barely-there oxygen. Like so many telescopes around the world, TMT is expected to be on a mountaintop site away from the lower layers of Earth’s atmosphere which can blur telescope images. Even the summit’s view, however, leaves astronomers dissatisfied. That’s why the TMT would be armed with an adaptive optics system, which measures and automatically subtracts blurriness caused by the atmosphere.

Source: Adapted from an article on Space.com.

Photos: C. Grandpey

Nouvelle carte sismique des Etats Unis // New seismic map of the United States

Des scientifiques de l’Université de Stanford ont compilé la carte la plus détaillée à ce jour des contraintes sismiques en Amérique du Nord. La carte et l’étude qui l’accompagne fournissent des informations précises sur les régions les plus exposées aux séismes ainsi que les types de séismes susceptibles de se produire.
La nouvelle carte est apparue dans une étude publiée le 22 avril 2020 dans la revue Nature Communications. Grâce à l’incorporation de près de 2 000 «orientations de contraintes» (mesures indiquant la direction dans laquelle la pression s’exerce sous terre) ainsi que 300 mesures non incluses dans les études précédentes, la carte fournit une image de bien meilleure résolution de l’activité sismique régionale.
Pour élaborer la carte, les chercheurs ont compilé des mesures nouvelles et anciennes obtenues à partir de forages, puis ils ont utilisé des informations relatives aux séismes passés pour en déduire quels types de failles étaient susceptibles de se trouver en différents endroits.
Connaître l’orientation d’une faille et le niveau de contrainte à proximité permet de savoir dans quelle mesure elle est susceptible de s’activer et si les gens doivent s’inquiéter, que ce soit dans le cadre de scénarios de séismes naturels ou de ceux déclenchés par l’industrie. L’expression « séismes déclenchés par l’industrie» fait référence à l’activité sismique causée par l’homme, en particulier dans certaines parties de l’Oklahoma et du Texas où la fracturation hydraulique est monnaie courante. Il est utile de rappeler que cette méthode d’extraction du pétrole et du gaz consiste à injecter de l’eau en profondeur dans des couches de roches pour forcer l’ouverture de crevasses et extraire le pétrole ou le gaz qui se trouve à l’intérieur. Le risque, c’est que cette technique déstabilise le sol. En 2018, l’USGS a constaté que le niveau de risque sismique dans l’Oklahoma était à peu près le même qu’en Californie.
Tout en confirmant les connaissances existantes, certaines caractéristiques de la nouvelle carte donnent des indications supplémentaires sur les types de séismes les plus susceptibles de se produire à travers le continent. Ces informations peuvent jouer un rôle majeur dans la façon dont les régions se préparent aux catastrophes. Dans l’ouest des États-Unis, par exemple, les chercheurs ont observé que la direction des contraintes sous la surface de la Terre avait changé jusqu’à 90 degrés sur des distances de seulement 10 kilomètres. Cela signifie que les fluides injectés dans le sol dans le processus de fracturation hydraulique peuvent être chahutés, même à une courte distance de l’endroit où ils sont injectés.

Sur la carte ci-dessous, des lignes noires indiquent la direction de la pression dans les zones de contrainte maximale. Les zones bleues représentent des failles d’extension où la croûte s’étire horizontalement. Les zones vertes représentent des failles transformantes, comme la faille de San Andreas. Les zones rouges représentent les failles de chevauchement, où la Terre se déplace sur elle-même.
Source: Business Insider.

————————————————

Scientists at Stanford University have compiled the most detailed map to date of seismic stress across North America. The map and accompanying study offer precise information about the regions most at risk of earthquakes, and which types of quakes are likely to occur.

The new map was described in a study published on April 22nd, 2020 in the journal Nature Communications. By incorporating nearly 2,000 « stress orientations » (measurements indicating the direction that pressure gets exerted underground in high-stress areas) as well as 300 measurements not included in previous studies, the map provides a higher-resolution picture of regional seismic activity than ever before.

To make the map, the researchers compiled new and previously published measurements from boreholes, then used information about past earthquakes to infer which types of faults were likely to be found in different locations.

Knowing the orientation of a fault and the state of stress nearby allows to know how likely it is to fail and whether people should be concerned about it in both naturally triggered and industry-triggered earthquake scenarios. The term « industry-triggered » earthquakes refers to seismic activity caused by humans, which is most common in parts of Oklahoma and Texas where hydraulic fracturing, or « fracking, » commonly occurs. This method of oil and gas extraction involves injecting water deep into the Earth’s layers of rocks to force open crevices and extract the oil or gas buried inside. But it destabilizes the ground. In 2018, USGS found that Oklahoma’s earthquake threat level was roughly the same as California’s.

While some of the researchers’ findings in the new map reaffirm existing knowledge, they also reveal new discoveries about the types of earthquakes that are most likely to occur across the continent. That information could have profound implications for how regions prepare for disasters. In the Western US, for example, the researchers observed that the direction of pressure under the Earth’s surface changed by up to 90 degrees over distances as short as 10 kilometres. That means the fluids injected into the ground in the fracking process could get pushed around in completely different ways even just a short distance from where they get injected.

In the map below, black lines indicate the direction of pressure in maximum stress areas. Blue areas represent extensional, or normal faulting, where the crust extends horizontally. Green areas represent strike-slip faulting, where the Earth slides past itself, like the San Andreas fault. Red areas represent reverse, or thrust faulting, where the Earth moves over itself.

Source: Business Insider.

Source : Stanford University

Trou dans la couche d’ozone arctique (suite) // Hole in the Arctic ozone layer (continued)

Dans une note publiée le 29 avril 2020, j’indiquais que le trou dans la couche d’ozone arctique s’était refermé. Il avait été détecté au mois de mars par des chercheurs du Copernicus Atmospheric Monitoring Service (CAMS). Trois fois plus grand que le Groenland, il était le plus vaste jamais observé sur la région.1997 et 2011 sont les seules autres années où l’on a enregistré un tel appauvrissement stratosphérique au-dessus de l’Arctique.

Contrairement à ce que l’on pourrait croire, la fermeture du trou dans la couche d’ozone n’a rien à voir avec la chute des émissions de gaz à effet de serre due à la période de confinement actuelle imposée par la crise du coronavirus. Le phénomène est tout simplement la conséquence de la rupture du vortex polaire. Ce dernier avait été particulièrement puissant au cours des dernières semaines, avec des températures très froides dans la région. Cette situation avait favorisé une accumulation anormale sur l’Arctique de composants néfastes à l’ozone, d’où l’appauvrissement de la couche.

Il y a quelques jours, le vortex polaire s’est désagrégé. En s’affaiblissant, il a laissé le champ libre à des arrivées d’air plus chaud. Ainsi, des températures dépassant les moyennes de l’Arctique de plus de 5°C ont été enregistrées le 20 avril 2020. Cela a permis le retour d’un air plus riche en ozone dans la région.

Les chercheurs du CAMS indiquent qu’il faut s’attendre au retour d’un vortex polaire plus puissant dans les prochains jours. Toutefois, cela ne devrait pas avoir d’effet sur la couche d’ozone au-dessus de l’Arctique.

Source : Presse scientifique internationale.

———————————————–

In a post released on April 29th, 2020, I indicated that the hole in the Arctic ozone layer had closed. The hole had been detected in March by researchers from the Copernicus Atmospheric Monitoring Service (CAMS). Three times the size of Greenland, it was the largest ever observed in the region. 1997 and 2011 are the only other years in which there has been such a stratospheric depletion over the Arctic.
Contrary to what one might think, the closing of the hole in the ozone layer has nothing to do with the drop in greenhouse gas emissions due to the current lockdown period imposed by the coronavirus crisis . The phenomenon is quite simply the consequence of the rupture of the polar vortex. The latter had been particularly powerful in recent weeks, with very cold temperatures in the region. This had favoured an abnormal build-up of ozone-depleting components over the Arctic, resulting in the depletion of the layer.
A few days ago, the polar vortex disintegrated. While weakening, it opened the door to warmer air arrivals. As a result, temperatures above the Arctic more than 5°C above average were recorded on April 20th, 2020. This resulted in the return of more ozone-rich air to the region.
CAMS researchers say that a more powerful polar vortex will be back in the coming days. However, this is not expected to affect the ozone layer over the Arctic.
Source: International scientific press.

Modélisation du trou dans la couche d’ozone (Source : ESA)

18 mai 1980, le jour où le Mont St Helens a explosé (1ère partie) // May 18th, 1980, the day when Mount St Helens exploded (part 1)

Avril 1980, les jours d’avant.

Le 18 mai 2020 marquera le 40ème anniversaire de l’éruption cataclysmale du Mont St Helens en mai 1980. Dans un article récent, l’US Geological Survey (USGS) explique le travail effectué par les volcanologues américains pendant les jours qui ont précédé l’événement.
Il y a quarante ans, aucun scientifique de l’USGS n’était formé à la surveillance de tous les types de volcans actifs. Le travail se limitait à l’observation des éruptions du Kilauea et du Mauna Loa à Hawaï; et les volcanologues n’avaient jamais étudié sur le terrain les volcans composites qui s’alignent le long de la Chaîne des Cascades. De plus, les instruments n’étaient pas aussi performants que ceux utilisés aujourd’hui. Les ordinateurs n’étaient pas répandus et les observations par satellite se comptaient sur les doigts de la main.
Début avril, un renflement avait été observé sur le flanc nord du Mont St Helens ; les glaciers se fracturaient sous sa poussée et un cratère s’était formé à l’arrière de cette bosse qui gonflait en direction du nord. Le phénomène était inquiétant, mais les scientifiques ne savaient pas s’il s’agissait d’un événement superficiel ou le signe d’une déformation plus profonde et plus grande ampleur qui pourrait se développer au-delà du volcan.

Crédit photo: USGS

Pour répondre à cette question, le personnel de l’USGS sur le terrain au mois d’avril 1980 a utilisé le Spirit Lake, alors encore recouvert de glace au nord du volcan, comme inclinomètre à liquide. Les scientifiques ont cloué des repères en bois sur des souches d’arbres ou des embarcadères autour du lac. Grâce à des rotations d’hélicoptères, ils ont relevé les niveaux d’eau sur six sites pendant environ 20 minutes et calculé les différences. La répétition des mesures jusqu’à la fonte de la glace à la mi-avril n’a montré aucune variation significative de niveau.

Vue du Spirit Lake avec le Mont St Helens à l’arrière-plan (Photo: C. Grandpey)

Les scientifiques ont alors commencé à se concentrer les mesures de déformation sur le renflement apparu sur le versant nord du Mont St Helens. La surface plane du parking du terrain de camping Timberline, situé juste au nord-est du renflement, était parfaite pour mesurer l’inflation, en utilisant une méthode mise au point par le HVO à Hawaii. Des clous ont été enfoncés dans la chaussée aux extrémités d’un triangle d’environ 10 m de côté. Ils ont servi de points de repères pour déterminer les variations d’élévation relatives. Des mesures répétées, souvent pendant des tempêtes de neige, ont révélé les variations d’élévation du sol. Sept relevés entre le 30 mars et le 30 avril ont montré une inclinaison globale environ 2 microradians par jour à bonne distance du renflement. Cette petite variation d’inclinaison était une preuve supplémentaire que la déformation était concentrée sur le renflement proprement dit.

Mesure du tilt (inclinaison) au parking du camping de Timberline (Crédit photo: USGS)

D’importantes inclinaisons de plusieurs dizaines de microradians pendant seulement quelques minutes se superposaient à l’inclinaison globale. Le parking oscillait d’avant en arrière, probablement sous l’effet du mouvement saccadé du renflement sur le flanc du volcan. Pour fournir des données d’inclinaison en continu, des inclinomètres électroniques ont été installés fin avril. Cependant, des problèmes techniques et l’instabilité du sol à cause du dégel ont limité leur utilisation.
Il devenait évident qu’un télémètre électronique – Electronic Distance Meter (EDM) – était indispensable pour mesurer le renflement sur le flanc du volcan. Les EDM performants étaient coûteux et difficilement disponibles à cette époque. Un tel instrument était disponible à la Smithsonian Institution et un prêt a été conclu. Les mesures ont commencé le 20 avril 1980.
Les mesures EDM ne sont pas simples. Un EDM suppose l’installation d’une cible qui réfléchit un rayon laser vers l’instrument.

Normalement, des prismes en verre coûteux sont utilisés, mais tout ce qui devait être installé sur le renflement devait être bon marché. L’USGS a opté pour des réflecteurs routiers en plastique qui ont été vissés sur une planche qui a été ensuite boulonnée sur un panneau en acier enfoncé dans le sol à des emplacements situés sur et  près du renflement, et accessibles par hélicoptère. A l’aide de ces cibles de fortune, de l’EDM et d’un théodolite optique à l’ancienne, les scientifiques de l’USGS ont pu mesurer la progression du renflement qui atteignait jusqu’à 1,5 m par jour. Ils ont pu aussi définir les limites du renflement et obtenir des données fiables.
Source: USGS.

———————————————-

April 1980, the days before the event.

May 18th, 2020 will mark the 40th anniversary of the powerful Mt St Helens eruption in May 1980. In a recent article, the U.S. Geological Survey (USGS) explains the work they had to do during the days that preceded the event.

Forty years ago, no scientists in the USGS and academia were adept at monitoring all types of active volcanoes. Their expertise came from the observations of eruptions on Kilauea and Mauna Loa in Hawaii; they had never worked on the steep composite volcanoes that dominate the Cascade Range. Equipment was remedial by today’s standards, computers were not in general use, and satellite observations were limited.

By early April, a growing bulge had appeared high on the north flank of the volcano (see image above), cracking glaciers and leaving a crater behind as it moved northward. This phenomenon was alarming, but scientists did not know whether it was a shallow feature or only the tip of deeper, larger deformation that might reach beyond the volcano.

To answer this question, USGS staff in April used ice-covered Spirit Lake (see image above) north of the volcano as a large liquid tiltmeter. They nailed wooden yardsticks to tree stumps or dock piers around the lakeshore where open water was present. Using helicopter hops, they read water levels at six sites in about 20 minutes and calculated their differences. Repeat measurements until the ice melted in mid-April showed no change.

The scientists could thus focus deformation measurements on the bulge itself. The flat parking lot at Timberline campground just northeast of the bulge was perfect for measuring tilt, using a method developed at HVO (see photo above). They drove nails into the pavement at the tips of a triangle about 10 m on a side and leveling determined their relative elevations. Repeated leveling, often during snowstorms, found changes in elevation caused by tilting ground. Seven levelings (March 30th – April 30th) showed an overall tilt away from the bulge at about 2 microradians per day. This small tilt was further evidence that deformation was concentrated in the bulge itself.

Huge tilts of tens of microradians lasting only a few minutes were superimposed on the overall tilt. The parking lot was swaying back and forth, probably because of jerky movement of the bulge itself. To provide continuous tilt data, electronic platform tiltmeters were installed in nearby areas in late April. However, instrument problems and sites made unstable by thawing ground limited their use.

It became clear that there was the need for an electronic distance meter (EDM) to make measurements of the bulge itself. Powerful EDMs were expensive and not readily available. An instrument was located at the Smithsonian Institution and a loan was arranged. Measurements began on April 20th, 1980. EDM measurements were not straightforward. An EDM requires a target that reflects a laser back to the instrument (see principle above). Normally, costly glass prisms were used, but anything on the bulge had to be cheap. HVO opted for plastic highway reflectors that were screwed to a board which was bolted onto a steel signpost driven into the ground at helicopter-accessible sites on and near the bulge. These makeshift targets, the loaned EDM, and an old-fashioned optical theodolite allowed USGS scientists to measure bulge movement of up to 1.5 m per day, define the limits of the bulge, and otherwise obtain reliable data.

Source : USGS.