Dans une étude publiée le 22 décembre 2022 dans la revue Science, une équipe scientifique du California Institute of Technology (Caltech) a proposé une réponse à la question : comment le magma issu du manteau profond se déplace-t-il vers la surface à Hawaii?
Les réservoirs magmatiques peu profonds qui alimentent les éruptions à Hawaii sont étudiés depuis un certain temps grâce au comportement des ondes sismiques. Les fluctuations de leur vitesse et de leur trajectoire indiquent aux scientifiques les types de matériaux traversés, avec des indications sur leur température, leur densité et leur composition. Cependant, pour vraiment comprendre ce qui gère ces processus volcaniques, les scientifiques ont besoin de savoir ce qui se passe à l’interface entre le manteau visqueux et la croûte solide. C’est ce que révèle la nouvelle étude.
La structure globale décrite dans l’étude est composée de plusieurs chambres allongées ou sills. [NDLR : un sill est une infiltration de roche magmatique entre deux couches plus anciennes d’autres roches (sédimentaires, volcaniques, métamorphiques)]. Lorsque les éruptions évacuent le magma des réservoirs peu profonds qui les surmontent, ces sills profonds semblent réagir.
Une activité sismique persistante dans une zone au sud-ouest du Kilauea et à une trentaine de kilomètres sous la surface avait précédemment laissé supposer l’existence possible d’un ensemble de failles permettant au magma de se déplacer des profondeurs vers des réservoirs proches de la surface. En outre, depuis les années 1980, certains signaux sismiques avaient suggéré que du magma s’agitait dans la région. Jusqu’à récemment, la véritable nature de ce labyrinthe souterrain reposait davantage sur la spéculation que sur la vérité scientifique. Ce dont les scientifiques avaient besoin, c’était d’un pic d’événements sismiques provenant de cette région précise. Une telle situation a semblé se produire en 2015 lorsque l’activité sismique dans la région s’est un peu accélérée.
Cependant, la vraie réponse est apparue en 2018. Après une éruption plus ou moins continue du Kilauea pendant 35 ans, une séquence éruptive majeure a commencé sur le volcan, avec l’émission d’énormes quantités de lave au cours de trois mois. La vidange du réservoir magmatique peu profond a provoqué l’effondrement spectaculaire de la zone sommitale.
Les géologues ont enregistré un pic significatif d’activité sismique profonde en 2019 sous la ville de Pāhala, à environ 40 km au sud-ouest du Kilauea. L’essaim sismique de Pāhala était une opportunité de découvrir ce qui se passait sous l’île, mais les scientifiques à eux seuls n’étaient pas été en mesure d’identifier individuellement tous les séismes car les plus petits étaient carrément étouffés par des événements plus importants.
L’équipe scientifique du Caltech a transmis l’intégralité de l’enregistrement de l’essaim sismique à un programme informatique automatique, une technique qui avait déjà été utilisée pour identifier des millions de séismes en Californie. Le programme a rapidement fait la différence entre les véritables séismes et les bruits parasites, puis il a identifié et caractérisé des milliers d’événements qui auraient été ratés par les programmes conventionnels de détection de signaux sismiques.
De novembre 2018 à avril 2022, le système a enregistré environ 192 000 séismes sous Pāhala. En transférant ces événements sur une carte, l’équipe scientifique a découvert avec surprise un ensemble de structures magmatiques représentant le cœur volcanique qui battait au sud d’Hawaii. Certains événements sismiques provenaient d’une région située à 28-32 km de profondeur. Ces séismes longue période sont généralement attribués aux vibrations produites par le mouvement des fluides, y compris le magma. L’essentiel de la sismicité provenait d’une zone située entre 35 et 43 km de profondeur. Ces séismes volcano-tectoniques délimitaient un certain nombre de structures en forme de feuille, presque horizontales ; certaines d’entre elles avaient 6,5 km de long et 4,8 km de large.
Le complexe Pāhala Sill semble donner naissance à plusieurs artères. Une voie majeure, marquée par des séismes indiquant des fracturations de roches, semble conduire directement dans l’un des réservoirs de magma peu profonds du Kilauea. Ce n’est peut-être pas une coïncidence, alors, si le complexe de sills a commencé à se manifester sans relâche en 2019. Lors de l’éruption de 2018, le Kilauea a été vidé d’une partie importante de son réservoir magmatique peu profond, ce qui a provoqué une chute de pression. Suite à cela, du magma a été aspiré dans les sills pour rétablir la pression. Des événements similaires se sont produits lors de la brève éruption du Kilauea en 2020.
Les prochaines études pourraient permettre de savoir si le Kilauea et le Mauna Loa, qui sont des voisins relativement proches à la surface, sont connectés en profondeur. À ce jour, il existe peu de preuves concrètes de cette hypothèse et les scientifiques conviennent généralement que les deux volcans sont indépendants l’un de l’autre.
Source : Caltech, The Washington Post.
———————————————–
In a study published on December 22nd, 2022 in the journal Science, a scientific team from the California Institute of Technology (Caltech) has offered a possible answer to the question : how does magma from the deep mantle travel to the Hawaiian surface?
The shallow magma reservoirs that feed Hawaii’s eruptions have been known about for some time thanks to gthe behaviour of seismic waves. Changes in their speed and trajectory tell scientists what sorts of matter they have been travelling through, providing clues to its temperature, density and composition. However, to truly understand what drives these volcanic processes, scientists need to know what is happening at the interface of the squishy mantle and the solid crust. That is what is revealed by the new study.
The giant feature described in the study is made up of several elongated chambers or sills. When eruptions drain magma from the shallow reservoirs above, these deep-seated sills seem to react.
A persistent seismic activity from an area southwest of Kilauea and about 30 km below ground had previously suggested that a collection of faults may exist there, creating pathways for magma to travel from the depths to near-surface reservoirs. Besides, since the 1980s, special kinds of quakes have hinted that magma has been churning about in the region. But until recently, the true nature of this underground labyrinth was based more on speculation than scientific truth. What scientists needed was a sustained spike in quakes coming from that exact region. Things looked promising in 2015 when the region’s rumbling picked up a little.
However, the real answer appeared in 2018. After Kilauea had been erupting more or less continuously for 35 years, a major eruptive sequence began at the volcano. The event produced huge amounts of lava in three months. The drainage of the volcano’s shallow magma reservoir caused its summit to collapse dramatically.
Geologists recorded a shocking spike in deep seismic activity in 2019 below the town of Pāhala, which sits about 40 km southwest of Kilauea. While the Pāhala quake swarm was a chance to unearth the island’s buried magmatic treasure, scientists alone were not able to identify many of the individual quakes as the smaller ones were smothered by bigger events.
The scientific team from Caltech fed the entire recording of the seismic swarm to a machine learning program, a technique which had previously been used to identify millions of hidden quakes in California. The program quickly made the difference between what was a real quake and what was extraneous noise, then identified and characterized thousands of events that would have been missed by conventional seismic signal detection programs.
From November 2018 to April 2022, the system logged around 192,000 quakes below Pāhala. Plotting these events on a map, the team was stunned to discover a collection of pulsing magmatic structures which were the beating volcanic heart of southern Hawaii. Some of the quakes came from a region 28 to 32 km deep: these long-period earthquakes are usually attributed to the vibrations made by the movement of fluids, including magma. The bulk of the seismicity came from an area 35 to 43 km deep. These volcano-tectonic quakes delineated a number of near-horizontal sheetlike structures, some of them 6.5 km long and 4.8 km wide.
The Pāhala Sill Complex appears to have several arteries branching from it. One major pathway, marked by rock-breaking quakes, appears to lead right into one of Kilauea’s shallow magma reservoirs. It’s perhaps no coincidence, then, that the sill complex began to thunder relentlessly in 2019. During the 2018 eruption, Kilauea was drained of a significant portion of its shallow magma supply, causing a pressure drop. In response, magma was sucked into the sills to equalize the pressure. Similar events happened during Kilauea’s briefer 2020 eruption.
Further work may help resolve the controversial question of whether Kilauea and Mauna Loa, which are relatively close neighbours at the surface, are somehow connected at great depths. To date, little concrete evidence for this hypothesis exists, and experts generally agree that the two volcanoes are largely independent of one another.
Source : Caltech, The Washington Post.

Hypothèse du HVO sur le parcours de la lave sous le Kilauea

Le séisme de M 6,9 sur le Kilauea le 4 mai 2018 et ses répliques plusieurs mois plus tard (Source: USGS)




En fin d’après-midi, vers 16 heures (GMT) le 1er décembre 2023, l’INGV a enregistré une hausse de l’activité strombolienne au niveau du Cratère Sud-Est (CSE) de l’Etna, avec des fontaines de lave et des émissions de cendres qui se dirigeaient dans une direction NNE. L’activité explosive s’accompagnait d’une coulée de lave provenant d’un débordement qui avance sur le versant sud du cône du cratère. Le tremor continue de montrer une tendance variable au fil du temps, avec oscillations rapides entre les niveaux moyen et haut. La source du tremor se maintient dans la zone du Cratère Sud-Est à une profondeur d’environ 2800m au-dessus du niveau de la mer.
Late in the afternoon of December 1st, 2023, at about 4 p.m. (UTC), INGV recorded an increase in Strombolian activity at Mt Etna’s Southeast Crater (SEC), with lava fountains and ash emissions heading in a NNE direction. The explosive activity was accompanied by a lava flow coming from an overflow advancing on the southern slope of the crater cone. The tremor continues to show a variable trend over time, with rapid oscillations between medium and high levels. The source of the tremor remains in the Southeast Crater area at a depth of approximately 2800m above sea level.