Mesure des gaz sur le Kilauea (Hawaï) // Gas measurement on Kilauea Volcano (Hawaii)

L‘Observatoire des Volcans d’Hawaï (HVO) publie régulièrement des articles dans le cadre d’une série baptisée « Volcano Watch » dont le but est d’informer sur les observations et les mesures effectuées par les scientifiques en poste à l’Observatoire. C’est aussi un travail de vulgarisation qui informe le public sur les risques volcaniques.

L’un des derniers articles « Volcano Watch » est consacré à la mesure des gaz volcaniques, un paramètre essentiel, que ce soit pour la sécurité du public ou pour la compréhension de l’activité volcanique. Le HVO explique dès le début de l’article que la technologie repose avant tout sur le vent.

 

Panache de gaz émis par le cratère de l’Halema’uma’u (Photo : C. Grandpey)

Le HVO exploite actuellement 19 stations permanentes de mesure des gaz et 7 instruments portables pour analyser les éruptions du Kilauea. L’ensemble de ces instruments peut être divisé en deux catégories : (1) ceux qui analysent les concentrations de gaz ; et (2) ceux qui étudient les taux d’émission.

Les instruments qui analysent les concentrations de gaz comprennent des stations multi-gaz qui mesurent un ensemble de gaz (CO2, H2O, SO2 et H2S) et des stations haute résolution capables de mesurer un seul gaz (le SO2, par exemple) jusqu’à de très faibles concentrations. Ces instruments prélèvent des échantillons de panaches volcaniques pour indiquer quels gaz sont présents et les rapports de ces gaz les uns par rapport aux autres, ce qui est important pour comprendre le système volcanique.

Les instruments qui analysent les taux d’émission mesurent l’absorption de la lumière ultraviolette du soleil par le panache via la télédétection. Cela permet aux scientifiques du HVO de déterminer la quantité de SO2 émise par le volcan, mais uniquement pendant la journée.

Un géochimiste du HVO mesure les gaz émis par le Kilauea à l’aide d’un spectromètre infrarouge à transformée de Fourier (FTIR), un instrument qui détecte la composition des gaz sur la base de la lumière infrarouge absorbée. (Crédit photo : HVO)

Tous ces instruments nécessitent une bonne coopération des gaz. Cela signifie que le panache doit passer à proximité ou au-dessus de l’instrument pour qu’une mesure soit effectuée.

Le panache volcanique ne bouge pas tout seul. Il dépend du vent pour le transporter dans une direction donnée. Le travail des scientifiques spécialisés dans la mesure des gaz volcaniques consiste à rechercher et à mesurer cette formation de gaz changeante et transitoire, ce qui n’est pas une tâche facile. En effet, les instruments ne fonctionnent pas dans certaines conditions météorologiques. Ils ont besoin que le vent souffle dans la bonne direction et à la bonne vitesse pour effectuer une mesure utile.

Sur le Kilauea, les alizés sont les vents dominants, ce qui signifie que les vents proches de la surface soufflent du nord-est la majeure partie de l’année. Pour cette raison, les stations permanentes de mesure des gaz du HVO sont positionnées au sud-ouest (sous le vent) de l’Halema’uma’u, le cratère sommital.

Si la direction du vent s’inverse par rapport aux alizés (une situation appelée « vents de Kona »), les scientifiques se trouvent en difficulté car le vent éloigne les gaz des capteurs permanents. De même, si le vent est trop lent (en dessous d’environ 4 mètres par seconde), le panache peut alors s’élever verticalement et se trouver hors de portée des capteurs. Dans le cas contraire, si le vent est trop fort, il dilue le panache, l’étale et rend difficile la mesure par les capteurs.

Une autre difficulté est que les volcans n’entrent pas en éruption toujours au même endroit. Lors de l’éruption la plus récente du Kilauea, des fissures se sont ouvertes dans la partie supérieure de la zone de rift sud-ouest, sous le vent de la quasi-totalité du réseau de mesure des gaz. Un seul instrument, une station à haute résolution – la HRPKE – était située à proximité des bouches éruptives, à quelques centaines de mètres à l’ouest-nord-ouest des fissures. Le problème, c’est que le vent soufflait du nord ce jour-là et emportait l’épais panache éruptif vers le sud, loin de la station HRPKE qui a dû se contenter d’un filet de gaz plusieurs heures après le début de l’éruption. Par la suite, le vent a tourné plus à l’est et dirigé le panache vers la station.

Created with GIMP

Station HRPKE installée au sud-ouest du sommet du Kīlauea, dans l’Upper Southwest Rift Zone. L’instrument mesure les concentrations de SO2 dans l’air, ainsi que des données météorologiques telles que la vitesse et la direction du vent, et les précipitations. (Crédit photo : USGS)

Pour parvenir à des mesures de gaz efficaces, il faut la combinaison de quatre éléments : la direction et la vitesse du vent, parfois la lumière du jour, et toujours beaucoup de chance. Les chercheurs en charge de la mesure des gaz volcaniques à l’USGS ne cessent de mettre au point de nouvelles technologies pour être plus efficaces et pouvoir informer le public sur ce risque volcanique.

Source : HVO / USGS.

—————————————————–

The Hawaiian Volcano Observatory (HVO) regularly publishes articles as part of a series called “Volcano Watch” whose aim is to inform about the observations and measurements performed by scientists stationed at the Observatory . It is also popularization work which informs the public about volcanic hazards.

One of the latest « Volcano Watch » articles is dedicated to the measurement of volcanic gases which is critical for both public safety and understanding volcanic activity. HVO explains from the beginning that the technology relies on the wind.

HVO currently operates 19 permanent gas monitoring stations and 7 portable instruments for eruption response on Kilauea. These can be divided into two categories : (1) gas concentrations; and (2) emission rates.

Gas concentration instruments include multi-GAS stations that measure a combination of gases (CO2, H2O, SO2, and H2S) and high-resolution stations that can measure a single gas (SO2) down to very low concentrations. These instruments draw in samples of volcanic plumes to indicate which gases are present and the ratios of these gases to each other, which is important for understanding the volcanic system.

Emission rate instruments measure the plume’s absorption of ultraviolet light from the sun via remote sensing. This allows HVO scientists to determine how much SO2 is coming out of the volcano, though only during daylight hours.

All these instruments require cooperation from the gases themselves: the plume must pass by or over the instrument for a measurement to be made.

The volcanic plume, however, doesn’t move on its own. It relies on the wind to carry it in any given direction. The job of volcano gas scientists is to chase around and measure this shifting, transient gas claoud, which is not an easy task. Indeed, gas instruments do not work in certain weather conditions. They need the wind to be in the right direction and the right speed to make a useful measurement.

At Kilauea volcano, the dominant trade winds mean that near-surface winds blow from the northeast most of the year. For this reason, HVO’s permanent gas monitoring stations are positioned to the southwest (downwind) of Halemaʻumaʻu, the summit crater.

If the wind direction is reversed relative to normal trade winds (a condition called “Kona winds”), scientists have no easy way of measuring it because the wind is blowing the gas away from the permanent sensors. Similarly, if the wind is too slow (below about 4 m/s), then the plume can loft straight up and once again miss the sensors. Alternatively, if the wind is too strong then it effectively dilutes the plume, spreading it thin and making it difficult for the sensors to measure.

Another complication is that volcanoes do not always erupt from the same location. In the most recent eruption at Kilauea, fissures opened in the Upper Southwest Rift Zone, downwind of nearly the entire gas monitoring network. Only one instrument, a high-resolution station called HRPKE, was located near the eruptive vents, a few hundred meters to the west-northwest of the fissures. However, the winds were northerly that day and were blowing the thick eruptive plume to the south, away from HRPKE which di not record a wisp of gas until several hours into the eruption when the wind turned more easterly, finally blowing the plume to the station.

Effective gas measurements require an alignment of four things: wind direction, wind speed, sometimes daylight, and always luck. Volcano gas researchers at the USGS continue to develop new technologies to be more efficient and be able to inform the public about this volcanic hazard.

Source : HVO / USGS.

Réouverture de La Fossa de Vulcano (Iles Eoliennes), mais sous conditions

Les excursions au cratère « La Fossa » de Vulcano reprendront à partir d’aujourd’hui 24 avril 2023,après une interruption de seize mois en raison de la hausse des émissions gazeuses. Le système de vidéosurveillance mentionné dans mes notes précédentes et qui réglementera l’accès des randonneurs a été installé et testé. Les panneaux assurant la sécurité ont également été positionnés et le sentier à suivre a été balisé. Il passe au-delà du champ fumerollien qui semble moins actif ces derniers jours. L’INGV fait état d’une tendance à la baisse de la température de surface qui reste toutefois au-dessus de la normale. .
Comme je l’écrivais précédemment, l’ascension du volcan sera également soumise aux conditions météorologiques, notamment à la direction du vent, et ne sera autorisée que dans certains créneaux du matin et de l’après-midi. L’accès sera interdit pendant les mois d’été, aux heures les plus chaudes.

De plus, les visiteurs devront signer une décharge avant d’entamer l’ascension du volcan.

Source : La Sicilia.

Photo: C. Grandpey

Les anneaux de vapeur sur les volcans // Vapour rings on volcanoes

Certains volcans comme l’Etna (Sicile) laissent échapper des anneaux de vapeur qui flottent ensuite au-dessus de leurs cratères. Des anneaux de courte durée ont également été observés sur l’Eyjafjallajökull en Islande. Les chercheurs ont trouvé de nouveaux indices sur le processus d’émission de ces anneaux de gaz.
Les volcanologues de l’Institut national de géophysique et de volcanologie (INGV) en Italie ont étudié ces anneaux qui sont généralement associés à une activité volcanique relativement modérée. Ils ont publié les résultats de leurs travaux en février 2023 dans la revue Scientific Reports.
Il existe des similitudes entre la façon dont les volcans émettent ces ronds de vapeur et la façon dont les dauphins soufflent des anneaux de bulles à la surface de la mer, ou la façon dont les fumeurs exhalent des anneaux de fumée. Les versions volcaniques sont communément appelées « anneaux de fumée », bien qu’elles soient principalement constituées de vapeur d’eau. Les chercheurs parlent généralement d’« anneaux de vapeur » ou d’« anneaux de vortex » lorsqu’ils décrivent le phénomène. Les émissions de vapeur sortant d’une bouche volcanique (ou de la bouche d’un fumeur) ralentissent lorsqu’elle rencontrent une surface, ce qui provoque la formation d’une boucle du gaz sur lui-même.
Cependant, on ne sait pas exactement ce qui se passe sur un volcan. Même les volcans connus pour émettre des anneaux de vapeur ne le font pas tout le temps. L’équipe italienne a consulté Internet et recherché des séquences où des anneaux de vapeur ont été filmés. Les anneaux qu’ils ont trouvés mesuraient de 9 à 200 mètres de diamètre et duraient jusqu’à 10 minutes. Généralement blancs, les anneaux de vapeur sont parfois teintés de cendre grise ou brune.
Les chercheurs ont modélisé le mouvement possible du gaz et des bulles dans le conduit d’un volcan. Pour que les anneaux de vapeur se forment, de petites bulles de gaz doivent fusionner et flotter à travers le magma pour créer des poches de gaz sous pression. Lorsque de telles poches explosent, elles peuvent expulser du gaz assez rapidement pour former un anneau de vapeur. Il faut aussi que l’ouverture du volcan soit circulaire ou légèrement émoussée. Les volcans avec des ouvertures irrégulières ou plus elliptiques ne donnent généralement pas naissance à des anneaux. Si des anneaux apparaissent, ils prennent un aspect déformé et instable.
En combinant les observations de photos et de vidéos avec le modèle numérique, l’équipe scientifique a pu déterminer les conditions physiques nécessaires à la formation des anneaux de vapeur. De plus, ces anneaux peuvent apporter des informations sur le magma d’un volcan. En particulier, les volcans qui libèrent des anneaux de vapeur ont un magma plus liquide et plus susceptible de s’écouler.
Cependant, il y a des limites à ce que les anneaux de vapeur peuvent révéler sur les volcans. Par exemple, lorsqu’un volcan comme le Mont St Helens émet continuellement du gaz sous pression en projetant beaucoup de matière solide, on ne voit jamais d’anneaux de vapeur ou de gaz.
Source : The Seattle Times.

++++++++++

Dans une note publiée le 11 février 2010, j’expliquais que les anneaux de fumée émis par certains volcans ne sont pas des phénomènes exceptionnels. Des fumeurs peuvent les provoquer en positionnant leurs lèvres et en exhalant la fumée de cigarette d’une certaine manière. Ces ronds apparaissent souvent autour des pots d’échappement des voitures ou autour de la bouche des canons, en particulier dans les bandes dessinées.

Dans son ouvrage Sur l’Etna dans lequel il écrit que le volcan « fume la pipe », Haroun Tazieff expliquait en 1991 que « ces ronds de fumée sont provoqués par la convection des gaz lancés à grande vitesse par l’orifice circulaire de la bouche ». Quelques années plus tard, je fus moi-même témoin du phénomène sur l’Etna (voir photos ci-dessous). Dans un échange de correspondance avec le célèbre volcanologue, j’écrivais que « l’expulsion centrale plaquerait les gaz sur la paroi de la bouche où ils s’enrouleraient sur eux-mêmes pour finir par sortir en anneau, étant donné la forme de l’ouverture ». H.. Tazieff me répondit – croquis de sa main à l’appui – que sa propre explication des anneaux était proche de la mienne. « La différence tient essentiellement dans la coupe de la bouche, ce qui, au moment de la bouffée, crée un excès de gaz (diamètre large sous l’évent, diamètre faible de l’évent lui-même) avec, naturellement, accélération des gaz dans la partie centrale et freinage au contact des parois tout autour, d’où ‘enroulement des gaz à la périphérie de l’ensemble ».

Les scientifiques expliquaient en 2010, quand j’ai rédigé ma note, que, pour obtenir un rond, il faut deux conditions initiales : de la fumée et une vitesse de départ. Dans le cas du volcan, ce sont les fumerolles et l’air chaud ascendant émis par une bouche qui sont susceptibles de générer les anneaux. Mais tous les jets de fumée ne donnent pas des ronds ! Un rond de fumée ne peut s’obtenir que si le jet est discontinu. Il se forme alors autour d’un cœur autour duquel le fluide tourne. Chaque partie de l’anneau est soumise à la vitesse induite des autres parties : la moitié droite de l’anneau tourne dans le sens des aiguilles d’une montre, et la moitié gauche dans le sens inverse.

L’anneau ne peut donc pas rester immobile : il est en mouvement permanent par rapport au fluide qui l’entoure. C’est ainsi qu’un anneau ne reste pas immobile au-dessus de l’Etna ; il s’en éloigne inexorablement…

Expulsion d’un anneau de gaz sur l’Etna

Source de l’émission d’anneaux sur le Cratère SE de l’Etna

Photos: C. Grandpey

—————————————–

Some volcanoes like Mount Etna (Sicily) blow rings of vapour and ash that waft above their craters. The short-lived rings have also been observed occasionally at Eyjafjallajökull in Iceland. Researchers have found new clues about how bursting gas bubbles create these curiosities in some volcanoes.

Volcanologists at the National Institute of Geophysics and Volcanology (INGV) in Italy have investigated the rings which are typically associated with relatively mild volcanic activity. They published their findings in February 2023 in the journal Scientific Reports.

There are similarities between how volcanoes huff out these halos and how dolphins blow bubble rings or how smokers exhale smoke rings. The volcanic versions are also commonly called smoke rings, although they’re actually made mostly of water vapour. Researchers usually say “vapour rings” or “vortex rings” when describing the phenomenon. Emissions exiting a volcano’s blowhole (or a smoker’s mouth) slow down where they encounter a surface, causing the gas to loop over on itself.

However, it is not exactly clear what is happening within a volcano that leads to a vapour ring. Even volcanoes known for such puffery don’t make rings all the time. The Italian team scoured the internet and research footage for vapor rings caught on camera. The rings they found were 9-200 meters in diameter and lasted up to 10 minutes. Typically white, vapor rings were occasionally tinged with gray or brown ash.

The researchers modeled the possible motion of gas and bubbles within the barrel of a volcano. For vapour rings to form, small gas bubbles had to merge and float up through the magma to create pressurized gas pockets. When such pockets explode, they could push out some gas fast enough to make a vapor ring. But the volcano’s opening also needed to be circular or slightly smushed. Volcanoes with irregular or more elliptical openings did not typically form rings. When they did, these apertures warped the doughnut shape or caused the ring to wobble.

Combining the photo and video observations with the model allowed the team to find physical conditions needed to make vapour rings. Moreover, ring emissions may say something about a volcano’s magma. In particular, volcanoes that release hoops of vapour have liquid rock that is more likely to flow.

However, there are limits to what vapour rings can reveal about volcanoes. For instance, when a volcano like Mt St Helens continuously gushes gas and spews a lot of solid material, it will never blow rings.

Source : The Seattle Times.

++++++++++

In a post written on February 11th, 2010, I explained that themoke rings emitted by some volcanoes are not exceptional phenomena. Smokers can cause them positioning their lips and exhaling cigarette smoke in a certain way. These rings often appear around the exhausts of cars or around the mouths of cannons, especially in comics.

In his book On Etna in which he explained that the volcano was « smoking a pipe » Haroun Tazieff wrote in 1991 that « the smoke rings are caused by the convection of gases emitted at high speed by the circular orifice of the vent.  » A few years later, I myself could observe the phenomenon on Mount Etna (see photos above). In a letter to the famous volcanologist, I wrote that « the central expulsion seemed to push the gases on the wall of the vent where they roll up on themselves and eventually ring out, given the shape of the opening.  » H.. Tazieff replied – with a sketch of his hand to support his point of view – that his own explanation for the rings was close to mine. « The difference is in the shape of the vent which, at the time of the expulsion, creates an excess of gas (large diameter below the vent, small diameter of the vent itself) with naturally accelerates the gases in the central part and brakes them at the contact with the walls all around, hence a ‘winding’of the gases at the periphery. »

Scientists explained in 2011 – when I wrote my post – that getting a ring requires two initial conditions: smoke and speed at the start. In the case of the volcano, it is the fumaroles and the rising hot air that is emitted by a vent that are likely to generate the rings. But all the jets do not become smoke rings! A smoke ring can only be achieved if the jet is discontinuous. It is formed around a core around which the fluid rotates. Each part of the ring is subject to the induced velocity of the other parties: the right half of the ring rotates clockwise, and the left half in the opposite direction.

Thus, the ring cannot stay still: it is in constant motion relative to the fluid that surrounds it. Thus, a ring does not stand still above Mount Etna; it inexorably moves away …

C’est quoi un volcan? // What is a volcano?

A l’issue de mes conférences « Volcans et risques volcaniques » et « Glaciers en péril », je prévois toujours un moment de communication et j’invite le public à poser des questions sur les thèmes abordés. Les questions que je redoute le plus sont celles des enfants ; elles sont innocentes mais il n’est pas toujours facile d’y répondre. Il y a quelques années, une petite fille au premier rang m’a demandé « Qu’est-ce qu’un volcan ? Pourquoi y a-t-il des volcans ? » C’est une question à laquelle les géologues de l’Observatoire des Volcans d’Hawaii (le HVO) ont tenté de répondre dans un récent article Volcano Watch, en se référant aux volcans de la Grande Ile d’Hawaï..
L’île d’Hawaï est composée de cinq volcans qui se dressent au-dessus du niveau de la mer : le Kilauea, le Mauna Loa, le Hualalai, le Mauna Kea et le Kohala. En marge de ces édifices imposants, on peut également observer un certain nombre de cônes de taille plus modeste sur les flancs des cinq principaux volcans ; ce sont des endroits où des éruptions ont eu lieu dans le passé, mais on ne les considère pas comme des volcans à part entière. Comment se fait-il que la Grande Ile ne possède pas des centaines de volcans au lieu de seulement cinq ?
Une définition du dictionnaire nous explique qu’un volcan est un évent (plus souvent appelé « bouche ») dans la croûte terrestre à travers lequel la roche ou la lave est éjectée. Dans une autre définition, un volcan est une colline ou une montagne de forme conique qui s’est édifiée autour d’une bouche éruptive. La plupart des volcanologues estiment que ces deux définitions sont un peu trop simplistes

Pour un volcanologue, un volcan est une structure contenant une bouche ou un groupe de bouches éruptives alimentées par du magma qui provient directement d’une grande profondeur, généralement plus de 30 km, à l’intérieur de la Terre. Chacun des cinq volcans de la Grande Ile d’Hawaï possède un conduit d’alimentation profondément enraciné qui plonge à au moins 100 km sous l’île. En revanche, les cônes de plus petite taille se sont formés autour de bouches alimentées par du magma qui s’est séparé du conduit principal à faible profondeur, probablement à moins de 10 km. Ces cônes plus petits ressemblent aux branches d’un arbre, tandis que le volcan profondément enraciné représente le tronc de l’arbre. Le Kilauea reste un volcan actif longtemps après l’arrêt de l’éruption d’un de ces petits cônes, car le conduit d’alimentation principal est toujours intact. C’est pourquoi les volcans deviennent plus gros que les cônes adventifs qui contribuent à leur croissance.
Plusieurs termes sont utilisés pour décrire les bouches dépourvues de racines profondes et qui tirent leur magma du conduit d’alimentation principal – bouches latérales ou parasites, ou encore bouches de rift. Parfois, le mot « bouche » est remplacé par « cône » dans une expression comme « cône adventif ». Ainsi, le cône Ahuʻailaʻau qui s’est formé dans les Leilani Estates lors de l’éruption de 2018 pourrait être appelé « bouche latérale »ou « cône adventif » du Kilauea. Le Puʻu ʻOʻō est resté une bouche latérale – ou un cône adventif actif – du Kilauea pendant environ 35 ans avant de s’arrêter en 2018.
L’apparence physique à elle seule ne peut pas toujours être utilisée pour faire la distinction entre un volcan et un cône adventif sur ce même volcan. La composition de la lave est alors utilisée pour déterminer si le magma provient, ou non, de la même source.

La deuxième définition du mot « volcan » dans le dictionnaire – une colline ou d’une montagne en forme de cône construite autour d’une bouche éruptive – ne saurait s’appliquer aux volcans tels que le Kīlauea dont la forme est loin de celle d’un cône. Les grandes caldeiras, telles que Long Valley dans l’est de la Californie ou Yellowstone dans le Wyoming constituent un autre type de volcans dépourvus de forme conique. Personne n’est capable de deviner, sans quelques connaissances géologiques, que ces vastes dépressions comptent parmi les plus grands volcans de notre planète.
Vue de loin, la caldeira du Kilauea ne ressemble pas à un volcan et est très différente du mont Fuji, du Mayon et du mont St. Helens d’avant 1980. Cependant, dans les années 1400, le sommet du Kilauea avait l’aspect d’un bouclier de lave plutôt que d’une caldeira. La caldeira s’est formée par l’effondrement du bouclier une centaine d’années plus tard.
Ce dernier exemple montre également que la forme d’un volcan peut changer radicalement et rapidement, et le cône ou le bouclier observé au cours d’une année peut devenir une caldeira l’année suivante. Les volcans hawaïens continueront de croître et de changer de forme dans les siècles et millénaires à venir.
Source : USGS, HVO.

———————————————

At the end of my conferences « Volcanoes and volcanic hazards » and « Glaciers at risk », I invite the audience to ask questions about these two topics. The questions that I fear most are those asked by children; they are innocent but not always easy to answer. A few yeras ago, a little girl in the front row asked me « What is a volcano? Why are there volcanoes » This is the question HVO geologists tried to anwswer in a recent Volcano Watch article, with references to the volcanos on Hawaii Big Island.

The Island of Hawaii is made of five volcanoes that rise above sea level : Kilauea, Mauna Loa, Hualalai, Mauna Kea and Kohala. One can also observe a variety of smaller cones dotting the five major volcanoes; they are places where eruptions took place in the past. But they are not called volcanoes. How does it come the island does not have hundreds of volcanoes instead of only five?

In one dictionary definition, a volcano is a vent in the Earth’s crust through which rock or lava is ejected. In another, a volcano is a cone-shaped hill or mountain built around a vent. Most volcanologists find both of these dictionary definitions insufficient.

To a volcanologist, a volcano is a structure containing a vent or cluster of vents fed by magma rising directly from great depth within the Earth, generally more than 30 km. Each of the five volcanoes on Hawaii Big Island has such a deeply rooted feeder conduit that extends at least 100 km beneath the island. In contrast, the smaller cones formed around vents that were supplied by magma that branched off the main conduit at a shallow depth, probably less than 10 km deep and often about half that. These smaller cones are analogous to limbs on a tree, and the deeply rooted volcano is equivalent to the trunk of the tree. Kilauea, for example, will remain an active volcano long after any single cone stops erupting because the main feeder conduit will still be intact. Therefore, volcanoes become larger than their parasitic cones, which contribute to their growth.

Several terms are used to describe the vents that lack deep roots and get their magma from the main feeder conduit — flank vents, parasitic vents, rift vents. Sometimes the word “cone” is substituted for “vent” in an expression like « adventive cone. » So, for example, Ahuʻailaʻau cone that formed in Leilani Estates during the 2018 eruption could be termed a flank vent or adventive cone on Kilauea. Puʻu ʻOʻō was an active flank vent / adventive cone on Kilauea for about 35 years before stopping in 2018.

Physical appearance alone cannot always be used to make the distinction between a volcano and a subsidiary vent on that volcano. The composition of the lavas are used, often like a genetic tracer, to determine if the magma originated from the same source or not.

The second dictionary definition of “volcano” — that of a cone-shaped hill or mountain built around a vent — certainly does not apply to volcanoes such as Kīlauea, whose shape is far from that of a cone. Another type of volcanoes lacking a cone shape are large calderas, such as Long Valley in eastern California or Yellowstone in Wyoming. No one would guess, without doing some geologic knowledge, that these wide depressions are some of the largest volcanoes on our planet.

Seen from a distance, the Kilauea caldera does not look like a volcano and is very different from Mount Fuji, Mayon, and pre-1980 Mount St. Helens. However, the summit of Kilauea in the 1400s had the aspect of a lava shield, rather than a caldera. The caldera formed by collapse of the shield some 100 years later.

This last example also shows that the shape of a volcano can change drastically and quickly, and one year’s cone or shield can be next year’s caldera. Over the longer-term, Hawaiian volcanoes will continue to grow and change shape.

Source: USGS, HVO.

Carte topographique de la Grande Ile d’Hawaii (Source: USGS)

Cônes adventifs sur le Mauna Kea (Photo: C. Grandpey)