Poussière cosmique et réchauffement climatique dans l’Arctique // Cosmic dust and global warming in the Arctic

Selon la définition, la poussière cosmique – également appelée poussière extraterrestre ou interplanétaire, poussière spatiale ou poussière d’étoiles – est une poussière présente dans l’espace ou qui s’est déposée sur Terre. La plupart des particules de poussière cosmique mesurent entre quelques molécules et 0,1 mm (100 µm), comme les micrométéorites (< 30 µm) et les météoroïdes (> 30 µm). Des particules de poussière interstellaire ont été collectées par la sonde Stardust et des échantillons ont été rapportés sur Terre en 2006.
La poussière interplanétaire enrichie en hélium-3 qui s’est déposée sur les fonds marins a fourni aux climatologues un témoignage historique indispensable de l’évolution de la banquise. Grâce à cette poussière, les scientifiques espèrent pouvoir comprendre comment l’Arctique réagira à l’aggravation de la crise climatique.
La superficie de la banquise (aussi appelée glace de mer) de l’océan Arctique a diminué de plus de 42 % en raison de la hausse des températures depuis le début des observations satellitaires en 1979, et l’Arctique continue de se réchauffer plus rapidement qu’ailleurs sur Terre. D’ici quelques décennies, il se pourrait que l’océan Arctique soit libre de glace tout l’été. Outre la montée du niveau de la mer qui en résulterait, les scientifiques veulent mieux comprendre comment cette évolution de la banquise affecte l’habitabilité de l’Arctique et du reste du monde.

Photo: C. Grandpey

Les résultats de leurs travaux ont été publiés le 8 novembre 2025 dans la revue Science. On peut y lire : « Si nous parvenons à prévoir le calendrier et la répartition spatiale du recul de la banquise, cela nous aidera à comprendre le réchauffement climatique, à anticiper les changements des chaînes alimentaires et de la pêche, et à nous préparer aux bouleversements géopolitiques.»
Jusqu’à présent, il était difficile d’établir des prévisions précises concernant la banquise arctique, notamment en raison de l’absence de données historiques. La poussière cosmique pourrait combler ce vide. Lorsque l’océan Arctique est recouvert de glace, cette poussière ne peut atteindre le fond marin. Par contre, lorsque l’océan est dépourvu de glace, une plus grande quantité de poussière cosmique peut se déposer sous forme de sédiments. Les auteurs de l’étude ont recherché cette poussière dans des carottes sédimentaires prélevées à trois endroits de l’océan Arctique : près du pôle Nord où la glace est présente toute l’année ; près de la limite de la banquise en septembre, lorsque la couverture de glace est à son minimum annuel ; et sur un site qui était recouvert de glace en 1980, mais qui ne l’est plus.

Photo: C. Grandpey

Les scientifiques recherchaient en particulier des couches sédimentaires contenant les isotopes hélium-3 et thorium-230. Chacun a une origine différente. L’hélium-3 est présent dans la poussière cosmique, ayant été capturé par les grains de poussière du vent solaire, tandis que le thorium est un produit de désintégration de l’uranium naturel dissous dans l’océan. Lorsque la glace recouvre l’océan en grande quantité, le rapport thorium-230/hélium-3 devrait être plus élevé que lorsque la glace est moins épaisse et que davantage de poussière cosmique peut atteindre le fond marin.

Les carottes sédimentaires ont fourni un enregistrement historique retraçant les périodes où des quantités plus ou moins importantes de poussières cosmiques ont atteint le fond de l’océan, ce qui correspond à des variations de la couverture de glace de mer. Cette dernière a connu des fluctuations au fil des millénaires, et les carottes indiquent qu’au début de la dernière période glaciaire, il y a environ 20 000 ans, la quantité de poussières cosmiques sur les fonds marins a diminué car la glace recouvrait alors la totalité de l’Arctique durant toute l’année.

Lorsque la glace a commencé à fondre et à se retirer, marquant la fin de la dernière période glaciaire il y a 15 000 ans, les carottes sédimentaires révèlent une augmentation de la quantité de poussières cosmiques dans les sédiments du fond marin.
Le plus intéressant réside dans les informations que ces carottes nous fournissent sur les facteurs qui déterminent l’étendue de la banquise et sur la manière dont sa présence, ou son absence, influence l’équilibre des nutriments et, par conséquent, la biosphère océanique.

Photo: C. Grandpey

On pensait jusqu’alors que la fonte des glaces de l’océan Arctique était liée à la température de l’océan, mais les résultats de cette étude indiquent qu’elle est davantage influencée par les températures atmosphériques. Cette information est cruciale car l’océan réagit plus lentement aux changements climatiques que l’atmosphère. Si cela se confirme, la fonte des glaces de l’océan Arctique pourrait s’accélérer plus rapidement que prévu.
Les chercheurs ont également constaté une corrélation entre la couverture de glace et la vitesse à laquelle les nutriments océaniques sont consommés par les processus biologiques. Des coquilles minuscules, autrefois usées par des micro-organismes – les foraminifères – ont été retrouvées dans les carottes de sédiments. Une analyse chimique a révélé la part des nutriments disponibles consommée par ces micro-organismes à différentes périodes de leur vie. Les scientifiques ont établi une corrélation entre l’augmentation de la consommation de nutriments et la diminution de la banquise.
L’étude laisse encore certaines questions en suspens, notamment celle de savoir pourquoi la disponibilité des nutriments varie en fonction de la quantité de glace de mer. Une explication possible est que la diminution de la glace libère de l’espace à la surface de l’océan, favorisant ainsi le développement d’algues photosynthétiques qui produisent davantage de nutriments.
Source : space.com.

———————————————–

As the definition goes, cosmic dust – also called extraterrestrial or interplanetary dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids (<30 μm) and meteoroids (>30 μm). Interstellar dust particles were collected by the Stardust spacecraft and samples were returned to Earth in 2006.

Interplanetary dust laced with helium-3 that has settled on the sea floor has provided climate scientists with an urgently needed historical record of sea ice. These scientists are battling with understanding how the Arctic will respond to the worsening climate crisis.

The amount of ice on the Arctic Ocean has depleted by more than 42% in response to rising temperatures since regular satellite monitoring began in 1979, and the Arctic continues to warm faster than anywhere else on Earth. In a few decades time we could see the Arctic Ocean free of ice all summer long. Besides the resultant rising sea levels, scientists want to learn more about how this change in sea ice affects the habitability of the Arctic and the wider world.

The results of their work were published on November 8 2025 in the journal Science. One can read : « If we can project the timing and spatial patterns of ice coverage decline in the future, it will help understand warming, predict changes to food webs and fishing, and prepare for geopolitical shifts. »

Until now, it has been difficult to make accurate predictions about the Arctic sea ice in part because there have been no historical records to base predictions on. I

The cosmic dust can fill this void. When the Arctic Ocean is covered in ice, the dust is prevented from reaching the sea floor. So when the ocean is largely absent of ice, more of the cosmic dust is able to settle as sediment.

The authors of the study went searching for this dust in sedimentary cores taken from three locations in the Arctic Ocean: one near the North Pole where there is ice present all year, one near the edge of the ice in September when ice coverage is at its annual lowest, and another at a site that was covered in ice in 1980, but no longer is. In particular, the researchers were looking for sedimentary layers of the isotopes helium-3 and thorium-230. Each has a different origin. Helium-3 is present in cosmic dust, having been captured by dust grains from the sun’s solar wind, whereas thorium is a decay product of naturally occurring uranium that has become dissolved in the ocean. At times of high ice abundance on the ocean, the ratio of thorium-230 to helium-3 should be higher than at times when there is less ice and more cosmic dust can reach the seabed.

The cores provided a historical record chronicling periods when greater and smaller amounts of cosmic dust have reached the bottom of the ocean, corresponding to differing amounts of sea ice. The ice has waxed and waned over millennia, and the cores indicate that the dawn of the most recent ice age, beginning about 20,000 years ago, saw a decrease in the amount of cosmic dust on the seabed as ice covered the entirety of the Arctic all year round.

When the ice began to melt and retreat as the ice age started to come to an end 15,000 years ago, the cores show that the amount of cosmic dust in the sediment on the sea floor began to increase.

What is most interesting is what the cores tell us about what governs the amount of sea ice and how its presence, or lack thereof, can influence the balance of nutrients and hence the biosphere of the ocean.

The assumption had been that the loss of ice from the Arctic Ocean was governed by the temperature of the ocean, but the results of the study indicate that it has more to do with atmospheric temperatures instead. This is a crucial piece of information because the ocean takes longer to respond to climate change than the atmosphere. If true, then we may lose sea ice in the Arctic Ocean more quickly than we expected.

The researchers also found that sea-ice coverage is correlated with how quickly nutrients in the ocean are consumed by biological processes. Tiny shells that were once worn by microbes called foraminifera were present in the cores, and a chemical analysis revealed how much of the total available nutrients they consumed when the microbes were alive at different points in the historical record. The scientists found a correlation between increased consumption of nutrients and a lack of sea ice.

The study still leaves some questions unanswered for now, such as why nutrient availability changes with the amount of sea ice present. One possible explanation is that with less ice, there is more room on the surface of the ocean for photosynthesizing algae that produce more nutrients.

Source : space.com.

Nouveau projet géothermique dans l’Oregon // New geothermal project in Oregon

Le 12 octobre 2012, j’ai publié une note sur ce blog à propos d’un projet de développement de l’énergie géothermique dans la région du volcan Newberry (Oregon). Ce projet avait suscité de nombreuses protestations dans cette région potentiellement volcanique et sismiquement active, ce qui présentait des risques évidents.
Aujourd’hui, en 2025, nous apprenons que des ingénieurs construisent la centrale géothermique la plus chaude au monde. Elle exploitera l’énergie de ce qui est, selon l’USGS, « l’un des volcans actifs les plus dangereux des États-Unis ».

Vue du site exploité par Mazama Energy sur le Newberry

La société Mazama Energy a déjà atteint des températures de 331 °C, ce qui en fait l’un des sites géothermiques les plus chauds au monde. Elle commencera à vendre de l’électricité aux foyers et aux entreprises des environs dès 2026.
Mazama Energy souhaite maintenant atteindre une température de 389 °C et devenir la première à produire de l’électricité à partir de « roche surchauffée ». Certains affirment que l’on est à l’aube d’une nouvelle ère pour l’énergie géothermique. Aujourd’hui, la géothermie produit moins de 1 % de l’électricité dans le monde. Toutefois, l’exploitation de la chaleur extrême des roches, combinée à d’autres avancées technologiques, pourrait porter cette part à 8 % d’ici 2050 ; c’est ce que prétend l’Agence internationale de l’énergie (AIE). L’AIE explique qu’ en utilisant des températures extrêmement élevées la géothermie pourrait théoriquement produire 150 fois plus d’électricité que la consommation mondiale.

Le projet entrepris sur le volcan Newberry combine deux grandes tendances susceptibles de rendre l’énergie géothermique moins chère et plus accessible. Mazama Energy achemine sa propre eau jusqu’au volcan, grâce à une méthode baptisée « géothermie améliorée ». Au cours des dernières décennies, des projets pionniers ont commencé à produire de l’énergie à partir de roches chaudes et sèches en fracturant la pierre et en y injectant de l’eau pour produire de la vapeur, en s’inspirant des techniques de fracturation hydraulique développées par l’industrie pétrolière et gazière. Des projets pilotes ont été mis en place au Nevada et en Utah, et des chercheurs internationaux ont démontré l’efficacité de cette technologie en France, en Allemagne, en Suisse et au Japon. Injecter de l’eau dans des fractures rocheuses comporte des risques sismiques, tout comme l’injection d’eaux usées issues de la fracturation hydraulique. Une expérience de ‘géothermie améliorée’ en Suisse a été interrompue après avoir déclenché un séisme de magnitude 3,4 en 2006. Les capteurs du site de Newberry ont enregistré cinq secousses sismiques au cours des six derniers mois ; la plus importante a atteint une magnitude de 2,5 le 24 juillet 2025. Les scientifiques affirment que les séismes constitueront toujours un risque, mais qu’il peut être géré grâce à une surveillance et une ingénierie efficaces.

Le Département de l’Énergie indique que les risques de pollution de l’eau sont faibles car les centrales géothermiques recyclent l’eau dans des puits étanches, et cette eau passe par des réservoirs beaucoup plus profonds que la plupart des nappes phréatiques.
Le projet de Newberry exploite également une roche plus chaude que tous les projets précédents. Cependant, même les 331 degrés de Newberry restent inférieurs au seuil de surchauffe de 373 degrés ou plus. À cette température, et sous une pression très élevée, l’eau devient « supercritique » et se comporte comme un fluide à mi-chemin entre un liquide et un gaz. L’eau supercritique emmagasine une grande quantité de chaleur comme un liquide, tout en s’écoulant avec la fluidité d’un gaz.
Un puits géothermique à très haute température peut produire cinq à dix fois plus d’énergie qu’un puits à température classique, qui avoisine les 204 °C. De ce fait, les exploitants géothermiques n’ont plus besoin de forer autant de puits coûteux, ce qui permet de réduire les coûts.
À terme, l’énergie géothermique issue de roches à très haute température pourrait être aussi économique que le gaz naturel ou l’énergie solaire, sans la pollution des énergies fossiles ni la variabilité des énergies renouvelables.

Mazama Energy prévoit de forer de nouveaux puits l’an prochain afin d’atteindre des températures supérieures à 398 °C. À proximité d’un volcan actif, elle espère atteindre cette température à moins de 5 kilomètres de profondeur. Ailleurs, les exploitants géothermiques doivent souvent creuser jusqu’à 20 kilomètres.
Forer dans une roche à 398 °C représente un défi de taille. Les centrales géothermiques conventionnelles utilisent des équipements prévus pour l’industrie pétrolière et gazière, mais dans une roche surchauffée, les foreuses classiques deviennent inutilisables car leurs composants électroniques sont défaillants. Les ingénieurs de Mazama Energy ont refroidi leurs installations de forage en injectant un flux constant de dioxyde de carbone liquide. Cela leur a permis de forer à 3,2 km de profondeur sur le flanc du volcan et d’atteindre une roche à 331 °C en début d’année.
D’autres puits expérimentaux ont atteint des températures encore plus élevées, mais aucun n’a résisté longtemps. Des expériences de forage en Islande et à Hawaï ont été interrompues après avoir rencontré du magma de manière inattendue, ce qui a endommagé les trépans. Des puits forés au Japon et en Italie ont atteint des roches à plus de 482 °C, approchant la zone de la croûte terrestre où la roche rigide commence à se comporter comme de la pâte à modeler. Cependant, ces forages ont été abandonnés suite à des problèmes rencontrés avec le matériel de forage et les tubages en ciment.
Pour l’instant, Mazama Energy affirme que son puits est stable. Cependant, les scientifiques prévoient que les difficultés s’accumuleront à mesure que l’entreprise forera dans des roches plus chaudes et exploitera ses puits pendant des années. Les tubages en ciment et en acier seront alors exposés à des variations extrêmes de température et de pression.
Cependant, les avantages potentiels de cette nouvelle géothermie sont bien supérieurs aux défis qu’elle suppose. Mazama Energy prévoit de produire 15 mégawatts d’électricité sur le flanc ouest du volcan Newberry en 2026, avec une augmentation progressive de la production jusqu’à 200 mégawatts, soit suffisamment d’énergie pour alimenter un grand centre de données ou une petite ville.
Source : Médias américains.

Big Obsidian Flow dans le parc du Newberry (Photo: C. Grandpey)

————————————————-

On October 12, 2012 I released a post on this blog, about a geothermal energy development project in the Newberry volcano area (Oregon). Such a project had triggered numerous protests because the region is potentially volcanically and seismically active, and the project therefore presented obvious risks.

Today in 2025, we learn that engineers are building in the region the hottest geothermal power plant on Earth. The plant will tap into the energy of what is, according to the USGS, “one of the largest and most hazardous active volcanoes in the United States.”.

Newberry

Vue du site exploité par Mazama Energy sur le Newberry (Source : Mazama Energy)

The structure has already reached temperatures of 331 degrees Celsius, making it one of the hottest geothermal sites in the world, and next year it will start selling electricity to nearby homes and businesses.

But the start-up behind the project, Mazama Energy, wants to reach a temperature of 389°C and become the first to make electricity from “superhot rock.”

Enthusiasts say that could usher in a new era of geothermal power. Today, geothermal produces less than 1 percent of the world’s electricity. But tapping into superhot rock, along with other technological advances, could boost that share to 8 percent by 2050, according to the International Energy Agency (IEA) which explains that geothermal using superhot temperatures could theoretically generate 150 times more electricity than the world uses..

The Newberry Volcano project combines two big trends that could make geothermal energy cheaper and more widely available. First, Mazama Energy is bringing its own water to the volcano, using a method called “enhanced geothermal energy.” Over the past few decades, pioneering projects have started to make energy from hot dry rocks by cracking the stone and pumping in water to make steam, borrowing fracking techniques developed by the oil and gas industry. Pilot projects have been developed in Nevada and Utah, and international researchers have demonstrated the technology in France, Germany, Switzerland and Japan.

Pumping water into rock fractures risks causing earthquakes, much like injecting wastewater from fracking. A Swiss enhanced geothermal experiment was shut down after setting off an M 3.4 quake in 2006. Sensors at the Newberry site recorded five tremors in the past six months, with the biggest reaching M2.5 on July 24, 2025.

Scientists say earthquakes will always be a risk, but it can be managed with good monitoring and engineering. The Energy Department says water pollution risks are low because geothermal plants recirculate the same water in sealed wells, passing through reservoirs much deeper than most groundwater.

The Newberry project also taps into hotter rock than any previous enhanced geothermal project. But even Newberry’s 331 degrees fall short of the superhot threshold of 373 degrees or above. At that temperature, and under a lot of pressure, water becomes “supercritical” and starts acting like something between a liquid and a gas. Supercritical water holds lots of heat like a liquid, but it flows with the ease of a gas, combining the best of both worlds for generating electricity.

A superhot geothermal well can produce five to 10 times more energy than a well at typical temperatures, which hover around 204°C. That means geothermal operators don’t have to drill as many multimillion-dollar holes in the ground, bringing down costs.

Eventually, superhot rock geothermal energy could be about as cheap as natural gas or solar — without the pollution of fossil fuels or the variability of renewables.

The Mazama company will dig new wells to reach temperatures above 398°C next year. Alongside an active volcano, the company expects to hit that temperature less than 5 kilometers beneath the surface. But elsewhere, geothermal developers might have to dig as deep as 20 kilometers.

Drilling into 398°C rock presents some devilish challenges. Conventional geothermal plants can use gear developed by the oil and gas industry, which can stand up to lower temperatures. But in superhot rock, standard drills die as their electronic components fail. Mazama engineers cooled their drilling rigs by pumping in a constant stream of liquid carbon dioxide. That allowed them to burrow3.2 km into the flank of the volcano to find 331 degrees rock earlier this year.

Other experimental wells have hit even higher temperatures, but none has survived for long. Drilling experiments in Iceland and Hawaii were called off after they unexpectedly hit magma, which broke their drill bits. Wells in Japan and Italy reached rock hotter than 482°C approaching the region of Earth’s crust where rigid rock starts behaving more like putty, but were abandoned after facing problems with their drilling equipment and cement casings.

So far, Mazama says its well has remained stable. But experts say challenges will pile up as the company drills into hotter rock and operates its wells for years on end, exposing the cement and steel casings to punishing up-and-down cycles of temperature and pressure.

However, the potential rewards loom larger than the challenges. Mazama plans to generate 15 megawatts of electricity on the western flank of Newberry Volcano in 2026, eventually ramping up to 200 megawatts, enough to power a big data center or a small city.

Source : US news media.

Le glacier Blanc (Parc des Écrins) face au réchauffement climatique en 2025

Comme je l’ai indiqué précédemment, octobre 2025 a été le troisième mois d’octobre le plus chaud de l’histoire et l’année 2025 va probablement occuper la même place. Il n’est donc pas surprenant que nos glaciers continuent à fondre.

Le Parc National des Écrins a diffusé son bilan pour le Glacier Blanc. Après un hiver moyennement enneigé et un été oscillant entre canicule et fraîcheur, la fonte du glacier Blanc s’est poursuivie en 2025, avec une perte de glace estimée à 0,73 mètre d’eau. Ce déficit est proche de la moyenne des 25 années d’observation du glacier.

Photo: C. Grandpey

Du fait de l’arrivée d’une vague de forte chaleur en début d’été, la fonte du glacier Blanc en 2025 a commencé de manière très précoce et a tout de suite été très intense. Elle a été fortement ralentie à la faveur d’une deuxième quinzaine de juillet particulièrement fraîche avec de la neige en altitude au-dessus de 2500 m. La fonte a ensuite repris, à nouveau de manière intense vers la mi-août, pour s’arrêter progressivement vers la fin septembre à la faveur des premières chutes de neige automnales.

Photo: C. Grandpey

S’agissant de la zone d’accumulation, donc de la source du glacier, l’hiver 2025 a été marqué par des chutes de neige moyennes et irrégulières. Avec une accumulation équivalant à 1,73 m d’eau environ, l’enneigement du glacier Blanc au printemps 2025 constitue une année moyenne. À noter que ce stock de neige s’est avéré propre et blanc, sans apport de sable saharien susceptible de teinter la neige et d’accélérer sa fonte. De ce fait, malgré une canicule particulièrement précoce et longue, le manteau neigeux a plutôt bien résisté et, à la faveur d’un mois de juillet plus frais, le glacier a gagné une couverture neigeuse estivale modérée qui a certainement limité sa fonte face à la seconde vague de chaleur à la mi-août. La perte de masse, systématique depuis 10 ans, du glacier se trouve ainsi dans la moyenne des 25 années de mesure avec une fonte équivalent à 2,46 m d’eau environ.

Photo: C. Grandpey

Malheureusement, la valeur d’accumulation moyenne est loin de compenser celle de la fonte du glacier et le glacier a basculé vers un bilan déficitaire lors de la première quinzaine d’août. Malgré cela, le Glacier Blanc reste globalement dans la moyenne des 25 années de suivi.

Comme lors des années précédentes, le front a évolué de manière hétérogène du fait de sa position enchâssée dans une gorge rocheuse : recul de 4 m en 2021, 30 m en 2022, 1,7 m en 2023 et 16 m en 2024. Le recul annuel en 2025 est de 17 mètres et le front du glacier se trouve ainsi toujours aux alentours de 2650 m d’altitude.

Source : Parc national des Écrins

Grâce aux instruments installés par le Parc national des Écrins, on peut observer en vidéo le mouvement du glacier Blanc au fil des saisons.

https://youtu.be/66WCjBN9xAA

Découverte d’un nouveau cratère d’impact // Discovery of a new impact crater

On compte environ 200 cratères d’impact confirmés dans le monde, celui de Meteor Crater en Arizona étant l’un des plus célèbres.

Photo: C. Grandpey

Un nouveau cratère d’impact vient de s’ajouter à la liste. Niché à flanc de colline dans la province du Guangdong, près de la ville de Zhaoqing en Chine, le cratère de Jinlin est resté invisible jusqu’à ce que des chercheurs l’identifient comme étant bien une structure d’impact.

Source : (Chen et al., Matter Radiat. Extremes, 2025)

Les scientifiques expliquent que le cratère s’est formé durant l’Holocène, à la fin de la dernière période glaciaire, il y a environ 11 700 ans. D’après les mesures de l’érosion des sols environnants, les chercheurs estiment qu’il a été creusé au début ou au milieu de l’Holocène.
Avec un diamètre compris entre 820 et 900 mètres et une profondeur de 90 mètres, sa taille dépasse largement le cratère de Macha en Russie (300 mètres), qui était jusqu’alors la plus grande structure d’impact connue de l’Holocène.
La découverte d’un cratère aussi imposant et aussi bien conservé est surprenante compte tenu du climat de la région. La province du Guangdong connaît des moussons régulières, de fortes précipitations et une humidité élevée, des conditions qui accélèrent l’érosion et qui auraient dû depuis longtemps faire disparaître un tel cratère. Pourtant, celui de Jinlin demeure remarquablement intact, préservé au sein d’épaisses couches de granit altéré qui ont protégé sa structure des intempéries.

La preuve de son origine extraterrestre réside dans les détails. Dans le granit, les chercheurs ont découvert de nombreux fragments de quartz présentant des déformations planaires et des caractéristiques microscopiques qui constituent de véritables signatures géologiques d’impacts. Ces structures se forment sous une pression extrême, entre 10 et 35 gigapascals, bien supérieure à tout ce que les processus géologiques terrestres peuvent générer. Aucune éruption volcanique, aucun séisme, aucun mouvement tectonique ne crée d’ondes de choc aussi intenses et concentrées. Seule la collision à très grande vitesse d’un objet extraterrestre produit de telles signatures.
Les chercheurs ont déterminé qu’il s’agissait bien d’une météorite plutôt qu’une comète, car une comète aurait creusé un cratère d’au moins 10 kilomètres de diamètre. Cependant, ils n’ont pas encore établi sa composition, fer ou pierre, et de nouvelles recherches restent nécessaires. Elles se poursuivent dans le cratère Jinlin, et elles pourraient apporter un éclairage nouveau sur la fréquence des impacts de gros astéroïdes sur notre planète et sur les mécanismes qui préservent ou détruisent les traces qu’ils laissent derrière eux.
Source : Universe Today et autres médias.

En France, il y a environ 200 millions d’années, une météorite a percuté la Terre à 4 km à l’ouest de Rochechouart (Haute Vienne). L’astéroïde avait une vitesse estimée entre 20 et 50 km par seconde lors de l’impact. Le sous-sol a été fortement comprimé par l’onde de choc. Des matériaux ont été éjectés sous l’action de l’impact. Le socle a réagi en se soulevant et les bords du cratère primitif se sont effondrés pour former un cratère d’impact météoritique de type Meteor crater (USA). Son diamètre est d’environ 20 km. Toutefois, l’érosion a décapé une grande partie des dépôts. C’est pour cette raison que le cratère (ou astroblème) n’est plus visible dans le paysage actuel.

Source: Université de Limoges

———————————————-

About 200 confirmed impact craters exist worldwide. Meteor Crater (Arizona) is one of the most famous. A new one has just been added to the list. Nestled on a hillside in Guangdong Province near Zhaoqing City in China, the Jinlin crater managed to hide until researchers identified it as an impact structure.

Scientists explain that the crater formed during the Holocene epoch when the last ice age ended roughly 11,700 years ago. Based on measurements of nearby soil erosion, researchers estimate it was carved sometime during the early to mid-Holocene.

With a diameter between 820 and 900 metres and a depth of 90 metres, it dwarfs Russia’s 300-metre Macha crater, previously the largest known Holocene impact structure.

Finding such a massive, well-preserved crater is surprising given the region’s climate. Guangdong Province experiences regular monsoons, heavy rainfall, and high humidity, precisely the conditions that accelerate erosion and should have long ago obliterated any visible crater.

Yet the Jinlin crater remains remarkably intact, preserved within thick layers of weathered granite that protected its structure from the elements. The evidence confirming its extraterrestrial origin lies in the details. Within the granite, researchers found numerous quartz fragments exhibiting planar deformation features and microscopic characteristics that serve as geological fingerprints of impact events. These features form under extreme pressure between 10 and 35 gigapascals, far exceeding anything Earth’s own geological processes can generate. No volcanic eruption, earthquake, or tectonic movement creates such intense, focused shockwaves. Only the hypervelocity collision of an extraterrestrial object produces these telltale signatures.

The researchers have determined the impactor was a meteorite rather than a comet since a comet would have excavated a crater at least 10 kilometres wide. However, they haven’t yet established whether it was composed of iron or stone, and considerable work remains.

As researchers continue investigating the Jinlin crater, it may reveal new insights into how frequently sizable space rocks strike our planet and what protects or destroys the evidence they leave behind.

Source : Universe Today and other news media.

In France, approximately 200 million years ago, a meteorite struck Earth 4 km west of Rochechouart (Haute-Vienne). The asteroid’s estimated speed at impact was between 20 and 50 km per second. The subsoil was severely compressed by the shock wave. Materials were ejected by the impact. The bedrock reacted by heaving, and the edges of the original crater collapsed to form a meteorite impact crater of the Meteor Crater type (USA). Its diameter is approximately 20 km. However, erosion has removed a large portion of the deposits. This is why the crater (or astrobleme) is no longer visible in the current landscape.